The Totem Single-Ring Ordering
and Membership Protocol

Y. AMIR, L. E. MOSER, P. M. MELLIAR-SMITH, D. A. AGARWAL, P. CIARFELLA

University of California, Santa Barbara

Fault-tolerant distributed systems are becoming more important, but in existing
systems maintaining the consistency of replicated data is quite expensive. The
Totem single-ring protocol supports consistent concurrent operations by placing a
total order on broadcast messages. This total order is derived from the sequence
number in a token that circulates around a logical ring imposed on a set of processors
in a broadcast domain. The protocol handles reconfiguration of the system when
processors fail and restart or the network partitions and remerges. Extended virtual
synchrony ensures that processors deliver messages and configuration changes to
the application in a consistent total order system-wide. An effective flow control
mechanism enables the Totem single-ring protocol to achieve message ordering rates
significantly higher than the best prior total ordering protocols.

Categories and Subject Descriptors: C.2.1 [Computer-Communications Net-
works]: Network Architecture and Design—network communications; C.2.2 [Com-
puter Communication Networks]: Network Protocols—protocol architecture;
C.2.4 [Computer-Communication Networks]: Distributed Systems—network
operating systems; (C.2.5 [Computer-Communication Networks]: Local
Networks—rings; D.4.4 [Operating Systems]: Communications Management—
network communication; D.4.5 [Operating Systems]: Reliability—fauli-tolerance;
D.4.7 [Operating Systems]: Organization and Design—distributed systems

General Terms: Protocols, Performance,; Reliability

Additional Key Words and Phrases: Flow control, membership, reliable delivery,
token passing, total ordering, virtual synchrony

Earlier versions of the Totem single-ring protocol appeared in the Proceedings of the IEE Interna-
tional Conference on Information Engineering, Singapore (December 1991) and in the Proceedings
of the IEEE 13th International Conference on Distributed Computing Systems, Pittsburgh, PA
(May 1993).

This research was supported by NSF Grant No. NCR-9016361, ARPA Contract No. N00174-93-
K-0097, and Rockwell CMC/State of California MICRO Grant No. 92-101.

Authors’ Addresses: Y. Amir, Computer Science Department, The Hebrew University of
Jerusalem, Israel; L. E. Moser and P. M. Melliar-Smith, Department of Electrical and Com-
puter Engineering, University of California, Santa Barbara, CA 93106; D. A. Agarwal, Lawrence
Berkeley National Laboratory, Berkeley, CA 94720; P. Ciarfella, Cascade Communications Cor-
poration, 5 Carlisle Road, Westford, MA 01886.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2 . Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, P. Ciarfella

1. INTRODUCTION

Fault-tolerant distributed systems are becoming more important due to the increas-
ing demand for more reliable operation and improved performance. Maintaining
the consistency of replicated data and coordinating the activities of cooperating
processors present substantial problems, which are made more difficult by concur-
rency, asynchrony, fault-tolerance, and real-time performance requirements. Ex-
isting fault-tolerant distributed systems that address these problems are difficult
to program, and expensive in the number of messages broadcast and/or computa-
tions required. Recent protocols for fault-tolerant distributed systems [Amir et al.
1992b; Birman and van Renesse 1994; Kaashoek and Tanenbaum 1991; Melliar-
Smith et al. 1990; Peterson et al. 1989] employ the idea of placing a partial or total
order on broadcast messages to simplify the application programs and to reduce
the communication and computation costs.

The Totem single-ring protocol supports high-performance fault-tolerant dis-
tributed systems that must continue to operate despite network partitioning and
remerging and despite processor failure and restart. Totem provides totally or-
dered message delivery with low overhead, high throughput, and low latency using
a logical token-passing ring imposed on a broadcast domain. The key to its high
performance is an effective flow control mechanism. Totem also provides rapid
detection of network partitioning and processor failure together with reconfigura-
tion and membership services. Its novel mechanisms prevent delivery of messages
in different orders in different components of a partitioned network, and provide
accurate information about which processors have delivered which messages. Ear-
lier versions of the Totem single-ring protocol are described in [Amir et al. 1993;

Melliar-Smith et al. 1991].

