
Accepted Manuscript

A data locality based scheduler to enhance MapReduce performance in
heterogeneous environments

Nenavath Srinivas Naik, Atul Negi, Tapas Bapu B.R., R. Anitha

PII: S0167-739X(18)30837-9
DOI: https://doi.org/10.1016/j.future.2018.07.043
Reference: FUTURE 4361

To appear in: Future Generation Computer Systems

Received date : 6 April 2018
Revised date : 1 July 2018
Accepted date : 18 July 2018

Please cite this article as: N.S. Naik, A. Negi, T.B.B.R. T.B.B.R, R. Anitha, A data locality based
scheduler to enhance MapReduce performance in heterogeneous environments, Future Generation
Computer Systems (2018), https://doi.org/10.1016/j.future.2018.07.043

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.future.2018.07.043

A Data Locality based Scheduler to Enhance

MapReduce Performance in Heterogeneous

Environments

Nenavath Srinivas Naika,∗, Atul Negia, Tapas Bapu B Rb, R. Anithab

aSchool of Computer and Information Sciences, University of Hyderabad,
Hyderabad 500046, India.

bS.A.Engineering College, Chennai, India.

Abstract

MapReduce is an essential framework for distributed storage and parallel pro-
cessing for large-scale data-intensive jobs proposed in recent times. Hadoop
default scheduler assumes homogeneous environment. This assumption of
homogeneity does not work at all times in practice and limits the perfor-
mance of MapReduce. Data locality is essentially moving computation closer
(faster access) to the input data. Fundamentally, MapReduce does not al-
ways look into the heterogeneity from a data locality perspective. Improving
data locality for MapReduce framework is an important issue to improve the
performance of large-scale Hadoop clusters.

This paper proposes a novel data locality based scheduler which allocates
input data blocks to the nodes based on their processing capacity. Also sched-
ules map and reduce tasks to the nodes based on their computing ability in
the heterogeneous Hadoop cluster. We evaluate proposed scheduler using d-
ifferent workloads from Hi-Bench benchmark suite. The experimental results
prove that our proposed scheduler enhances the MapReduce performance in
heterogeneous environments. Minimizes job execution time, and also im-
proves data locality for different parameters as compared to the Hadoop
default scheduler, Matchmaking scheduler and Delay scheduler respectively.

Keywords: MapReduce, Data Locality, Task Scheduler, Heterogeneous
Environments

∗Corresponding author
Email address: srinuphdcs@gmail.com (Nenavath Srinivas Naik)

Preprint submitted to Future Generation Computer Systems July 1, 2018

1. Introduction

Distributed and Parallel processing is one of the best intelligent ways to
store and compute Big Data [2]. An enormous quantity of data is produced
every day from web authoring, digital media, and scientific instruments, etc.
One of the significant challenges to the software and research community is
efficiently storing, querying, analyzing, forecasting and using of this Big Data.
MapReduce was first developed at Google by Jeffrey Dean and Sanjay Ghe-
mawat [1]. MapReduce is one of the significant computational frameworks
for large-scale data processing and analysis on massive clusters of commodi-
ty machines. Apache Hadoop is now the open-source implementation of the
MapReduce framework that was created by Doug Cutting [5].

MapReduce follows master-slave architecture [3]. A single master node
monitors the status of the slave nodes in a cluster. The master node divides
the input files into multiple map tasks, and then schedules both map and
reduce tasks to slave nodes in a cluster. A task assigned to slave nodes
has two phases of processing: Map and Reduce. From the Map phase,
intermediate (key, value) pairs are generated and transferred to the Reduce
phase as input. The Reduce phase sorts the intermediate results by matched
key and then merges them as one final output.

The homogeneity assumption is that all the nodes in the cluster will have
the same processing capacity. This assumption can, as a matter of fact,
degrade the performance of MapReduce framework because there is certain
diversity in the hardware. In the current day scenario, financially constrained
entities like Universities and Colleges would like to have a cluster with a mix
of legacy hardware with newer ones. Advancement of hardware technology is
another practical reason for heterogeneous clusters to increase, as hardware
sourced at different times in technology cycles can be brought together in a
better way. Therefore working with heterogeneous clusters would be a major
goal to increase the scope of MapReduce [31]. Additionally, issues of data
locality, straggler tasks, also are known to affect the MapReduce performance
[5]. These problems have been underestimated by researchers in most of the
conventional MapReduce scheduling algorithms.

The aim is to design an efficient scheduler, which is responsible for making
decisions on which task to be executed at what time and on which machine.
The most common objective of scheduling is to minimize the job completion

2

time by appropriately allocating the tasks to the processors. An improper
scheduling of jobs or tasks will not utilize the actual potential of the systems
present in the cluster. One of Hadoop’s primary principles is “moving com-
putation towards data is cheaper than moving data towards computation”
[12]. Cross-switch network traffic is one of the obstructions in data-intensive
computing which can be reduced by proper data locality, which in turn is
characterized as the distance between the input data node and task-allotted
node [13]. The data locality issue has got much consideration from the re-
search community, and schedulers which enhance data locality have been
proposed in the extant literature and also implemented practically [9].

In the MapReduce model, the job completion time in each node depends
on the complete execution of workload assigned to that node [28]. To bal-
ance the workload in a cluster, Hadoop distributes the data blocks to different
nodes by taking into account the availability of disk space. Such a data dis-
tribution methodology might be proficient for a homogeneous environment,
where nodes are identical [30]. If workload distributes evenly in the heteroge-
neous nodes, then different processing capacity of nodes will complete their
execution at different times. Therefore, to minimize the job execution time
we have to distribute the workload among nodes depending on the processing
capacity of nodes in the cluster.

Improving data locality for MapReduce is favorable in following ways:

1. Minimizes job execution time as data transfer time limits are the ones
which are going to occupy most of the total job execution time.

2. Reduces the cumulative data center network traffic since fewer map
and reduce tasks need to fetch data tenuously.

Data distribution might not be effective in a homogeneous environment
because all the nodes in a cluster will have the same hardware configurations
[25]. However, in a heterogeneous environment, nodes with high computation
can complete computing local data quicker than nodes with low computation
[21]. For this situation, the overhead of moving unprocessed data from slow
processing node to fast processing node is high if the volume of data transfer
is high. These issues motivate us to develop dynamic data locality based
scheduler which minimizes the quantity of data movements among slow and
fast processing nodes and thereby enhances the MapReduce performance in
heterogeneous environments.

The key contributions of this research paper are therefore:

3

1. Proposal of a Data distribution method that dynamically distributes
input data to the nodes depending on their processing capacity in the
cluster.

2. Development of a data locality based scheduler that schedules map
and reduce tasks to different nodes in a heterogeneous cluster by their
processing capacity. (i.e. Nodes with fast processing capacity will be
assigned more tasks than slower ones).

3. Comparison of our proposed scheduling approach with the state-of-the-
art schedulers using heterogeneous workloads from Hi-Bench bench-
mark suite in heterogeneous Hadoop cluster.

