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Abstract—Large scale data processing is increasingly common
in cloud computing systems like MapReduce, Hadoop, and Dryad
in recent years. In these systems, files are split into many small
blocks and all blocks are replicated over several servers. To
process files efficiently, each job is divided into many tasks
and each task is allocated to a server to deals with a file
block. Because network bandwidth is a scarce resource in these
systems, enhancing task data locality(placing tasks on servers
that contain their input blocks) is crucial for the job completion
time. Although there have been many approaches on improving
data locality, most of them either are greedy and ignore global
optimization, or suffer from high computation complexity. To
address these problems, we propose a heuristic task scheduling
algorithm called BAlance-Reduce(BAR) , in which an initial task
allocation will be produced at first, then the job completion time
can be reduced gradually by tuning the initial task allocation. By
taking a global view, BAR can adjust data locality dynamically
according to network state and cluster workload. The simulation
results show that BAR is able to deal with large problem instances
in a few seconds and outperforms previous related algorithms in
term of the job completion time.

Index Terms—Cloud Computing, Task Scheduling, Data Lo-
cality, Hadoop, Dryad

I. INTRODUCTION

In recent years, large scale data processing has emerged
as an important part of state-of-the-art internet applications
such as search engines, online map services and social net-
workings. These applications not only handle vast amount
of data, but also generate a large quantity of data everyday.
Cloud computing systems like MapReduce[1], Hadoop[2] and
Dryad[3] which are based on simplified parallel programming
models, have been designed for data-intensive applications.
For example, Facebook’s Hadoop data warehouse stores more
than 15PB of data(2.5PB after compression); on a single day,
more than 10,000 jobs are submitted to process a large amount
of data, meanwhile more than 60TB of new data(10TB after
compression) are loaded[4].

The general architecture of a cloud computing system [1,
3, 5, 6] is illustrated in Fig. 1. In this architecture, a file is
split into fixed-size blocks which are stored on servers. For
fault tolerance, all blocks are replicated and spread over the
cluster. To process the file, the scheduler divides a job into
small tasks, each of which is allocated to an idle server to deal
with a file block concurrently. For example, in Fig. 1, a file
with size 896MB is partitioned into seven 128MB blocks(each
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Fig. 1. Architecture of Cloud Computing System

one has two replicas); to process the file, the scheduler divide
a job into seven tasks, each of which processes a file block.
Under this mode, all tasks can work in parallel to speed up
execution of the job. The job can not be finished until all
tasks are done. The time span between job’s start time and
job’s finish time, is called job completion time. In addition, if
a task reads its block from server’s local disk, it is called data-
local; otherwise, the task is called data-remote if it retrieves
a copy of its block from a remote server. Since most cloud
computing systems are implemented on commodity or virtual
hardware[5–7], the data transfer cost gives a great impact on
the system performance[1, 8].

To handle this issue, there has been much work on en-
hancing task data locality by scheduling tasks close to their
data[2, 6, 9–11]. In Hadoop system, for an idle server, the
scheduler greedily searches for a data-local task and allocates
it to the server[2, 6]. As this policy is quite simple, it
leads to limited data locality. To improve data locality, some
approaches have attempted to delay schedule the job until
an appropriate server is arrived[9, 10]. A limitation of these
policies is that servers are not always become idle quickly
enough as assumed. If the cluster is overloaded, preserving
high data locality wastes a large amount of time waiting.
To assign tasks efficiently, Fischer et al.[11] propose a flow-
based algorithm which employs maximum flow algorithm
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and increasing threshold techniques. However, this algorithm
suffers from high computation complexity.

To address these problems, a task scheduling problem,
which takes account of data locality, network state and cluster
workload, is proposed. A two phase task scheduling algorithm
is introduced to solve this problem. In this algorithm, 1) an
initial task allocation is produced, where all tasks are data-
local; 2) the job completion time is reduced gradually by
adjusting the initial task allocation. The simulation results
show that our algorithm outperforms existing algorithms in
term of job completion time.

The rest of this paper is organized as follows. In the next
section, we list the related work. In Section III, the scheduling
problem is formalized. In Section IV, we propose a two
phase heuristic algorithm. Section V reports the results of
our simulation experiments. Finally, we conclude this paper
in Section VI.

II. RELATED WORK

A. Data-aware scheduling on distributed systems

Over the past decade, data-intensive applications are
emerged as an important part of distributed computing. Mean-
while considerable work has been done on data-aware schedul-
ing on distributed systems. Stork[12] is a specialized scheduler
for data placement and data movement in Grid. The main
idea of Stork is to map data close to computational resources.
Though Stork can be coupled with a computational task
scheduler, no attempt is made to use data locality to reduce
data transfer cost. The Gfarm[13] architecture is designed for
petascale data-intensive computing. Their model specifically
targets applications where the data primarily consist of a set
of records or objects which are analysed independently. In
Gfarm, several greedy scheduling algorithms are implemented
to improve data locality. However these algorithms do not
take account of the global optimization of all tasks. Raicu
et al.[9] have implemented task diffusion on Falkon[14]. Data
diffusion acquires compute and storage resources dynamically,
replicates data in response to demand, and schedules compu-
tations close to data. Its task scheduling policy sets a threshold
on the minimum processor utilization to adjust data locality
and resource utilization. However, the simple policy can not
improve system performance significantly.