Programming the application is considerably simplified if messages are delivered
in total order rather than only in causal order, or if messages are delivered in causal
order rather than only in FIFO order. In prior systems, delivery of messages in
total order has been more expensive than delivery of messages in causal order, and
delivery of messages in causal order has been more expensive than FIFO delivery.
The Totem single-ring protocol can, however, deliver totally ordered messages with
high throughput at no greater cost than causally ordered messages or, indeed,
than reliable point-to-point FIFO messages. A total order on messages simplifies
the application programming by reducing the risk of inconsistency when replicated
data are updated, and by resolving the contention for shared resources within the
system, such as the claiming of locks.

In Totem, messages are delivered in agreed order, which guarantees that proces-
sors deliver messages in a consistent total order and that, when a processor delivers
a message, it has already delivered all prior messages originated within its current
configuration. Totem also provides delivery of messages in safe order, which guar-
antees additionally that, when a processor delivers a message, it has determined
that every processor in the current configuration has received and will deliver the
message unless that processor fails. Delivery of a message in agreed or safe order
is requested by the originator of the message.

Delivery of messages in a consistent total order is not easy to achieve in dis-
tributed systems that are subject to processor failure and network partitioning. A

The Totem Single-Ring Ordering and Membership Protocol . 3

Application

Broadcast Configuration Change
? messages messages ?

Install

Reliable Delivery !
Total Ordering !
Flow Control T‘

I

‘ Token loss

¢ Configuration changes

Membership

Join messages
Commit token

v ‘ Foreign messages *

Best-Effort Broadcast Domain

Fig. 1. The Totem single-ring protocol hierarchy.

failing processor, or a group of processors that have become isolated, may deliver
messages in an order that is different from the order determined by other processors.
As long as those processors remain failed or isolated, these inconsistencies are not
apparent, but as soon as a processor is repaired and readmitted to the system, or as
soon as the components of a partitioned system are remerged, the inconsistencies in
the message order may become manifest and recovery may be difficult. The Totem
protocol cannot guarantee that every processor is able to deliver every message but
it does guarantee that, if two processors deliver a message, they deliver the message
in the same total order.

The application programs may also need to know about configuration changes.
Different processors may learn of a configuration change at different times, but
they must form consistent views of the configuration change and of the messages
that precede or follow the configuration change. Birman [Birman and van Renesse
1994] devised the concept of virtual synchrony, which ensures that processors deliver
messages consistently in the event of processor fail-stop faults. We have generalized
this concept to extended virtual synchrony [Moser et al. 1994], which applies to
systems in which the network can partition and remerge, and in which processors
can fail and restart with stable storage intact.

The Totem single-ring protocol is designed to operate over a single broadcast
domain, such as an Ethernet. It uses Unix UDP, which provides a best-effort
multicast service over such media. Other media that provide a best-effort multicast
service, such as ATM or the Internet MBone, can be used to construct the broadcast
domain needed by Totem.

The software architecture of the Totem single-ring protocol is shown in Figure 1.
The arrows on the left represent the passage of messages through the protocol hi-
erarchy, while the arrows on the right represent Configuration Change messages
and configuration installation. Using a logical token-passing ring imposed on the
physical broadcast domain, the single-ring protocol provides reliable totally ordered
messsage delivery and effective flow control. On detection of token loss, or on receiv-

4 . Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, P. Ciarfella

ing a message from a processor not on its ring, a processor invokes the membership
protocol to form a new ring using Join messages and a Commit token transmit-
ted over the broadcast domain. The membership protocol activates the recovery
protocol with the proposed configuration change. The recovery protocol uses the
single-ring ordering protocol to recover missing messages. The processor then in-
stalls the new ring, by delivering Configuration Change messages to the application.

2. RELATED WORK

Our work on the Totem protocol is based on our combined experience with two
systems: the Trans and Total reliable ordered broadcast and membership protocols
[Melliar-Smith et al. 1990; Moser et al. 1994] and the Transis group communication
system [Amir et al. 1992a; Amir et al. 1992b].

The Trans protocol uses positive and negative acknowledgments piggybacked
onto broadcast messages and exploits the transitivity of positive acknowledgments
to reduce the number of acknowledgments required. The Total protocol, layered on
top of the Trans protocol, is a fault-tolerant total ordering protocol that continues
to order messages provided that a resiliency constraint is met. The membership
protocol, layered on top of the Total protocol, ensures that each change in the
membership occurs at the same logical time in each processor, corresponding to
a position in the total order. The Totem protocol was developed to address the
computational overhead of Trans and Total, and is intended for local-area networks
with fast and highly reliable communication.