4. Proposal of scheduling approach for reducing data movement activities
in a cluster by improving data locality rate and also minimizing the job
execution time. Thus, the proposed approach enhances MapReduce
performance in heterogeneous environments.

The rest of this paper is structured as follows. Section 2 illustrates the
background of the MapReduce framework. Section 3 presents the related
work. Section 4 introduces proposed novel scheduling approach for data
locality in MapReduce framework. Section 5 analyses the performance of the
proposed scheduling approach. Finally, we conclude the paper by providing
an outline for future research work in Section 6.

2. Background

This section illustrates a brief overview of the MapReduce framework and
concisely address about heterogeneous environments.

2.1. Overview of MapReduce

The primary objective of the MapReduce framework is to distribute and
parallelize job execution on several nodes in a cluster for processing [10]. A
MapReduce application which needs to be executed is named to be a job.
The input file for a job will be residing on a distributed file system until the
cluster gets divided into equal-sized blocks [27]. A job can be split into a
series of tasks. Every data block is first processed by a Map function, which
produces an output as intermediate (key, value) pairs and then a Reduce
function produces the final output.

Hadoop framework contains two components [2]: 1. HDFS (Hadoop Dis-
tributed File System), which stores the input data and 2. MapReduce engine,

4

which processes the data blocks stored in different nodes of a cluster. HDFS
contains a NameNode and DataNodes in a cluster. NameNode is a master
node which contains the meta-data information of the data block locations
in a cluster. DataNodes are slave nodes which store the data blocks within
a cluster. MapReduce contains a JobTracker and multiple TaskTrackers.
JobTracker deals with job scheduling and tasks to available TaskTrackers
within a cluster depending on the slot availability. TaskTrackers process
the map and reduce tasks on the corresponding nodes in the cluster. For
clarity, we have modified the MapReduce workflow and shown it in the Fig.
1. The MapReduce contains the following stages [5] when scheduling a job
from the master node to the slave nodes.

Figure 1: MapReduce workflow [5]

1. User submits input data to the NameNode
2. The NameNode divides the data into m blocks of the same size. r

duplicates of every block are produced for fault tolerance. (r is the
replication factor).

3. The master node picks up the idle slave nodes to assigns map tasks and
reduce tasks.

5

4. User submits a job to the JobTracker for processing corresponding
data blocks.

5. A slave node that is executing a map task parses the data block and
assigns each (key, value) pair to the Map function. The intermediate
(key, value) pairs are buffered in memory at corresponding nodes.

6. The buffered (key, value) pairs are written to data residing nodes at
fixed intervals and divided into R sections by means of a (configurable)
partition function (default is hash(intermediatekey)modR). The i-
dentical (key, value) pairs go to same partition. When the map task
completes, the slave node sends the location information of partition
to the master node.

7. The node which contains Reducer function reads the data using remote
procedure calls. It sorts and groups the data by intermediatekey so
that all values of the same key are grouped. It is called shuffling of the
task.

8. The master node produces the final output after execution of all map
and reduce tasks.

2.2. Heterogeneous Environments

Hadoop was initially aimed for homogeneous cluster environments, but,
now it is commonly used in various heterogeneous environments [11]. Het-
erogeneity is categorized as below which is increasing in both workloads and
cluster configuration.

1. In Heterogeneous environments, each node in the cluster would have
different physical parameters such as data storage and processing units.

2. MapReduce jobs can be heterogeneous on various task features such as
data and computation requirements.

However, current Hadoop schedulers are not correctly adapted for hetero-
geneous systems [26]. This research is originally motivated by addressing the
scheduling challenges arising due to increase in heterogeneity of distributed
systems. The heterogeneous system introduces new scheduling challenges,
which directly affect the system performance.

3. Related Work

A considerable amount of research work has been conducted to expand
the data locality approach for better effectiveness. We, thereby, briefly dis-

6

cuss Data Locality based MapReduce Schedulers such as MapReduce de-
fault scheduler, Matchmaking scheduler, and state-of-the-art Delay sched-
uler. These schedulers have been developed to enhance data locality of the
MapReduce framework in heterogeneous environments, but they do have cer-
tain limitations.

3.1. Hadoop default Scheduler

The Hadoop default FIFO (i.e. first-in-first-out) [2] scheduler has already
considered data locality as its main functionality. This scheduler will always
pick the first job and schedule its map tasks that are local to the data. In
cases when a job may not have any map task neighborhood to a data node,
stand out of its non-nearby map undertakings will be allocated to the node
at once generally assigned on the same rack, or onto another rack in the
cluster.

3.1.1. Limitations of Hadoop default Scheduler

1. Default scheduler takes after the strict FIFO job order for task assign-
ment. This scheduling rule hurts the data locality because a different
job’s local tasks cannot be allotted to the slave node until the primary
job schedules all its map tasks.

2. Default scheduler does not work better in Heterogeneous environments.

3. Response time and data locality rate are minimal for smaller jobs as
compared to larger jobs.

3.2. Matchmaking Scheduler

Matchmaking Scheduler [7] tries to enhance data locality for map tasks.
The main thought of this algorithm is to provide all nodes a fair and plausible
chance to take hold of local tasks in advance, so that some non-local tasks are
allocated to any other nodes. If none of the local tasks were found for a node
then, it would not have a heartbeat signal received to that particular interval.
During one heartbeat interval, all other nodes that have free Map slots will
probably send their heartbeat signals to the master node, and possibly receive
local task details. For example, suppose, if a local task cannot be found for a
node during the second time in a row, only then a non-local task is assigned.
The nodes use a locality marker that marks their status immediately while
processing. If a local task cannot be assigned to a node, then depending on
the value of the node’s locality marker, the node will either be in a wait state
for a heartbeat interval or receive a non-local task to continue.

7

3.2.1. Limitations of Matchmaking Scheduler

1. One of the problems of the Matchmaking algorithm is the fact that it
does not consider rack locality into account.

2. The fact that it does not need to configure any parameters but it might
make the algorithm rigid because even if it can be a hassle to tune a
parameter properly, a proper configuration might lead to better results.

3.3. Delay Scheduler

Zaharia et al. [6] have proposed the delay scheduling algorithm in Fair
Scheduler to enhance data locality in the MapReduce framework. Delay
scheduler halts several job request when allocating map tasks to a TaskTracker.
If the first job does not have a local map task, the scheduler can delay it to
wait and allocate a different job’s local map tasks. Here, the delay time D is
an essential factor. As a matter of course, it is fixed at 1.5 times heartbeat
interval of the slave node. When a job is postponed for more than D time
units, then the scheduler can allocate the job’s non-local map tasks. To get
a better execution of the delay scheduler, we need to pick an appropriate D
value. If the value is too large, then there’s a risk of job starvation, which
in turn can influence the performance overall. Despite, the small D value
cannot guarantee the data locality. Delay scheduler solves other locality is-
sues, for example, head-of-line scheduling. It happens when small jobs are
improbably allocated to a node without the processing of data associated
with it.