B. Scheduling on cloud computing systems

Scheduling on cloud computing systems has been studied
extensively in early literature. The default Hadoop scheduler
schedules jobs by FIFO where jobs are scheduled sequentially.
To achieve data locality, for each idle server, the scheduler
greedily searches for a data-local task in the head-of-line job
and allocates it to the server[2]. However the simple policy
leads to limited data locality; meanwhile the completion time
of small jobs is increased. To enhance both fairness and data
locality of jobs in a shared cluster, Zaharia et al.[10] propose
delay scheduling which improves max-min fairness[15]: when
the job that should be scheduled next according to fairness
cannot launch a data-local task, it waits for a small amount

of time, letting other jobs launch task instead. As servers are
assumed to become idle quickly enough, it is worth waiting
for a local task. However, this assumption is too strict, so delay
scheduling does not work well when servers free up slowly. A
close work to delay scheduling is Quincy[16]. Quincy maps
the scheduling problem to a graph data structure according
to a global cost model, and solves the problem by a well-
known min-cost flow algorithm. Quincy can achieve better
fairness, but it has a negligible effect on improving data
locality. Hadoop on Demand(HOD) is a management system
for provisioning virtual Hadoop clusters over a large physical
cluster[17]. It is inefficient that map tasks need read input
splits across two virtual clusters frequently. To reduce the
data transferring overhead in HOD, Seo et al.[18] designs
a prefetching scheme and a preshuffling scheme. However,
these methods occupy much network bandwidth, so system
performance may be decreased. To optimize the performance
of multiple MapReduce workflows, Sandholm et al.[19] de-
velop a dynamic prioritization algorithm, but data locality is
not enhanced in this algorithm. To discover task straggler,
Zaharia et al.[7] propose a system called LATE that makes
better estimates of tasks’ rest execution time. It is shown
that LATE executes speculative tasks more efficiently than
the Hadoop’s current scheduler in heterogeneous environments
where the performance of servers are uncontrollable.

To assign tasks efficiently in Hadoop, Fischer et al.[11]
introduced an idealized Hadoop model called Hadoop Task
Assignment problem. Given a placement of input blocks over
servers, the objective of this problem is to find the assignment
which minimized the job completion time. It is indicated
that Hadoop Task Assignment problem is NP-complete. To
solve the problem, a flow-based algorithm called MaxCover-
BalAssign is provided. MaxCover-BalAssign works iteratively
to produce a sequence of assignments and output the best one.
It computes in time O(m2n), where m is task number and n
is server number. The solution has been shown to be near
optimal. However, it takes a long time to deal with a large
problem instance.

III. PROBLEM FORMALIZATION

In this section, the system model is formalized. We consider
scheduling a set of independent tasks on a homogeneous
platform. As shown in Fig. 1, there are m(m = 7) tasks
and n(n = 3) servers, where each task processes an input
block on a server. On one hand, as input blocks are fixed-size,
we assume that data-local tasks take identical constant local
cost. On the other hand, as a larger remote task number will
cause a higher network contention, remote cost is increased
when the remote task number become larger. A job is not
completed until all tasks are finished. In addition, we take
account of cluster workload: at the start time, if most servers
are idle, the cluster is underloaded; in an overloaded cluster,
many servers can not be idle in a short time. Base on these
assumptions, our goal is to find an allocation strategy that
minimizes the job completion time. This problem has been
shown to be NP-complete in a restrict case(all servers are
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idle at the start time)[11]. The following definitions are used
throughout the paper.

Definition 1 (Data Placement). The data placement is pre-
sented by a bipartite graph G = (T ∪ S,E), let m = |T | and
n = |S|, where T is the set of tasks, S is the set of servers
and E ⊆ T × S is the set of edges between T and S. An
edge e(t, s) implies that the input data of task t ∈ T is placed
at server s ∈ S, it also indicates indicated that task t prefers
server s. And SG

pre(t) is the set of task t’s preferred servers
in G. We assume that |SG

pre(t)| ≥ 1. It means that all of the
nodes in T have degree at least 1.

Definition 2 (Allocation Strategy). An allocation strategy(we
call it allocation for short) is a function f : T → S that
allocates a task t to a server f(t). An allocation is total iff
for each task t ∈ T , f(t) is defined. Otherwise, the allocation
is partial. Let α be a total allocation, so task t is allocated
to server α(t). Under α, task t is local iff α(t) is defined
and there is an edge e(t, α(t)) in data placement graph G.
Otherwise, task t is remote. Let lα and rα be the number of
local tasks and the number of remote tasks, respectively.