The Transis group communication system provides reliable ordered group mul-
ticast and membership services. Transis initially based its ordering protocol on
the Trans protocol but, more recently, has also included the Totem protocol for
message ordering. Unlike other prior protocols, the Transis membership protocol
supports remerging of a partitioned network, and maintains a consensus view of the
membership of each component, rather than a global consensus view of the entire
system. The Totem membership protocol uses the idea, first proposed for Transis,
that the membership can be reduced in size to ensure termination.

In [Chang and Maxemchuk 1984] Chang and Maxemchuk described a reliable
broadcast and ordering protocol that uses a token-based sequencer strategy. Unlike
Totem, which requires that a processor must hold the token to broadcast a message,
their protocol allows processors to broadcast messages at any time. The processor
holding the token is responsible for broadcasting an acknowledgment message that
includes a sequence number for each message acknowledged. A processor that has
not received a message sends a negative acknowledgment to request retransmission
by the processor that acknowledged the message. While the latency is good at low
loads, it increases at high loads and in the presence of a failed processor.

More closely related to Totem is the TPM protocol of Rajagopalan and McKin-
ley [Rajagopalan and McKinley 1989], which also uses a token to control broadcast-
ing and sequencing of messages. The TPM protocol provides the safe delivery but
not the agreed delivery that Totem provides. In the absence of processor failure and
network partitioning, TPM requires on average two and one-half token rotations for
safe delivery, whereas Totem requires two token rotations. In the event of network
partitioning, only the component containing a majority of the processors continues
to operate; processors in the other components block. In contrast, Totem handles

The Totem Single-Ring Ordering and Membership Protocol . 5

network partitioning and remerging by allowing each component of a partitioned
system to continue operating, not just the component that contains a majority of
the processors.

Birman’s Isis system [Birman and van Renesse 1994] and more recently the Horus
system [van Renesse et al. 1994] have focused on process groups and the applica-
tion program interface. Isis provides BCAST or unordered messages, CBCAST
or causally ordered messages, and ABCAST or totally ordered messages. A vec-
tor clock strategy is used to ensure causal ordering, and a token-based sequencer,
similar to that of Chang and Maxemchuk, is used to provide total ordering. Isis
introduced the important idea of virtual synchrony in which configuration change
messages are ordered relative to other messages so that a consistent view of the
system is maintained as the system changes dynamically. The user interfaces of
both Transis and Totem were inspired by the Isis user interface.

The Psync protocol of Peterson, Buchholz and Schlichting [Peterson et al. 1989]
constructs a partial order on messages that can be converted into a total order.
Isis, Trans, and Transis employ a similar strategy. In contrast, Totem constructs a
total order on messages directly without constructing a partial order first. Mishra,
Peterson and Schlichting [Mishra et al. 1991] have developed a membership protocol
based on the partial order of Psync.

In [Kaashoek and Tanenbaum 1991] Kaashoek and Tanenbaum describe group
communication in the Amoeba distributed operating system. One processor, called
the sequencer, is responsible for placing a total order on messages. Processors
send point-to-point messages to the sequencer, which assigns sequence numbers to
messages and broadcasts them to the other processors. Messages are recovered by
sending a request to the sequencer for retransmission. Group membership functions
are also provided. Performance is excellent for very short messages, but deterio-
rates for long messages and also if high resilience to processor failure and network
partitioning is required.

The excellent performance of the Totem single-ring protocol is achieved using a
flow control strategy that limits message loss due to buffer overflow at the receivers.
Related to this flow control strategy are the sliding-window strategy, the FDDI
token rotation time limit, and the flow control mechanism of Transis. The use of a
token in combination with a window for flow control on a broadcast medium works
much better than either mechanism in isolation and, as far as we know, has not
been investigated in prior work.

3. THE MODEL

We consider a distributed system built on a broadcast domain consisting of a finite
number of processors that communicate by broadcasting messages. We use the term
originate to refer to the first broadcast of a message generated by the application.
Each broadcast of a message is received immediately or not at all by a processor in
the broadcast domain and, thus, messages may have to be retransmited to achieve
reliable delivery. A processor receives all of its own broadcast messages.

The broadcast domain may become partitioned so that processors in one com-
ponent of the partitioned system are unable to communicate with processors in
another component. Communication between separated components can subse-
quently be reestablished.