3.3.1. Limitations of Delay Scheduler

1. Despite the fact that this strategy can enhance data locality, yet it
needs to give up some utilization while waiting. It has to wait for more
time to allocate a local task or discard the locality once losing many
CPU cycles.

2. This algorithm is optimized for small tasks like those that are usually
encountered for example in Facebook clusters; so it is not appropriate
for jobs that take more execution time. It can bring job execution
degradation if it has delayed tasks.

3. Wait times used in delay scheduling must be manually configured for
every particular system that uses this scheduling method.

4. Another limitation of this algorithm is that it does not consider data
locality for reduce tasks.

8

To overcome some of the limitations of the above Hadoop schedulers, we
have developed our scheduling approach for data locality under heterogeneous
environments.

4. Proposed Data Locality based MapReduce Scheduler in Hetero-
geneous Environments

In this section, we propose a scheduling approach that solves the prob-
lem of data distribution and task scheduling in MapReduce framework de-
pending on the node processing capacity, so as to improve the MapReduce
performance in heterogeneous environments.

In a heterogeneous environment, the processing capabilities of nodes may
differ altogether. A node with high processing capacity can complete execu-
tion of local data quicker than a node with slow processing capacity. A way
to enhance the MapReduce performance in heterogeneous computing envi-
ronments is to minimize the volume of data transfer between fast and slow
processing nodes. To manage the data load in a heterogeneous environment,
we propose a dynamic data distribution approach. This approach aims to
divide the data dynamically depending upon the processing capacity of the
nodes in the cluster.

4.1. Proposed Map Task Data Locality based Scheduler

The proposed scheduling algorithm first dynamically divides the input
data into various data blocks depending on the node processing capacity in
the cluster by the dynamic block partitioner. Then, the proposed algorithm
assigns these data blocks to different nodes in the cluster. A node with high
processing capacity will get more data blocks compared to the low processing
node.

We calculate the total number of data blocks for the input data using (1).

TDB ← DS/BS (1)

Here, TDB is the total number of data blocks for input data, DS is Data
size of input data, and BS is Default block size.

We estimate the processing capacity of each Node i in the heterogeneous
Hadoop cluster using (2).

NPC(i)← PDN(i) + ATE(i) (2)

9

Here, NPC(i) is the Node processing capacity of ith node, PDN(i) is
Performance of ith node, and ATE(i) is Average task execution time in ith

node.
We will find the node processing capacity (NPC) of all nodes in the cluster

by considering the following: 1. Average task execution time of a particular
job in that node of the cluster and 2. We combine the available memory
(RAM) and CPU of that node at regular intervals.

We will find the average task execution (ATE) time by executing a few
tasks of a particular job on that node. We have added ATE to the NPC
because the job will execute at different times for heterogeneous nodes in the
cluster and this helps in identifying the NPC of a node. We can determine
the percentage of Memory and CPU usage in every node of the heterogeneous
cluster. After that, we will calculate the free Memory and CPU usage in every
node in the cluster using (3) and (4).

FreeCPU(i)← ((100− UsedCPU(i))× CPU(i))/100 (3)

FreeMem(i)← ((100− UsedMem(i))×Mem(i))/100 (4)

Here, CPU(i) is Processing capacity of ith node in the cluster, Mem(i) is
RAM capacity of ith node in the cluster, UsedCPU(i) is Percentage of CPU
used in ith node of the cluster, and UsedMem(i) is Percentage of Memory
used in ith node of the cluster.

We will find the performance of ith data node by obtaining free available
CPU and memory from that node as in (5)

PDN(i)← FreeCPU(i) + FreeMem(i) (5)

To identify the fast and slow processing nodes accurately, we use K-
means clustering algorithm to divide the nodes into K clusters by considering
dynamic features such as:

1. Average task execution time

2. The amount of free Memory available

3. The amount of free CPU available

4. Disk space left on each node

Each time when the job runs, K-means algorithm classifies the nodes in
the cluster depending on the node processing capacity.

10

We calculate the total node processing capacity of all heterogeneous nodes
present in the cluster using (6).

TNPC ←
n∑

i=1

NPC(i) (6)

Here, TNPC is Total node processing capacity of the heterogeneous clus-
ter, and n is the number of data nodes in the cluster.

We estimate the number of data blocks to be assigned for each DataNode
i in the cluster as in (7).

NB(i)← TDB × (NPC(i)/TNPC) (7)

Here, NB(i) is Number of data blocks to be assigned for ith DataNode.
We will assign the number of data blocks to ith DataNode in a heteroge-

neous environment depending on the processing capacity of the nodes as in
(8)

DN(i)← NB(i) (8)

Here, DN(i) is ith data node in the heterogeneous cluster.
Let us consider a MapReduce job with its input data in a cluster. The

proposed scheduling approach will dynamically divide the input data and
distribute the data blocks to the nodes according to the processing capacity
of nodes in the cluster, so that all the nodes in the cluster will process their
local data blocks within the same amount of time.

We will arrange the data nodes according to their node processing capac-
ity in a heterogeneous Hadoop cluster.

We will first check if there are any Map slots available on the fast pro-
cessing node. The fast processing data node has the maximum processing
capacity within the Hadoop cluster. If Map slots are available, then we will
assign the map tasks (MT) to the fast processing node in the cluster as in
(9).

FPN(i)←MT (9)

Here, FPN(i) is ith fast processing data node in the heterogeneous clus-
ter.

Suppose, if Map slots are not available on that node, then wait until it
satisfies the node delay threshold as in (10). After the time period, assign

11

map task to the subsequent fast processing node in the cluster. We have
taken the NDT (Node Delay Threshold) as 4.5 seconds because if the NDT
value is larger than that, then job starvations may occur affecting, in turn,
the MapReduce performance. On the other hand, if NDT value is smaller,
then it cannot guarantee the data locality.

WaitNode 6 NDT (i) (10)

The execution flow of our proposed scheduler contains the following stages
as shown in Fig. 2.

1. User submits the input data to the NameNode. The Dynamic block
partitioner present in the NameNode, divides the input data according
to the processing capacity of nodes in the cluster. Dynamic block
partitioner gets NPC of nodes from meta-data information and this
information is updated periodically.

2. The Dynamic block partitioner then assigns the input data blocks to the
corresponding data nodes in the cluster depending on their processing
capacity.

3. User submits a job to the JobTracker, which in turn selects a job from
the job running queue.

4. Further, the JobTracker will gets the information from the meta-data
and then assigns tasks (T) to the TaskTrackers depending on the
number of slots (Map or Reduce) available on the fast processing node
in a heterogeneous Hadoop cluster.

We consider the following cases of our proposed scheduler for Fig 2.