Definition 3 (Cost of Task). Assume that all servers are ho-
mogeneous, as well as tasks1; so each task consumes identical
execution cost on every server. Furthermore, we define the cost
of a task as the sum of the execution time and the input data
transferring time. C(t, α) denotes the cost of task t which is
performed on the server α(t). It is defined by

C(t, α) =

{
Cloc, if t is local in α
Cα

rem, otherwise. (1)

We call Cloc and Cα
rem the local cost and the remote cost,

respectively. Since the time of reading input data from local
disk can be ignored, the local cost indicates the execution
time; while the remote cost is the sum of the execution time
and the data transferring time. For the sake of simplicity, we
assume that all the local tasks spend identical execution time,
as well as the remote tasks. For all allocations, the local cost
is constant. However, since remote tasks compete for network
resources, the remote cost grows with the total number of
remote tasks. Let

Cα
rem = Crem(rα), (2)

where Crem(·) is a monotone increasing function, and rα is
the remote task number.

Definition 4 (Load of Server). Under allocation α, some
servers are assigned several tasks. We assume that tasks are
performed sequentially on a server. The load of a server s
denotes the time when s finishes its work. Under α, the load
of server s is defined as

Ls(α) = Linit
s + Ltask

s (α), (3)

1In most cloud computing systems, the cluster consist of homogeneous
servers. Meanwhile the tasks which come from the same job are homogeneous,
and they also process the same amount of input data.[1, 5, 6]

T

S

E

s1 s2 s3

t1 t2 t3 t4 t5 t6 t7

Fig. 2. A data placement Gp(T ∪ S,E)

TABLE I
THE INITIAL LOAD OF SERVERS

Servers s1 s2 s3

Initial load 7.1 4.2 0.3

TABLE II
ALLOCATION β

Tasks t1 t2 t3 t4 t5 t6 t7

Servers s2 s2 s3 s3 s3 s2 s3

where Linit
s is the initial load of server s at the start time, let

Linit = {Linit
s |s ∈ S} (4)

be the set of all initial loads;

Ltask
s (α) =

∑
t:α(t)=s

C(t, α) (5)

is the total time to process tasks on server s. If α is total,

Lfin
s (α) = Ls(α) (6)

denotes the finial load of server s. Let

Sα
ass = {s | ∃t ∈ T that α(t) = s} (7)

denote the servers which are assigned tasks. For each server
s, if s is in Sα

ass then s is active. The job completion time
(which is also called makespan) under total allocation β is
defined as

makespanβ = max
s∈Sβ

ass

Lfin
s (β). (8)

Based on these definitions, the scheduling problem can be
defined as :

Problem. Given a data placement G = (T ∪ S,E), a local
cost value Cloc, a remote cost function Crem(·) and a initial
load set Linit, the objective of the problem is to find a total
allocation that minimize the makespan.

The following example gives to explain the problem clearly.

Example 1. In Fig. 2, there are seven tasks and three servers.
Each task has two input data replicas. The initial load of each
server is shown in Table I. And allocation β is shown in Table
II. Under β, task t5 and task t7 are remote tasks. Let local cost
Cloc be 1 and remote cost function Crem(r) = 1+0.1·r. Since
there are two remote tasks, the remote cost is Cβ

rem = 1+0.1∗
2 = 1.2. By Equation (3), it is easy to obtain the final load of
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each servers that Lfin
s1 (β) = 7.1, Lfin

s2 (β) = 4.2+3 ∗ 1 = 7.2
and Lfin

s3 (β) = 0.3 + 2 ∗ 1 + 2 ∗ 1.2 = 4.7. Because server s1
dose not process any task, Sβ

ass is {s2, s3}. By Equation (8),
makespanβ is 7.2.

IV. BALANCE-REDUCE ALGORITHM

In this section, we introduce a data locality driven task
scheduling algorithm, called BAlance-Reduce(BAR), which
finds a good solution in time O(max{m+n, n log n}·m). On
finding a feasible solution, a critical obstacle is that the remote
cost can not be calculated before the remote task number is
known. Moreover, it is hard to obtain a near-optimal solution
when the remote cost changes frequently. For example, when
we allocate a remote task, the remote task number increase by
one, so the remote cost may also increase. Furthermore, the
load of the servers which have been allocated remote tasks
must be updated.

In order to make sure the remote cost, BAR is split into two
phases, balance and reduce:

• Balance: Given a data placement graph G, a initial load
set Linit and a local cost Cloc, the balance phase
returns a total allocation B. Under B, all tasks are
allocated to their preferred servers evenly.

• Reduce: Given a local cost Cloc, a remote cost function
Crem(·), a total allocation B computed by the balance
phase, and an initial load set Linit, the reduce phase
works iteratively to produce a sequence of total
allocations and returns the best one. By taking
advantage of B, the remote cost can be computed at the
beginning of each iteration.

A. Balance phase

In this section, we describe the balance phase in detail.
In this phase, a balanced total allocation is produced where
all tasks are allocated to their preferred servers evenly. To
introduce balanced total allocation, we present following def-
initions.