6 . Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, P. Ciarfella

Each processor within the system has a unique identifier and stable storage.
Processors can incur fail stop, timing, or omission faults. A processor that is
excessively slow, or that fails to receive a message an excessive number of times, can
be regarded as having failed. Failed processors can be repaired, and are reconfigured
into the system when they restart. If a processor fails and restarts, its identifier
does not change and all or part of its state may have been retained in stable
storage.

There are no malicious faults; such as faults in which processors generate incorrect
messages or in which the communication medium undetectably modifies messages
in transit.

Imposed on the broadcast domain is a logical token-passing ring. The token
is a special message transmitted point-to-point. The token may be lost by not
being received by a processor on the ring. Each ring has a representative, chosen
deterministically from the membership when the ring is formed, and an identifier
that consists of a ring sequence number and the identifier of the representative.
To ensure that ring sequence numbers and hence ring identifiers are unique, each
processor records its ring sequence number in stable storage.

We use the term ring to refer to the infrastructure of Totem, and the term
configuration to represent the view provided to the application. The membership
of a configuration is a set of processor identifiers. The minimum configuration for
a processor consists of the processor itself. A regular configuration has the same
membership and identifier as its corresponding ring. A {ransitional configuration
consists of processors that are members of a new ring coming directly from the
same old ring; it has an identifier that consists of a “ring” sequence number and
the identifier of the representative.

We distinguish between the terms “receive” and “deliver,”

as follows. A processor
recetves messages that were broadcast by processors in the broadcast domain, and
a processor delivers messages in total order to the application.

Two types of messages are delivered to the application. Regular messages are
generated by the application for delivery to the application. Configuration Change
messages are generated by the processors for delivery to the application, without
being broadcast, to terminate one configuration and to initiate another. The iden-
tifiers of the regular and Configuration Change messages consist of configuration
identifiers and message sequence numbers.

We define a causal order that is a modification of Lamport’s causal order [Lam-
port 1978] in that it applies to messages rather than events and is constrained to
messages originated within a single configuration. This allows remerging of a par-
titioned network and joining of a failed processor without requiring all messages in
the history to be delivered. Causal and total orders' are defined on sets of messages,
as follows:

LA total order on a set S is a relation < that satisfies the reflexive (z < z), transitive (if z < y and
y < z, then z < z), anti-symmetric (if z < y and ¢ # y, then y £ =), and comparable properties
(r < yory < z). A partial order on a set S is a relation < defined on S that satisfies the reflexive,
transitive, and anti-symmetric properties. To adhere to standard mathematical practice in which
partial and total orders are reflexive, “before” must be regarded as non-strict, i.e. an event occurs
before itself.

The Totem Single-Ring Ordering and Membership Protocol . 7

Causal Order for Configuration C. The reflexive transitive closure of the
“precedes” relation, which is defined for all processors p in C' as follows:

—Message m; precedes message my if processor p originated mj in configuration
C before p originated msa in C.

—Message m; precedes message my if processor p originated ms in configuration
C and p delivered my in C before originating ma.

The causal order is assumed to be anti-symmetric and, thus, is a partial order.?

Delivery Order for Configuration C. The reflexive transitive closure of the
“precedes” relation, which is defined on the union over all processors p in C' of the
sets of regular messages delivered in C' by p as follows:

—Message mj precedes message ms if processor p delivers my in C' before p delivers
ms in C.

Note that some processors in configuration C' may not deliver all messages of the
Delivery Order for Configuration C'.

Global Delivery Order. The reflexive transitive closure of the union of the Con-
figuration Delivery Orders for all configurations and of the “precedes” relation,
which is defined on the set of Configuration Change messages and regular messages
as follows:

—PFor each processor p and each configuration C' of which p is a member, the
Configuration Change message delivered by p that initiates C' precedes every
message m delivered by p in C.

—For each processor p and each configuration C' of which p is a member, every mes-
sage m delivered by p in C precedes the Configuration Change message delivered
by p that terminates C'.

In [Amir et al. 1994] we prove that the Delivery Order for Configuration C' is a
total order and that the Global Delivery Order is a total order.

4. SERVICES

The objective of the Totem single-ring protocol is to provide the application with
reliable totally ordered message delivery and membership services, as defined below.
4.1 Membership Services

The Totem membership protocol provides the following properties:

Uniqueness of Configurations. Each configuration identifier is unique; more-
over, at any time a processor is a member of at most one configuration.