Case 1:. if we want to assign any new task, then we check for the slot’s
availability of fast processing node. In this case, Node3 has the maximum
node processing capacity of 8 units, and 1 Map slot is available among 4
Map slots (since 3 map tasks are running on 3 Map slots). Therefore, we
can assign any new task (T) of Job1 or Job2 to Node3.

Case 2:. the Node2 has 2 Map slots, and all are executing the tasks. Suppose
any new task of Job2 or Job1 wants to run on Node2 it has to wait for a
threshold period so that the slots can be free. Suppose, if slots are available,
then we give priority to Job2 and assign its tasks instead of Job1 because
Node2 has data blocks of Job2.

12

Figure 2: Execution flow of Proposed Scheduler

Case 3:. considering Node1 has 3 Map slots, if any task of Job1 wants to
run on Node1 it has to wait because it has no corresponding data block. If
any task of Job2 intends to run on Node1, then we can assign a task to it
because it has one free Map slot and also a corresponding data block.

We present a scheduler which dynamically distributes data blocks and
schedules map tasks to a node which has maximum processing capacity in
the heterogeneous cluster as shown in algorithm 1.

13

Algorithm 1 Proposed Algorithm for Map Task Data Locality

Input: Set of Unscheduled MapTasks (UMT).

Output: A MapTask MT ∈ UMT that can be scheduled on a fast process-

ing node.

1: for each DataNode i in the heterogeneous cluster do

2: Calculate the total no. of Data blocks for input data

3: TDB ← DS/BS

4: Calculate the Node processing capacity of i

5: NPC(i)← PDN(i) + ATE(i)

6: Calculate the Total Node processing capacity of the cluster

7: TNPC ←∑n
i=1NPC(i)

8: Calculate the no. of Data blocks for i in the cluster

9: NB(i)← TDB × (NPC(i)/TNPC)

10: Assign the no. of Data blocks to i in the cluster

11: DN(i)← NB(i)

12: Run K − means algorithm to classify the nodes into K clusters

depending on their processing capacity

13: Arrange the Fast Processing Nodes (FPN) in the cluster in order

14: if Map slots available on FPN then

15: Assign map tasks to FPN

16: FPN(i)←MT

17: else

18: WaitNode 6 NodeDelayThreshold

19: FPN(i)←MT

20: end if

21: end for

We will make few assumptions such as:

1. Each node in the cluster is given a value N which represents the relative
processing capacity of that particular node.

2. While assigning a value N , we will take the following parameters such
as average task execution time, free Memory and CPU usage of that

14

node in the cluster.

For example, if Node1 has N value of 10 and another Node2 has N value
of 5, it signifies that Node1 is capable to process data two times faster than
Node2. Data distribution mechanism in Hadoop might not be effective in a
homogeneous environment, where every node has the same processing and
disk capacity. Suppose, if we have homogeneous Hadoop cluster environment,
then the data block assignment to the nodes will be as shown in Table 1.

Table 1: Default Data block assignment in a Homogeneous environment

Rack Node NPC Number of Data
Blocks assigned

1 1 10 10
2 10 10
3 10 10
4 10 10
5 10 10

2 6 10 10
7 10 10
8 10 10
9 10 10
10 10 10

For better understanding of the algorithm 1, we consider an example for
data allocation. We have an input data of size 12.8 GB and block of size
128 MB. The total number of data blocks for that input data is 100 blocks
(12800MB/128MB = 100), which is to be distributed among the hetero-
geneous nodes of the cluster. Suppose, if we assume that node processing
capacity of Node1 is 6 units and the total node processing capacity of all the
nodes in the cluster is 50 units, then the number of data blocks that is to
be assigned to Node1 is 12 Blocks (100× 6/50 = 12). As Node4 and Node8
are fast processing data nodes, as their node processing capacity is 8 units.
Thus the number of data blocks assigned is 16 blocks each (100×8/50 = 16).
Node3 and Node10 are the slow processing nodes, as their node processing
capacity is 2 units compared to other nodes in the cluster and assigned 4
data blocks each (100×2/50 = 4). Accordingly, the number of data blocks is
allocated to each node in the cluster depending on their processing capacity
as shown in Table 2.

15

Table 2: Data block assignment of Proposed scheduler in a Heterogeneous environment

Rack Node NPC Number of Data
Blocks assigned

1 1 6 12
2 4 8
3 2 4
4 8 16
5 4 8

2 6 6 12
7 4 8
8 8 16
9 6 12
10 2 4

4.2. Proposed Reduce Task Data Locality based Scheduler

In Hadoop, the Reduce phase does not start until the Map phase pro-
duces all the intermediate data. To get the final output of a job, it has to
wait for all the map tasks to finish. Therefore, after map task data locality
scheduler completes its execution, reduce task data locality scheduler starts
its execution.

We arrange the nodes such that it has Reduce function and maximum
partition of intermediate (key, value) pairs in the cluster in order as in (11).

RN(i)← RN1, RN2,, RNm (11)

Here, RN(i) is ith Node with Reduce function (Reducer node) in the
heterogeneous cluster, and m is the number of nodes with Reduce function
in the cluster.

Arrange the Fast processing nodes in the cluster in order. Initially, for
every node we check if both reducer node and fast processing node are same
in the Hadoop cluster.

If both the nodes are same in the cluster, then continue otherwise assign
intermediate data of the reducer nodes to the fast processing nodes as in
(12).

FPN(i)← RN(i) (12)

First, check if any Reduce slots are available on the fast processing data

16

node. If available then assign reduce tasks (RT) to the FPN(i) in the cluster
as shown in (13).

FPN(i)← RT (13)

Otherwise, wait for reduce task assignment until it satisfies the NDT
(Node Delay Threshold) as in (14). If it satisfies, then assign the reduce
tasks to the fast processing node as in (15).

WaitNode 6 NDT (14)

FPN(i)← RT (15)

We present a scheduler which relies on data locality and schedules reduce
tasks to a node which has maximum processing capacity in the heterogeneous
cluster as shown in algorithm 2.

5. Performance Evaluation

In this section, the proposed data locality based scheduler performance
is assessed by a series of experimental results and analysis. We evaluate our
scheduling approach using metrics such as:

1. Job execution time: it is the most basic measurable standard for a good
scheduler because the purpose of developing a scheduling algorithm is
to minimize the execution time of a job.

2. Data locality: it is measured by the total number of tasks run locally
in the data residing node.

We implement our scheduling method by doing a modification to the
Hadoop framework. We first present the local test-bed before discussing our
experimental results.

5.1. Experimental Environment

We performed the experiments on a heterogeneous Hadoop cluster whose
configuration is shown in Table 3. Our local test-bed contains one master
node (NameNode and JobTracker) and six slave nodes (DataNodes and
TaskTrackers). We measure the heterogeneity in the cluster by having
various CPU types, memory size and disk space on each node. All nodes in
the cluster were connected with a Gigabit Ethernet switch and ran on Ubuntu

17

14.04 operating system. In our experiments, we deployed and configured
Hadoop 1.2.1 stable version with a block size of 128 MB and JDK version 8.
We maintain three replicas for each data block in this cluster to increase the
availability of the data. Hadoop1 is the widespread production today, and it
is the version for which most of the Hadoop application ecosystem has been
developed. In future, we will work on Hadoop2/YARN.