Definition 5 (Local Allocation). Let L be an allocation. Under
L, if all defined tasks are local, then L is a local allocation.

Definition 6 (Balanced Allocation). Let G(T ∪S,E) be a data
placement, Cloc be a local cost, and B be a local allocation.
B is a balanced allocation when

∀t ∈ T LB(t)(B)− Cloc ≤ min
s∈SG

pre(t)
Ls(B), (9)

where Ls(B) and LB(t)(B) is computed by Equation (3).
Equation (9) is called balance policy.

To explain the balance policy, we formalize residual load
below.

Definition 7 (Residual Load). Under local allocation L, for
each task t, t-residual-load of server s is defined by

Lres
s (L, t) =

{
Ls(L)− Cloc, if s = L(t)
Ls(L), otherwise. (10)

s1 s2 s3

t1

t5

t7

t3

t6

t2

t4

L
init
s1

7.1

8.1

5.2

4.2

6.2

7.2

0.3

1.3

2.3

3.3

L
o
a
d

Server

Cloc

Fig. 3. A balanced total allocation B

If t is allocated to s, Lres
s (α, t) denotes the residual load of

s apart from t’s local cost. Otherwise, Lres
s (α, t) is the same

as the load of server s.

By Definition 7, the balance policy is represented as follows:

∀t ∈ T Lres
B(t)(B, t) = min

s∈SG
pre(t)

Lres
s (B, t). (11)

Therefore, under a balanced total allocation, each task t is
allocated to one of its preferred servers whose t-residual-load
is minimal.

Example 2. Let the data placement, the initial loads, and
the local cost be the same as those in Example 1. Fig.
3 shows a balanced total allocation B. The balanced total
allocation is not unique. For example, we can swap t7 and
t1 to generate another balanced total allocation. We note that
all tasks are allocated to their preferred servers whose residual
loads are minimal, therefore, the makspans of all balanced total
allocations are equal to each other.

Theorem 1. Let B be a balanced total allocation. makespanB
is minimal among all local total allocations’ makespans.

Proof. Assume, for the sake of contradiction, that there exits
a local total allocation LO which does not follow the balance
policy, and makespanLO is less than the makespans of all
balanced allocations. Without loss of generality, let task to be
the task which disobeys the balance policy and LO(to) = so.
Then, there exits a server si which is preferred by to and
Lfin
so (LO) − Cloc > Lfin

si (LO). Move to to si. This result in
another allocation LB . Then, Lfin

so (LB) = Lfin
so (LO) − Cloc

and Lfin
si (LB) = Lfin

si (LO) + Cloc < Lfin
so (LO).

Case 1: ∀s ∈ S−{so}, Lfin
so (LO) > Lfin

s (LO), so that so

is the only server whose finial load is maximal. In this case,
makespanLB < makespanLO .

Case 2: ∃s ∈ S − {so}, Lfin
so (LO) ≤ Lfin

s (LO). In this
case, makespanLB ≤ makespanLO .
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Fig. 4. A flow network G′
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The motion continues until all tasks follows the bal-
ance policy. Finally, we get a balanced total allocation B
that makespanB ≤ makespanLO . This contradicts that
makespanB > makespanLO . Thus, makespanB is minimal
among all local allocations’ makespans.

Theorem 2. Let B be a balanced total allocation, and t be a
task. For each server s, if Lfin

s (B) < Lfin
B(t)(B)−Cloc, then t

does not prefer s.

Proof. Assume, for the sake of contradiction, that there exits
a server s′ that Lfin

B(t)(B) − Cloc > Lfin
s′ (B) and t prefers

s′. Since B is a balanced total allocation, the assumption
contradicts the balance policy.

In the rest of this section, we introduce an algorithm called
Balanced Allocation Algorithm(BAA) that finds a balanced
total allocation in time O(max{m + n, n log n} · m). This
algorithm consists of the following three steps.

1) Convert data placement graph G(T ∪ S,E) to a flow
network Gf (T ∪ S ∪ {nT }, A), where nT is a target
node, and A is a set of arcs with a positive capacity. An
arc a(ni, nj) is a directed edge from node ni to node
nj . For all tasks t ∈ T and all servers s ∈ S, if there is
an edge e(s, t) in G, arc a(s, t) exists in A. In Gf , for
each t ∈ T , there exists an arc a(t, nT ). Each arc has a
capacity of one. Fig. 4 shows a flow network G′

f which
is converted from the data placement graph Gp. Gp is
shown in Fig. 2.

2) Allocate unassigned tasks to the minimum load servers
iteratively, until all tasks have been allocated. At itera-
tion τ (1 ≤ τ ≤ m), firstly, we mark all nodes unvisited.
Secondly, select an unvisited server node whose load is
minimal. Since all tasks are local, the load of server s
can be computed as follows:

Ls = Linit
s +Num(s) · Cloc, (12)

where Num(s) is the number of tasks on server s.
Thirdly, find an augmenting path from the selected
server node sτ0 to nT in the residential graph[20] by
growing a search tree Treeτ [21, 22] which traverses
unvisited nodes. If there exists an augmenting path, then
we stop the iteration, assign a unit of flow through
the path sτ0 → nT and update the residential graph.
Otherwise, we mark all nodes in Treeτ visited, then turn

to the second step at this iteration. If the amount of flow
equals to total task number m, Step 2 stops, and returns
a flow fm with m units.