Consensus. All of the processors that install a configuration determine that the
members of the configuration have reached consensus on the membership.3

Termination. If a configuration ceases to exist for any reason, such as processor
failure or network partitioning, then every processor of that configuration either

2This property cannot be proved. That the physical world is anti-symmetric must be an
assumption.

3This does not violate the impossibility result of Fischer, Lynch and Paterson [Fischer et al. 1985]
because the membership protocol allows the membership to decrease in order to reach consensus.

8 . Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, P. Ciarfella

installs a new configuration by delivering a Configuration Change message or fails
before doing so. The Configuration Change message contains the identifier of the
configuration it terminates, the identifier of the configuration it initiates, and the
membership of the configuration it initiates.

Configuration Change Consistency. If processors p and ¢ install configuration
C, directly after C7, then p and ¢ both deliver the same Configuration Change
message to terminate C7 and initiate Cs.

4.2 Reliable Ordered Delivery Services
The Totem total ordering protocol provides the following properties, which hold for

all configurations C' and for all processors p in C":
Reliable Delivery for Configuration C
—FEach message m has a unique identifier.

—If processor p delivers message m, then p delivers m once only. Moreover, if
processor p delivers two different messages, then p delivers one of those messages
strictly before it delivers the other.

—If processor p originates message m, then p will deliver m or will fail before
delivering a Configuration Change message to install a new regular configuration.

—If processor p is a member of regular configuration C' and no configuration change
ever occurs, then p will deliver in C' all messages originated in C.

—If processor p delivers message m originated in configuration C', then p is a mem-
ber of C' and p has installed C'. Moreover, p delivers m in C or in a transitional
configuration between C' and the next regular configuration it installs.

—If processors p and g are both members of consecutive configurations C; and
C5, then p and ¢ deliver the same set of messages in C] before delivering the
Configuration Change message that terminates C and initiates Cs.

Reliable delivery defines the basic requirements on message delivery, in particular,

which messages a processor must deliver within a configuration.

Delivery in Causal Order for Configuration C

—Reliable delivery for configuration C'.

—If processor p delivers messages my and ms and m; precedes ms in the causal
order for configuration C, then p delivers m; before p delivers ms.

Causal delivery imposes an ordering constraint to ensure that the delivery order

respects Lamport causality within a configuration.

Delivery in Agreed Order for Configuration C

—Delivery in causal order for configuration C'.

—If processor p delivers message ms in configuration C' and m, is any message that
precedes my in the Delivery Order for Configuration C, then p delivers m; in C
before p delivers ms.

Agreed delivery requires that all processors deliver messages within a configuration

in the same total order. Moreover, when a processor delivers a message, it must

have delivered all preceding messages in the total order for the configuration.

The Totem Single-Ring Ordering and Membership Protocol . 9

Delivery in Safe Order for Configuration C
—Delivery in agreed order for configuration C'.

—If processor p delivers message m in regular configuration C' in safe order, then
every member of C has installed C.

—If processor p delivers message m in configuration C' and the originator of m re-
quested safe delivery, then p has determined that each processor in C' has received
m and will deliver m or will fail before installing a new regular configuration.

Delivery of a message in safe order requires that a processor has determined that
all of the processors in the configuration have received the message. This determi-
nation is typically based on acknowledgments from the processors indicating that
they have received the message and all of its predecessors in the total order. Once
a processor has acknowledged receipt of a safe message, it is required to deliver
the message unless it fails. Note that this requirement does not guarantee that a
processor delivers the message in the same configuration as all of the other proces-
sors. Totem uses a Configuration Change message to notify the application of the
membership of the configuration within which delivery is guaranteed as safe.

Extended Virtual Synchrony
—Delivery in agreed or safe order as requested by the originator of the message.

—If processor p delivers messages m; and ms and m; precedes ms in the Global
Delivery Order, then p delivers m; before p delivers my.

Virtual synchrony was devised by Birman [Birman and van Renesse 1994] to ensure
that view (configuration) changes occur at the same point in the message delivery
history for all operational processors. Processors that are members of two successive
views must deliver exactly the same set of messages in the first view. A failed
processor that recovers can only be readmitted to the system as a new processor.
Thus, failed processors are not constrained as to the messages they deliver or their
order, and messages delivered by a failed processor have no effect on the system. If
the system partitions, only processors in one component, the primary component,
continue to operate; all of the other processors are deemed to have failed.