Algorithm 2 Proposed Algorithm for Reduce Task Data Locality

Input: Set of Unscheduled Reduce Tasks (URT).

Output: A ReduceTask RT ∈ URT that can be scheduled on a fast pro-

cessing node.

1: for each DataNode i in the heterogeneous cluster do

2: Find Reducer Nodes that has maximum partition of Intermediate

(key, value) pairs in order

3: RN(i)← RN1, RN2,, RNm

4: Find the Fast processing nodes in the cluster in order

5: if RNi = FPNi then

6: Continue;

7: else

8: FPNi ← RNi

9: end if

10: if Reduce slots available on FPN then

11: Assign reduce tasks to FPN

12: FPN(i)← RTi

13: else

14: WaitNode 6 NodeDelayThreshold

15: FPN(i)← RTi

16: end if

17: end for

5.2. Workload Description (Benchmarks)
We evaluated our proposed scheduler with Hi-Bench benchmark suite [8]

as it is a novel, comprehensive, realistic and widely-used benchmark aimed at

18

Hadoop. It has different benchmarks like: Micro benchmarks (WordCount,
Sort, and TeraSort), Machine learning benchmarks (BayesianClassification,
K-meansClustering) and Web search benchmarks (NutchIndexing, PageR-
ank). We have taken the default data sizes of all these workloads of Hi-Bench
benchmark suite. Sort and WordCount has 60GB and TeraSort has 1TB as
input data. BayesianClassification and K-meansClustering has 63GB and
132GB respectively. NutchIndexing and PageRank has 8.4GB and 3.63GB
respectively.

Table 3: Hadoop evaluation environment

Node Type Hardware Configuration Hadoop Con-
figuration

Master node Intel Xeon CPU L5520 @ 2.27 GHz
* 8, 16 GB RAM, 1000 GB Disk
space

8 map slots and
5 reduce slots

Slave node 1 Intel core i5- 4570T CPU @ 2.90
GHz * 4, 4 GB RAM, 1000 GB
Disk space

4 map slots and
2 reduce slots

Slave node 2 Intel core 2 duo CPU E7500 @ 2.93
GHz * 2, 4 GB RAM, 500 GB Disk
space

2 map slots and
1 reduce slot

Slave node 3 Intel Pentium D CPU @ 3.00 GHz
* 2, 3 GB RAM, 500 GB Disk s-
pace

2 map slots and
1 reduce slot

Slave node 4 Intel core 2 duo Processor P8400
@ 2.26 GHz * 2, 3 GB RAM, 250
GB Disk space

2 map slots and
1 reduce slot

Slave node 5 Intel core i5- 4570T CPU @ 2.90
GHz * 4, 4 GB RAM, 1000 GB
Disk space

4 map slots and
2 reduce slots

Slave node 6 Intel core i5- 2500 CPU @ 3.30
GHz * 4, 8 GB RAM, 500 GB Disk
space

4 map slots and
2 reduce slots

5.3. Performance Analysis of the Proposed Scheduler
To evaluate our proposed data locality based scheduler, we compared its

performance with the Hadoop default scheduling algorithm, Matchmaking

19

scheduler, and Delay scheduler. Comparison with Delay scheduler is more
appropriate as it is a state-of-the-art scheduler and is widely used in the
Hadoop framework. We set up a small local Hadoop cluster of 7 nodes, and
it can be scaled to medium size cluster. We performed five runs in each of the
experiment for evaluating proposed scheduler in heterogeneous environments.

5.3.1. Micro Benchmarks

The WordCount, Sort, and TeraSort workloads are widely used in the
Hadoop research community. Both the Sort and WordCount programs are
illustrative of a large subsection of practical jobs MapReduce.

Figure 3: Job execution time for Micro Benchmarks

The WordCount counts the occurrence of words from input data, which
are generated using RandomTextWriter. On an average, the proposed sched-
uler finishes jobs 19.5% faster than Delay scheduler, 22.8% faster than Match-
making scheduler and 30.8% faster than Hadoop default scheduler as shown
in Fig. 3.

The Sort workload sorts the text data, which is produced with Ran-
domWriter. On an average, the proposed scheduler finishes jobs 14.3% faster
than Delay scheduler, 15.6% faster than Matchmaking scheduler and 18.9%
faster than Hadoop default scheduler as shown in Fig. 3.

20

Figure 4: Data Locality for Micro Benchmarks

The TeraSort workload categorizes 10 billion 100-byte records produced
by the TeraGen program. On an average, the proposed scheduler finishes jobs
10.9% faster than Delay scheduler, 11.8% faster than Matchmaking scheduler
and 17.8% faster than Hadoop default scheduler as presented in Fig. 3.

We observe that our proposed data locality scheduler shows significantly
higher data locality rate than Hadoop default scheduler, Matchmaking sched-
uler and Delay scheduler for all of the workloads from Hi-Bench benchmark
suite. Our proposed scheduler has data local tasks to at most 95%, 94% and
96% for WordCount, Sort and TeraSort benchmarks respectively as shown
in Fig. 4.

5.3.2. Web Search Benchmarks

The NutchIndexing and PageRank benchmarks are comprised in Hi-Bench
as they are representatives of large-scale search indexing systems.

21

Figure 5: Job execution time of Web Search Benchmarks

Figure 6: Data Locality for Web Search Benchmarks

22

The PageRank workload is an open source implementation of the page-
rank algorithm. On an average, the proposed scheduler finishes jobs 11.2%
faster than Delay scheduler, 12.2% faster than Matchmaking scheduler and
22.5% faster than Hadoop default scheduler as shown in Fig. 5.

The NutchIndexing benchmark is the indexing sub-system of Nutch. On
an average, the proposed scheduler finishes jobs 16.6% faster than Delay
scheduler, 17.8% faster than Matchmaking scheduler and 29.8% faster than
Hadoop default scheduler as shown in Fig. 5.

Our proposed scheduler has data local tasks to at most 96% and 95% for
PageRank and NutchIndexing benchmarks respectively as shown in Fig. 6.

5.3.3. Machine Learning Benchmarks

The BayesianClassification and K-meansClustering implementations are
contained in Mahout. They are included in Hi-Bench because of the signifi-
cant additional uses of large-scale machine learning.

Figure 7: Job execution time for Machine Learning Benchmarks

23

Figure 8: Data Locality for Machine Learning Benchmarks

The BayesianClassification benchmark implements the trainer part of
Naive. On an average, the proposed scheduler finishes jobs 9.4% faster than
Delay scheduler, 10.6% faster than Matchmaking scheduler and 12.5% faster
than Hadoop default scheduler as shown in Fig. 7.