3) Convert flow fm to an allocation B by Rule 1. Since
there are m units of flows in fm, all task are allocated
in this step. Hence, B is a total allocation.

Rule 1. Given a flow f , for all s ∈ S, if there exist an arc
a(s, t) that f(a(s, t)) = 1, then B(t) = s.

Algorithm 1 Balanced Allocation
1: procedure BALANCE(G(T ∪ S,E), Cloc, L

init)
2: define: Gf is a flow network. N is the set of nodes

in Gf . Gr is the residual graph. τ is the iteration number.
P τ is a augmenting path at iteration τ . Treeτ is the search
tree at iteration τ . fτ is the flow on Gf after iteration τ .
B is a total allocation.

3:
4: Gf ← GetFlowNetwork(G)
5: Gr ← GetResidualGraph(Gf )
6: N ← T ∪ S ∪ {nT }
7: ∀s ∈ S s.num← 0
8: τ ← 1
9: while τ ≤ m do

10: ∀n ∈ N n.visited = false
11: while P = null do
12: sτ0 ← MinLoadUnvisitedServer(S,Cloc, L

init)
13: ⟨P τ ,Treeτ ⟩ ← Augment(sτ0 ,nT ,Gr)
14: ∀n ∈ Treeτ n.visited = true
15: Clear(Treeτ )
16: if P ̸= null then
17: sτ0 .num← sτ0 .num+ 1
18: end if
19: end while
20: fτ ← UpdateFlow(fτ−1, P τ )
21: Gr ← UpdateGraph(Gf , f

τ )
22: τ ← τ + 1
23: end while
24: B ← FlowToAllocation(fm)
25: return B
26: end procedure

Theorem 3. BAA finds a balanced total allocation in time
O(max{m+ n, n log n} ·m).

Proof. Let B be a total allocation obtained by BAA. Assume
to the contrary that there exist a task tf which dissatisfies
balance policy. Without loss of generality, let sk be B(tf ), sl
be one of tf ’s preferred servers, and Lsk(B)−Cloc > Lsl(B).
Suppose at iteration µ, Bµ is a partial allocation which is con-
verted from fµ by Rule 1, sk = sµ0 is the start node in Pµ(the
augmenting path at iteration µ) and Lsk(Bµ−1) + Cloc =
Lsk(Bµ) = Lsk(Bµ+1) = · · · = Lsk(Bm−1) = Lfin

sk
(B).

As Pµ starts from sk, for any server s′ whose load is less
than the load of sk, there dose not exist a feasible augmenting
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Fig. 5. On finding a balanced total allocation

path which starts from s′. But this conflicts that there exists a
server sl that Lsl(Bµ) ≤ Lsl(Bfin) < Lsk(Bfin) = Lsk(Bµ)
and a feasible augmenting path Pµ

sl
which starts from sl:

Case 1: if Pµ: sk(s
µ
0 )→ tµ0 → sµ1 → tµ1 · · · → sµq → tµq →

nT , then Pµ
sl

:sl → tf → sk(s
µ
0 )→ tµ0 · · · → sµq → tµq → nT .

Case 2: if Pµ: sk(s
µ
0 )→ tf → sµ1 → tµ1 · · · → sµq → tµq →

nT , then Pµ
sl

:sl → tf → sµ1 → tµ1 · · · → sµq → tµq → nT .
Thus, B is a balanced total allocation.
Let e = |A|. As m = |T | and n = |S|, a data placement is

converted to a flow network in O(m + n + e). In Step 2, at
each iteration, it takes time O(m + n + e) to traverse nodes
and arcs and costs time O(logn) to find a minimum load
server. There are at most n servers, so each iteration takes
time O(max{m+n+e, n log n}). Hence, the time complexity
of Step 2 is O

(
max{m+ n+ e, n log n} ·m)

)
. Converting a

residual graph to a total allocation takes time O(e). Thus the
running time of BAA is O

(
max{m + n + e, n log n} · m

)
.

Furthermore, in most cloud computing systems, the number
of file replicas is a small constant(2 or 3), so that e = O(m).
The running time of BAA takes time O(max{m+n, n log n}·
m).

Example 3. In Fig. 5, we update flow f2 on a flow network,
and convert f3 to a balanced total allocation B. s′1,s′2,s′3 are
three servers with initial loads 3.1, 2.2, 1.9, respectively. Fig.
5(a) shows a initial flow which has been computed at previous
iterations. According to flow f2, task t′1 and t′2 are allocated
to server s′1 and s′2, respectively, so that the load of servers
Ls′1

, Ls′2
, Ls′3

should be 3.1, 3.2, 2.9. Since the load of s′3 is
minimal, we select s′3 as start node, and find a path: s′3 →
t′2 → s′2 → t′1 → nT in the residual graph. Finally, f3 is
updated, and a balanced total allocation(B(t′1) = s′2, B(t′2) =
s′3, B(t′3) = s′3) is computed.