Extended virtual synchrony extends the concept of virtual synchrony to systems
in which all components of a partitioned system continue to operate and can subse-
quently remerge, and to systems in which failed processors can be repaired and can
rejoin the system with stable storage intact. Two processors may deliver different
sets of messages, when one of them has failed or when they are members of differ-
ent components, but they must not deliver messages inconsistently. In particular,
if processor p delivers message m; before p delivers message my, then processor g
must not deliver message ms before ¢ delivers message m;.*

Extended virtual synchrony requires that the properties of delivery in agreed
and safe order must be satisfied. If processor p delivers message m as safe in
configuration C, then every processor in C' has received m and will deliver m before
it installs a new regular configuration, unless that processor fails. This is achieved
by installing a transitional configuration with a reduced membership, within which

4Note, however, that a definition based on pairwise delivery of messages does not suffice. We must
ensure that the Global Delivery Order has no cycles of any length.

10 . Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, P. Ciarfella

any remaining messages from the prior configuration are delivered, while honoring
the agreed and safe delivery guarantees. Thus, Totem delivers two Configuration
Change messages, the first to introduce a smaller transitional configuration and
the second to introduce the new regular configuration. In [Moser et al. 1994] we
demonstrate that virtual synchrony can be implemented on top of the more general
extended virtual synchrony property provided by Totem.

Proofs of correctness for the Totem single-ring protocol based on the service
properties defined above can be found in [Amir et al. 1994].

5. THE TOTAL ORDERING PROTOCOL

The Totem single-ring ordering protocol provides agreed and safe delivery of mes-
sages within a broadcast domain. Imposed on the broadcast domain is a logical
token-passing ring. The token controls access to the ring; only the processor in
possession of the token can broadcast a message. A processor can broadcast more
than one message for each visit of the token, subject to the constraints imposed
by the flow control mechanisms described in Section 8. When no processor has a
message to broadcast, the token continues to circulate. Each processor has a set of
input buffers in which it stores incoming messages. The flow control mechanisms
avoid overflow of these input buffers.

Each message header contains a sequence number derived from a field of the
token; thus, there is a single sequence of message sequence numbers for all processors
on the ring. Delivery of messages in sequence number order is agreed delivery. Safe
delivery uses an additional field of the token, the aru field, to determine when all
processors on the ring have received a message.

We now describe the Totem single-ring ordering protocol with the assumptions
that the token is never lost, that processor failures do not occur, and that the
network does not become partitioned; however, messages may be lost. In Section 6
we relax these assumptions and extend the protocol to handle token loss, processor
failure and restart, and network partitioning and remerging.

5.1 The Data Structures
Regular Message

Each regular message contains the following fields:

o sender_id: The identifier of the processor originating the message.

e ring_id: The identifier of the ring on which the message was originated, consisting of a
ring sequence number and the representative’s identifier.

e seq: A message sequence number.
e conf_id: 0.

o contents: The contents of the message.
The ring_id, seq, and conf-id fields comprise the identifier of the message.

Regular Token

To broadcast a message on the ring, a processor must hold the regular token, also
referred to as the token. The token contains the following fields:

o type: Regular.

o ring_id: The identifier of the ring on which the token is circulating, consisting of a ring
sequence number and the representative’s identifier.

The Totem Single-Ring Ordering and Membership Protocol : 11

o token_seq: A sequence number which allows recognition of redundant copies of the
token.

o seq: The largest sequence number of any message that has been broadcast on the ring,
i.e. a high-water mark.

e aru: A sequence number (all-received-up-to) used to determine if all processors on the
ring have received all messages with sequence numbers less than or equal to this sequence
number, :.e. a low-water mark.

o aru_id: The identifier of the processor that set the aru to a value less than the seq.

e rtr: A retransmission request list, containing one or more retransmission requests.

The segq field of the token provides a single total order of messages for all processors
on the ring. The aru field is the basic acknowledgment mechanism that determines
if a message can be delivered as safe.

Local Variables

Each processor maintains several local variables, including

o my_token_seq: The value of the token_seq when the processor forwarded the token last.

o my_aru: The sequence number of a message such that the processor has received all
messages with sequence numbers less than or equal to this sequence number.

o my_aru_count: The number of times that the processor has received the token with an
unchanged aru and with the aru not equal to seq.

o new_message_queue: The queue of messages originated by the application waiting to be
broadcast.

o received_message_queue: The queue of messages received from the communication medium
waiting to be delivered to the application.