The K-meansClustering benchmark implements K-means. On an average,
the proposed scheduler finishes jobs 5.3% faster than Delay scheduler, 7.6%
faster than Matchmaking scheduler and 9.1% faster than Hadoop default
scheduler as shown in Fig. 7.

Our proposed scheduler has data local tasks to at most 96% and 95%
for BayesianClassification and K-meansClustering benchmarks respectively
as shown in Fig. 8.

5.3.4. Hive Benchmarks

In practice, Hive benchmarks are used more widely than hand-coded
MapReduce programs for big data query and analysis applications. One
motivation of our optimization work is to benefit from big data query and
analysis systems. Therefore, we also evaluate the impact of performance im-
provement for the Hive benchmarks. In this experiment, we use Hive as the

24

big data query and analysis system and run the Hive benchmarks(Scan, Join
and Aggregation) on the Hadoop default scheduler, Matchmaking scheduler,
Delay scheduler, and proposed scheduler respectively.

Figure 9: Job execution time of Hive Benchmarks

Figure 10: Data Locality for Hive Benchmarks

25

On an average, the proposed scheduler finishes jobs 10.3% faster than
Delay scheduler, 14.1% faster than Matchmaking scheduler and 25.6% faster
than Hadoop default scheduler by running Scan benchmark as shown in Fig.
9.

On an average, the proposed scheduler finishes jobs 7.5% faster than
Delay scheduler, 9.4% faster than Matchmaking scheduler and 21% faster
than Hadoop default scheduler by running Join benchmark as shown in Fig.
9.

On an average, the proposed scheduler finishes jobs 5.7% faster than
Delay scheduler, 9.3% faster than Matchmaking scheduler and 11% faster
than Hadoop default scheduler by running Aggregation benchmark as shown
in Fig. 9.

Our proposed scheduler has data local tasks to at most 95%, 92% and
96% for Scan, Join and Aggregation benchmarks respectively as shown in
Fig. 10.

Table 4: Average job execution time (Seconds) for different workloads of Hi-Bench
benchmark suite

Average job execution time (Seconds)
Hi-
Bench
bench-
mark
suite

Hadoop
sched-
uler

Matchmaking
scheduler

Delay
sched-
uler

Proposed
Data Lo-
cality
scheduler

WordCount 5800 5200 4987 4012

Sort 7012 6690 6498 5682
TeraSort 9870 9200 9101 8108
PageRank 8500 7509 7419 6586
Nutch In-
dexing

7998 7194 7094 5911

Bayesian
Classifica-
tion

8700 8517 8403 7609

K-means
Clustering

7821 7690 7501 7103

Scan 5600 5193 4916 4458
Join 4832 4408 4293 3990
Aggregation 5356 5319 5101 4824

26

In all of these different workloads from Hi-Bench benchmark suite [8],
proposed data locality based scheduler accomplished the best and consistent
results regarding the minimum average job execution time and higher data
locality rate as compared to the Hadoop default scheduler, Matchmaking
scheduler and Delay scheduler in heterogeneous environments as presented
in Table 4 and Table 5.

Table 5: Data Locality for different workloads of Hi-Bench benchmark suite

Data locality rate (%)
Hi-Bench
bench-
mark
suite

Hadoop
sched-
uler

Matchmaking
scheduler

Delay
sched-
uler

Proposed
Data Lo-
cality
scheduler

WordCount 80 89 93 95
Sort 79 84 90 94
TeraSort 77 86 92 96
PageRank 72 85 94 96
Nutch
Indexing

74 82 92 95

Bayesian
Classifica-
tion

79 89 94 96

K-means
Clustering

77 88 92 95

Scan 79 85 92 95
Join 72 80 88 92
Aggregation 76 88 91 96

5.3.5. Measuring Data Locality for Different Replication Factor and Block
Size

Theoretically, Replication factor increases the possibility of achieving bet-
ter data locality. If we use more replicas, it means that Hadoop can always
find a close data node for computation, resulting in less communication over-
head. The impact of different replication factors on Hadoop default sched-
uler, Matchmaking scheduler, Delay scheduler and the Proposed data locality
based scheduler are shown in Fig. 11 for different workloads from Hi-Bench
benchmark suite [8]. The percentage of local tasks increases for all the con-
figurations if we increase the number of replicas per block. The increase of
replication factor yields substantial data locality improvement for proposed

27

scheduler as compared to Delay scheduler, Matchmaking and Hadoop default
schedulers, but more storage space is also required for increased replicas. So,
we have selected the best replication factor as 3 for our local test-bed cluster
to balance the storage usage and it achieves the best possible data locality.

Figure 11: Varied replication factor for Hi-Bench benchmarks

Table 6: Data Locality for Different Replication Factors

Data locality rate (%)
Replication
Factor

Hadoop
sched-
uler

Matchmaking
scheduler

Delay
sched-
uler

Proposed
Data Lo-
cality
scheduler

1 60 66 69 71
2 66 74 80 89
3 75 80 90 93
4 89 94 96 97
5 92 96 98 98

We conduct set of experiments for different data block size by executing
dissimilar workloads from Hi-Bench benchmark suite [8]. We compare our
proposed scheduler with Hadoop default scheduler, Matchmaking scheduler
and Delay scheduler for different block size as 64MB, 128MB, and 256 MB

28

as shown in Fig. 12. The proposed scheduler has improved the percentage
of data locality with the increase of block size because the data transmission
time becomes longer when block size increases.

Figure 12: Comparison of different block size for Hi-Bench benchmarks

Table 7: Data Locality for Different Block size

Data locality rate (%)
Block
Size

Hadoop
sched-
uler

Matchmaking
scheduler

Delay
sched-
uler

Proposed
Data Local-
ity sched-
uler

64 MB 60 76 82 84
128 MB 72 84 88 91
256 MB 81 89 91 94

Our proposed data locality based scheduler achieved the consistent results
regarding the data locality rate in heterogeneous environments compared to
the Hadoop default scheduler, Matchmaking scheduler and Delay scheduler
as presented in Table 6 and Table 7. Proposed scheduler minimizes the execu-
tion time of jobs by achieving maximum data locality. Thus, it improves the
performance of the MapReduce framework in heterogeneous environments.

29

6. Conclusion and Future work

This paper proposed a novel data locality based scheduling algorithm
which enhances the MapReduce framework performance in heterogeneous
Hadoop cluster. Proposed scheduler dynamically divides the input data and
assigns the data blocks according to the node processing capacity. It also
schedules the map and reduce tasks according to the processing capacity
of nodes in the heterogeneous Hadoop cluster. Experimental results prove
that our proposed data locality based scheduler performs significantly better
regarding minimum average job execution time and data locality rate as
compared to the Hadoop default scheduler, Matchmaking scheduler and state
of the art Delay scheduler by running different workloads from Hi-bench
benchmark suite on a local heterogeneous Hadoop cluster.

As part of our future research work, we like to perform an extensive
and comprehensive experiment on a large heterogeneous Hadoop cluster to
enhance the MapReduce performance.