B. Reduce phase

In this section, the reduce phase is described in detail. In
this phase, we generate a sequence of total allocations, and
reduce the makespan iteratively. Pseudocode for this algorithm
is shown in Algorithm 2.

Algorithm 2 Reduce Makespan
1: procedure REDUCE(Cloc, Crem,B, Linit)
2: define: P is a remote task pool, Lp is a local partial

allocation, R and Rpre are total allocations, Mexp is an
expected makespan.

3:
4: P ← ϕ
5: Lp ← B
6: Rpre ← B
7: while true do
8: smax ← MaxLoadActiveServer(Lp)
9: tl ← RandomTask(smax,Lp)

10: P ← P ∪ {tl}
11: Lp ← RemoveTask(Lp, tl)
12: Mexp ← MaxLoad(Lp)
13: CR

rem ← Crem(|P |)
14: R← AllocateTasks(P ,Lp,CR

rem,Mexp,Linit)
15: if makespanR > Mexp then
16: if makespanR ≥ makespanRpre then
17: return Rpre

18: else
19: return R
20: end if
21: end if
22: Rpre ←R
23: end while
24: end procedure

In this algorithm, we define a remote task pool P which
stores the tasks from the maximum load servers2. Tasks in P
are allocated to low load servers, and these tasks are data-
remote. Lp is a local partial allocation where for each task t
in P , Lp(t) is not defined. P is initialized to be empty, while
Lp is initialized to be the balanced total allocation which is
produced by balance phase. At each loop, we update P and Lp,
then generate a total allocation R. Rpre is a total allocation
which is computed by the previous loop. The reduce procedure
will be described detailedly as follows:

1) Select the maximum load server smax under Lp. smax

is also the maximum load server under Rpre. To reduce
the makespan, we remove a task from smax. In the next
steps, this task will be allocated to a low load server.

2) Let tl be the chosen task. By Theorem 2, tl dose not
prefer the servers whose load less than Lfin

smax
(B)−Cloc.

We add tl to the remote task pool P and update Lp by
marking Lp(tl) undefined.

2All servers which are mentioned in this section are active.
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Fig. 6. An example of the reduce phase

3) Calculate the expected makespan of R. The expected
makespan Mexp equals to the maximum load of servers
under Lp.

4) Calculate the remote cost. As task in Lp are data-local
and tasks in P are data-remote, the remote task number
should be |P |. Hence, CR

rem = Crem(|P |).
5) Allocate tasks. For all tasks tloc /∈ P , we allocate them

to Lp(tloc), so R(tloc) = Lp(tloc). Then we allocate
remote tasks one-by-one. For any task trem ∈ P , it
is allocated to the server whose load is no more than
Mexp − CR

rem. If there is no appropriate server, we
allocate trem to the server with minimum load. Then
we update the load of the server.

6) Return result. If makespanR is larger than the expected
makespan Mexp, it is impossible to reduce the makespan
in the next loops. So a better allocation is selected
between R and Rpre, then it is returned.

Example 4. Fig. 6 shows an example of the reduce phase.
The date placement, the local cost, the remote cost function
and the initial load are the same as those in Example 1. The
input balanced total allocation is shown in Example 2. At loop
1, s1 is the active server with maximum load. The expected
makespan is 7.2. We choose t7 and allocate it to s3. Since
the reduced makespan is equal to the expected makespan, the
algorithm enters the next loop. At loop 2, task t5 is added to
the remote task pool, so that there are two remote tasks and
the remote cost is increased to 1.2. The reduced makespan
is 6.2 which is the same as expected makespan. At loop

3, however, the reduced makespan increase to 7.2 and the
expected makespan is 5.2, so we stop the reduce phase. Finally,
we get a total allocation whose makespan is 6.2.

C. Balance-Reduce Algorithm

Combining the balance phase and the reduce phase, the
pseudocode of BAlance-Reduce(BAR) is shown in Algorithm
3.

Algorithm 3 Balance-Reduce Algorithm
1: procedure BALANCE-REDUCE(G,Cloc, Crem, Linit)
2: define: B, R are total allocations.
3: B ← Balance(G,Cloc, L

init)
4: R ← Reduce(Cloc, Crem,B, Linit)
5: return R
6: end procedure

Finally, we analyse the time complexity of BAR. In the
balance phase, it is shown that BAA is implemented in time
O(max{m + n, n log n} · m). In reduce phase, most loops
allocate tasks in time O(m). However, since the last loop
need allocate some tasks to the minimum load servers, it takes
O(m log n) time. There are at most m loops, so reduce phase
runs in time O

(
m(m− 1) +m log n)

)
.

Combining the running time of the two phases, BAR gives
time complexity O(max{m+ n, n log n} ·m).

V. PERFORMANCE EVALUATION

In this section, we present several simulations in order to
investigate the effectiveness of our algorithm. For comparison,
four related task scheduling algorithms are listed as follows:

• MaxCover-BalAssign(MB)[11]. This algorithm works it-
eratively to produce a sequence of total allocations, and
then outputs the best one. Each iteration consists of two
phase maxcover and balassign. Since the remote cost
is unknown, it calculates the virtual cost which is a
prediction of the remote cost. Then it computes a total
allocation by taking advantage of the virtual cost.

• Hadoop Default Scheduler(HDS)[6]. When a server is
idle, the scheduler chooses a data-local task, then allo-
cates the task to the server. If there is no feasible task,
then the scheduler will select a random task.

• Delay Scheduling(DS)[10]. It sets a delay threshold. If
a server is idle and there is no task prefers the server,
the scheduler skips the server and increases the delay
counter by one. However, if the delay counter exceeds
the delay threshold, the scheduler allocates a remote task
to the server and sets the delay counter to be zero.
In our simulations, we set the delay threshold to be
TotalServerNumber × 15%, and denote the algorithm
by DS0.15. In addition, for comparison, DS0.25 is also
implemented in the simulations.

• Good Cache Compute (GCC)[9]. This policy is similar to
DS. It sets an utility threshold which is the upper bound
of the number of idle servers. The scheduler can skip
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Fig. 7. Effect of network state
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Fig. 8. Effect of cluster workload

servers when the the idle server number is below the
utility threshold. In our simulations, the utility threshold
is set to TotalServerNumber× 90%.

In our simulations, the data placement is generated by
Hadoop’s Rack-aware Replica Placement[6]. We assume that
all servers are in the same rack. The number of block replicas
is set to 3 which is the default setting in Hadoop[6]. Because
the median map task is 19s long in FaceBook[10], local cost
Cloc is set to 20. The remote cost is defined as Crem(r) =
Cloc + q · r, where r is remote task number and q is network
factor. Larger value of q introduces scarcer network resources.
1
q describes the data transfer rate. Since transferring a 128MB
file block takes about 1s in 10Gbit Ethernet and about 10s
in 1Gbit Ethernet, we choose q ∈ [1, 10] in our simulations.
The initial load of a server can be estimated by Zaharia’s
approach[7] in practice. However, in our simulation, we set
Linit
s to a random value in [0,W ], where W describes cluster

workload. A small value of W indicates that most server will
be idle soon. While a huge value of W implies that the cluster
is overloaded that some servers may not be available in a short
period of time.

In the rest of this section, BAR is evaluated for perfor-
mance and computation time. Furthermore, we investigate the
effectiveness of our algorithm under a wide range of platform
configurations.

A. Performance

BAR is evaluated by comparing the job completion time and
the data locality to that of MB, HDS, GCC, DS0.15, DS0.25.
Table III lists three kinds of computational systems. E1 is a

TABLE III
COMPUTATIONAL SYSTEMS

Name Server Number Task Number

E1 100 300

E2 2000 100

E3 2000 15000

small scale system while E3 is large scale. E2 is special where
task number is much smaller than server number. However, it
is common in production cloud computing systems[10].

1) Effect of network state: To investigate the effect of
network congestion, we compare the algorithms by changing
the network factor q from 1 to 10. And also, we set W to
be 40, so that all servers will be available soon. Fig. 7 shows
that BAR works well under various network state, while a
poor network environment effects HDS and GCC very much.
From Table IV(a), we see that BAR, MB and DS benefit from
the high data locality. It is interesting that BAR outperforms
DS0.25 and MB on E2, while the data locality of DS0.25 and
MB is higher. This is because that the job is small, and many
servers do not have input data; to achieve data locality, DS0.25
and MB skip a lot of remote servers, while BAR adjusts data
locality to make the job completed early.

2) Effect of cluster workload: To evaluate our algorithm on
different cluster workloads, we set W to 1, 10, 100 and 1000,
while network factor q is fixed to 1. As shown in Fig. 8, BAR
and MB exhibit a significant improvement. We observe that
DS has a negligible effect on small jobs when the workload
of cluster is high; since the time interval between two idle
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TABLE IV
JOB COMPLETION TIME AND DATA LOCALITY