References

[1] Dean, J. and Ghemawat, S. ‘Mapreduce: Simplified data processing on
large clusters’, Communications of the ACM, Vol. 51, pp.107–113 (2008).

[2] Jiang, D., Ooi, B.C., Shi, L. and Wu, S. ‘The performance of mapreduce:
an in-depth study’, Proc. VLDB Endow., pp.472–483 (2010).

[3] Dean, J. and Ghemawat, S. ‘Mapreduce: a flexible data processing tool’,
Communications of the ACM, pp.72–77 (2010).

[4] Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R. and Stoica, I. ‘Im-
proving MapReduce performance in heterogeneous environments’, Pro-
ceedings of the 8th USENIX Conference on Operating Systems Design
and Implementation, pp.29–42, Berkeley, USA (2008).

[5] Tan, J., Meng, X. and Zhang, L. ‘Delay tails in mapreduce scheduling’,
SIGMETRICS Perform. Eval. Rev., pp.5–16 (2012).

[6] Zaharia, M., Borthakur, D., Sarma, J.S., Elmeleegy, K., Shenker, S. and
Stoica, I. ‘Delay Scheduling: A Simple Technique for Achieving Locality
and Fairness in Cluster Scheduling,’ Proceedings of the 5th European
Conference on Computer Systems, vol.14, pp.265–278 (2010).

30

[7] He, C., Lu, Y. and Swanson, D. ‘Matchmaking: A New MapReduce
Scheduling Technique,’ IEEE Third International Conference on Cloud
Computing Technology and Science (CloudCom), pp.40–47 (2011).

[8] Shengsheng, H., Jie, H., Jinquan, D., Tao, X. and Huang, B. ‘The Hi-
Bench benchmark suite: Characterization of the MapReduce-based da-
ta analysis’, IEEE 26th International Conference on Data Engineering
Workshops, pp.41–51, Long Beach, CA (2010).

[9] Rasooli, A. and Down, D.G. ‘A Hybrid Scheduling Approach for Scal-
able Heterogeneous Hadoop Systems,’ Proceeding of the 5th Workshop
on Many-Task Computing on Grids and Supercomputers, pp.1284–1291
(2012).

[10] Guo, Z. and Fox, G. ‘Improving MapReduce Performance in Heteroge-
neous Network Environments and Resource Utilization’, Proceedings of
the 12th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, pp.714–716, Washington, DC, USA (2012).

[11] Tian, C., Zhou, H., He, Y. and Zha, L. ‘A dynamic MapReduce scheduler
for heterogeneous workloads’, Eighth International Conference on Grid
and Cooperative Computing, pp.218–224, Lanzhou, Gansu (2009).

[12] Zhenhua, G., Fox, G. and Zhou, M. ‘Investigation of Data Locality
in MapReduce,’ 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), pp.419–426 (2012).

[13] Chunguang Wang, W., Qingbo, W., Yusong, T., Wenzhu, W. and
Quanyuan, W. ‘Locality Based Data Partitioning in MapReduce,’ IEEE
16th International Conference on Computational Science and Engineer-
ing (CSE), pp.1310–1317 (2013).

[14] Rasooli, A. and Down, D.G. ‘Guidelines for Selecting Hadoop Schedulers
Based on System Heterogeneity’, Journal of Grid Computing, pp.1–26
(2014).

[15] Romsaiyud, W. and Premchaiswadi, W. ‘An adaptive machine learning
on Map-Reduce framework for improving performance of large-scale data
analysis on EC2,’ 11th International Conference on ICT and Knowledge
Engineering, pp.1–7 (2013).

31

[16] Rasooli, A. and Down, D.G. ‘COSHH: A classification and optimization
based scheduler for heterogeneous Hadoop systems’, Journal of Future
Generation Computer Systems, pp.1–15 (2014).

[17] Tang, Z., Jiang, L., Zhou, J., Li, K. ‘A self-adaptive scheduling algorithm
for reduce start time,’ Future Generation Computer Systems, vol. 43,
pp.51–60 (2015).

[18] Sun, M., Zhuang, H., Li, C., Lu, K. and Zhou, X. ‘Scheduling algorithm
based on prefetching in MapReduce clusters,’ Applied Soft Computing,
vol. 38, pp.1109–1118 (2016).

[19] Tiwari, N., Sarkar, S., Bellur, U. and Indrawan, M. ‘Classification
Framework of MapReduce Scheduling Algorithms,’ ACM Computing
Survey, vol. 47, number 3, pp.49:1–49:38 (2015).

[20] Jin, J., Luo, J., Song, A., Dong, F., and Xiong, R. ‘BAR: An Efficient
Data Locality Driven Task Scheduling Algorithm for Cloud Computing,’
11th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, pp.295–304, Newport Beach, CA, (2011).

[21] Ching-Hsien, H., Kenn, D., Slagter, Yeh-Ching, C. ‘Locality and loading
aware virtual machine mapping techniques for optimizing communica-
tions in MapReduce applications,’ Future Generation Computer System-
s, pp.43–54, vol. 53, (2015).

[22] Kenn, S., Ching-Hsien, H., and Yeh-Ching, C. ‘An Adaptive and Memo-
ry Efficient Sampling Mechanism for Partitioning in MapReduce,’ Inter-
national Journal of Parallel Programming, pp.489-507, vol. 43, number
3, (June 2015).

[23] Shabeera, T. P., Madhu Kumar, S. D. ‘Optimising virtual machine al-
location in MapReduce cloud for improved data locality,’ International
Journal of Big Data Intelligence (IJBDI), pp.2–8, vol. 2, number 1,
(2015).

[24] Song, K., and Hongwei, Lu. ‘Efficient Querying Distributed Big-XML
Data using MapReduce,’ International Journal of Grid and High Per-
formance Computing, pp.70–79, vol. 8, number 3 (July 2016).

32

[25] Wang, W., Zhu, K., Ying, L., Tan, J., and Zhang, L. ‘Map Task Schedul-
ing in MapReduce with Data Locality: Throughput and Heavy-Traffic
Optimality,’ IEEE/ACM Transactions on Networking, pp.190–203, vol.
24, number 1, (2016).