(a) q = 10,W = 40

System BAR MB HDS GCC DS0.15 DS0.25
MRa DRb MR DR MR DR MR DR MR DR MR DR

E1 1× 99.9% 1.1× 100% 3.84× 91.4% 2.89× 94.3% 1.17× 99.8% 1.13× 99.9%

E2 1× 97.3% 1.19× 100% 19.35× 6.7% 14.16× 32.6% 1.11× 99% 1.06× 100%

E3 1× 100% 1.03× 100% 31.05× 96.4% 21.39× 97.5% 1.12× 100% 1.11× 100%

(b) q = 1,W = 1000

System BAR MB HDS GCC DS0.15 DS0.25
MR DR MR DR MR DR MR DR MR DR MR DR

E1 1× 80.3% 1.01× 80.6% 1.24× 62.2% 1.24× 68.9% 1.26× 82.1% 1.31× 86.9%

E2 1× 27.3% 1.01× 26.8% 1.19× 5.8% 1.71× 28.6% 2.15× 48.7% 2.55× 63.5%

E3 1× 98.1% 1.01× 98.2% 5.95× 90.4% 2.56× 91.7% 1.20× 99.8% 1.21× 99.9%

(c) q = 10,W = 1000

System BAR MB HDS GCC DS0.15 DS0.25
MR DR MR DR MR DR MR DR MR DR MR DR

E1 1× 89.9% 1.01× 90% 2.33× 75.1% 2.02× 78.2% 1.67× 83.1% 1.52× 86.9%

E2 1× 64.1% 1× 64.1% 2.71× 5.3% 2.31× 28.3% 2.21× 42.3% 2.01× 64.3%

E3 1× 99.5% 1.01× 99.7% 30.11× 88.5% 14.64× 89.8% 1.14× 99.9% 1.05× 100%

a Makespan Ratio(MR)= makespan of Algorithm A
makespan of BAR

b Data locality Ratio(DR)= data-local task number
total task number

servers is long, it is expensive to skip a server. By taking
advantage of the reduce phase, BAR schedules some data-
remote tasks to decrease the job completion time. As shown
in Table IV(b), on E2, although DS0.15 and DS0.25 achieve
higher data locality than BAR, DS0.15 and DS0.25 is 2.15
times and 2.55 times larger than BAR in the job completion
time, respectively. Because DS0.25 skips more servers than
DS0.15, it performs worse. However, BAR schedules many
remote tasks when the network state is good, so job can be
completed in a short time. On E1 and E3, there are many input
blocks on every server, so the performance gap between BAR
and DS is decreased.

3) Effect of extreme condition: We consider some extreme
conditions where the network environment is poor and the
cluster is overloaded. To create these conditions, we set q to
be 10 and W to be 1000. Table IV(c) shows that BAR still
works well. On E2, BAR and MB decrease the job completion
time to at least 50%. We note that BAR adjusts data locality
dynamically. By comparing Table IV(b) and Table IV(c), BAR
and MB schedules more local tasks when network state is
worse, while HDS, GCC and DS are static. We observe that
the performance of MB is close to which of BAR; however,
since BAR exploits a fine-grain adjustment of data locality, it
always performs better than MB does.

B. Computation Time

In this section, we evaluate the computation time of our
algorithm. Since HDS, GCC and DS are run-time scheduling
algorithms[23], we implement them in a compile-time scheme.
Firstly, we place all servers into a min-heap; secondly, pop a
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minimum load server, invoke a real-time scheduling algorithm
to allocate a task, then update load of servers. The remote cost
is renewed when a remote task is allocated. We do the second
step repeatedly until all task are allocated. All algorithms are
implemented carefully to reduce the redundant work.

The simulations are implemented in Java and runs on a
HP PC with Intel(R) Core(TM) Quad CPU Q8200 and 4GB
memory. The server number is set to 2000, and the task
number ranges from 100 to 12800. Fig. 9 shows that when the
job scale is small, all algorithms can be finished in one second;
however, when the task number exceeds 800, the running time
of MB increases significantly. We see that the running time
of BAR is slightly longer than the greedy algorithms. When
the task number is 12800, the running time of BAR, HDS,
GCC, DS0.15 and DS0.25 are 9.1s, 5.5s, 5.4s, 7.1s and 7.3s,
respectively, while MB takes 203 seconds. Thus, BAR can
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deal with a large problem instance in a few seconds.

VI. CONCLUSION AND FUTURE WORK

As large scale data-intensive applications grow in popular-
ity, many cloud computing systems like MapReduce, Hadoop
and Dryad have emerged in recent years. In the general cloud
computing architecture, network bandwidth is a scarce re-
source. To improve the system performance, a task scheduling
algorithm must take into account task data locality. However,
when most of the servers can not be idle soon and network
state is good, enforcing high locality has a negative effect on
job completion time.

In this paper, we present a data locality driven task schedul-
ing algorithm called BAlance-Reduce(BAR). BAR schedules
tasks by taking a global view and adjusts task data locality
dynamically according to network state and cluster workload.
In a poor network environment, BAR tries its best to enhance
data locality. When cluster is overloaded, BAR decreases
data locality to make tasks start early. We evaluate BAR by
comparing it to other related algorithms. The simulation results
show that BAR exhibit an improvement and can deal with a
large problem instance in a few seconds.

As a future work, we plan to implement BAR into a
production cloud computing system such as Hadoop. In a real-
world platform, the network state and the cluster workload
change frequently, so it is necessary to update the scheduling
strategy by an efficient rescheduling algorithm. The reschedul-
ing algorithm is expected to handle machine failure, task
straggler, network anomaly. However, as the scheduler calls
rescheduling frequently, the rescheduling algorithm should be
low-complexity.
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