[26] Elhoseny H., Elhoseny M., Riad A.M., Hassanien A.E., ‘A Framework
for Big Data Analysis in Smart Cities’, International Conference on Ad-
vanced Machine Learning Technologies and Applications (AMLTA2018),
vol. 723, (2018). (DOI: https://doi.org/10.1007/978-3-319-74690-6-40)

[27] Mohamed Elhoseny, Abdulaziz Shehab and Xiaohui Yuan, ‘Optimizing
Robot Path in Dynamic Environments Using Genetic Algorithm and
Bezier Curve’, Journal of Intelligent & Fuzzy Systems, vol. 33, no. 4,
pp.2305–2316, (2017). (DOI: 10.3233/JIFS-17348)

[28] Mohamed Elhoseny, Alaa Tharwat, Aboul Ella Hassanien, ‘Bezier
Curve Based Path Planning in a Dynamic Field using Modified Ge-
netic Algorithm’, Journal of Computational Science, (2017). (http-
s://doi.org/10.1016/j.jocs.2017.08.004)

[29] Mohamed Elhoseny, Ahmed Abdelaziz, Ahmed Salama, AM Riad, Arun
Kumar Sangaiah, Khan Muhammad, ‘A Hybrid Model of Internet of
Things and Cloud Computing to Manage Big Data in Health Services
Applications’, Future Generation Computer Systems, (Accepted March
2018), (In Press)

[30] Alaa Tharwat, Mohamed Elhoseny, AboulElla Hassanien, Thomas
Gabel, and N. Arun kumar, ‘Intelligent Bezir Curve-based Path Plan-
ning Model Using Chaotic Particle Swarm Optimization Algorithm,’
Cluster Computing, pp.1–22, (March 2018). (DOI: 10.1007/s10586-018-
2360-3)

[31] Ali Asghar Rahmani Hosseinabadi, Javad Vahidi, Behzad Saemi, Arun
Kumar Sangaiah, Mohamed Elhoseny, ‘Extended Genetic Algorithm for
solving open-shop scheduling problem’, Soft Computing, (April 2018)
(https://doi.org/10.1007/s00500-018-3177-y)

33

R.Anit
India,
Univer
Philoso
in 200
Scienc
Depart
Chenna
Wirele

TAPA
Engine
workin
A. Eng
years in

tha, receiv
in 2000.

rsity of M
ophy (M.P
09. Anoth
e from SR
tment of
ai, India.

ess Sensor

S BAPU
eering dep
ng as Prof
gineering
n engineer

ved UG de
PG degre

Madras, Ch
Phil.) in C
her PG D
RM Univer

Compute
She got
Networks

B R ob
partment f
fessor, Fac
College, C
ring colleg

egree, B.C
ee, Master
hennai, In

Computer S
Degree, M
rsity, Chen
er Applic
2 internat

s, Mobile A

btained hi
from St. P
culty of E
Chennai -7
ges alone.

Com. From
r of Com

ndia, in 20
Science fro

Master of
nnai, India
cations (M
tional pub
Adhoc Ne

is Ph.D.
Peters Uni
lectronics
77. He ha

m the Univ
mputer App

003. Anot
om Vinak
Technolog
a, in 2013.
MCA), S
blications.
etworks &

in Electr
iversity Ch

and Com
as a total t

versity of
plications
ther PG D

kya Missio
gy (M.Te
. She has b

S.A. Engi
Research
Bigdata.

ronics and
hennai -54

mmunicatio
teaching e

Madras, C
(MCA) f

Degree, M
on, Chenna
ech) in C
been work
ineering

h interest

d Commu
4. He is c
on Engine
experience

Chennai,
from the

Master of
ai, India,

Computer
king with
College,
includes

unication
currently
ering, S.

e of 20.6

He has
Scienc
Spring

His are
Proces
Microc
and Co

Compl
Kovilp

Compl
Engine

Nenava
School
Hydera
Scienc
Curren
Scienc
(MITS
Data, C
papers
work a
21st IEE

s published
e and 5 in
er and Ind

ea of rese
sing. He
controller,
ontrol Syst

leted B.E.
patti, Tami

leted M.E
eering, Ch

ath Sriniv
l of Com
abad, Indi
e and En

ntly, he is
e and En

S), Madana
Cloud Co

in sever
as poster i
EE ADCO

d 17 plus
n Scopus in
derscience

earch is W
is also

 Analog a
tems.

. (ECE) i
ilnadu, Ind

(Applied
ennai. Aff

as Naik re
mputer an
ia in 2017
ngineering
working a
ngineering
apalle, An

omputing,
al interna
in reputed

OM 2015 a

internation
ndexing. H
publicatio

Wireless S
interested
and Digita

in the ye
dia. Affilia

Electronic
filiated to

eceived hi
nd Inform

7 and 2010
from Os

as Senior A
g, Madan
ndhra Prad

Parallel a
ational jou
d internati
and 23rd IE

nal journa
He is revie
ons.

ensor Net
d in Digit
al Commu

ar 1997 f
ated to Ma

cs) in the
Anna Uni

s Ph.D. an
mation S
0 respectiv
smania Un
Assistant P

napalle In
desh, India
and Distri
urnals/con
ional conf
EEE HIPC

als which i
ewers for f

tworks, N
tal Electr
unication,

from Nati
anonmania

year 2004
iversity, C

nd M.Tech
ciences,
vely. Rece
niversity,
Professor
stitute of
a. His rese
ibuted Com
nferences.
ferences li
C 2016.

includes 3
few intern

Network Se
onics, Mi
Linear In

ional Eng
am Sundar

4 from Hin
hennai.

h in Comp
University
eived his
Hyderaba
in Departm

f Technol
earch inter
mputing.
He prese

ike 29th IE

3 papers in
national jou

ecurity an
icroproces
ntegrated

gineering
ranar Univ

ndustan Co

puter Scien
y of Hy
B.E. in C

ad, India i
ment of C
logy and
rests focu
He has p

ented his
EEE IPDP

n Web of
urnals in

nd Image
ssor and
Circuits,

College,
versity.

ollege of

nce from
yderabad,
Computer
in 2005.

Computer
Science

s on Big
published

research
PS 2015,

Dr. Atul Negi (Senior Member IEEE, Life Member IUPRAI) is presently working as Professor in

School of Computer and Information Sciences, University of Hyderabad, India. He has reviewed

papers for several international journals like IEEE Transactions on SMC, Pattern Recognition,

Pattern Recognition Letters, Image and Vision Computing, Computers and Security amongst others.

He has served on the technical program committee of several conferences such as IEEE SMC, and

reviewed papers for many other international conferences such as ICDAR etc. He has research

interests in fields of Grid Computing, Pattern Recognition, Optical Character Recognition, and Soft

Computing. He held position of Director, Prestige Institute of Engineering and Science, Indore. He

worked as Scientific Officer for DRDO Project COMRADES, IISc. He worked as an Investigator

for several funded projects funded by ISRO, Ministry of Communications and IT.

The highlights of our research work are the following:

1. Proposal of a Data distribution method that dynamically distributes input data to the

nodes depending on their processing capacity in the cluster.

2. Development of a data locality based scheduler that schedules map and reduce tasks to

different nodes in a heterogeneous cluster by their processing capacity. (i.e. Nodes with

fast processing capacity will be assigned more tasks than slower ones).

3. Comparison of our proposed scheduling approach with the state-of-the-art schedulers

using heterogeneous workloads from Hi-Bench benchmark suite in heterogeneous

Hadoop cluster.

4. Proposal of scheduling approach for reducing data movement activities in a cluster by

improving data locality rate and minimizing the job execution time. Thus, the proposed

approach enhances MapReduce performance in heterogeneous environments.