A processor updates my_token_seq and my_aru_count as it receives tokens, and
updates my_aru as it receives messages. When it transmits a message, the processor
transfers the message from new_message_queue to received_message_queue. When
it determines that a message has become safe, the processor no longer needs to
retain the message for future retransmission and, thus, can discard the message
from received_message_queue.

5.2 The Protocol

On receipt of the token, a processor completely empties its input buffer, either
delivering the messages or retaining them until they can be delivered in order. It
then broadcasts requested retransmissions and new messages, updates the token,
and transmits the token to the next processor on the ring. For each new message
that it broadcasts, the processor increments the seq field of the token and sets the
sequence number of the message to this value.

Each time a processor receives the token, it compares the aru field of the token
with my_aru. If my_aru is smaller, the processor replaces the aru with my_aru and
sets the aru_id field of the token to its identifier. If the aru_id equals the processor’s
identifier, it sets the aru to my_aru. (In this case, the processor had set the aru on
the last visit of the token and no other processor changed the aru during the token
rotation.) Whenever the seq and the aru are equal, the processor increments aru
and my_ary in step with seq, and sets the aru_id to a null value (a value that is not
the id of any processor).

12 . Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, P. Ciarfella

If the seq field of the token is greater than its my_aru, the processor has not
received all of the messages that have been broadcast on the ring, so it augments
the rir field of the token with the missed messages. If the processor has received
messages that appear in the rir field, it retransmits those messages before broad-
casting new messages. When it retransmits a message, the processor removes the
sequence number of the message from the rir field.

If a processor has received a message m and has delivered every message with
sequence number less than that of m and if the originator of m requested agreed
delivery, then the processor delivers m in agreed order. If, in addition, the processor
forwards the token with the aru field greater than or equal to the sequence number
of m on two successive rotations and if the originator of m requested safe delivery,
then m is safe and the processor delivers m in safe order.

The total ordering protocol is, of course, unable to continue when the token
is lost; a token retransmission mechanism has been implemented to reduce the
probability of token loss. Each time a processor forwards the token, it sets a Token
Retransmission timeout. If a processor receives a regular message or the token, it
cancels the Token Retransmission timeout. On a Token Retransmission timeout,
the processor retransmits the token to the next processor on the ring and then
resets the timeout.

The token_seq field of the token provides recognition of redundant tokens. A
processor accepts the token only if the token_seq field is greater than my_token_segq;
otherwise, the token is discarded as redundant. If the token is accepted, the pro-
cessor increments foken_seq and sets my_token_seq to the new value of token_seq.
Token retransmission increases the probability that the token will be received at the
next processor on the ring and incurs minimal overhead. The membership protocol
described in the next section handles the loss of all copies of the token.

6. THE MEMBERSHIP PROTOCOL

The Totem single-ring ordering protocol is optimized for high performance under
failure-free conditions, but depends on a membership protocol to resolve processor
failure, network partitioning, and loss of all copies of the token. The member-
ship protocol detects such failures and reconstructs a new ring on which the total
ordering protocol can resume operation.

The objective of the membership protocol is to ensure consensus, in that ev-
ery member of the configuration agrees on the membership of the configuration,
and termination, in that every processor installs some configuration with an agreed
membership within a bounded time unless it fails within that time. The member-
ship protocol also generates a new token and recovers messages that had not been
received by some of the processors when the failure occurred.

6.1 The Data Structures

Join Message

A Join message contains a set of identifiers of processors being considered for mem-
bership in the new ring by the processor broadcasting the Join message and also a
set of identifiers of processors that it regards as having failed. These are contained
in the proc_set and fail_set fields of the Join message defined below:

The Totem Single-Ring Ordering and Membership Protocol : 13

e type: Join.

e sender_id: The processor identifier of the sender.

o proc_set: The set of identifiers of processors that the sender is considering for member-
ship in a new ring.

o fail_set: The set of identifiers of processors that the sender has determined to have
failed.

o ring_seq: The largest ring sequence number of a ring_id known to the sender.

Join messages differ from regular messages in that a processor may broadcast a Join
message without holding the token; moreover, Join messages are not retransmitted
or delivered to the application.

When a processor broadcasts a Join message, it is trying to achieve consensus
on the proc_set and fail_set in the Join message. The fail_set is a subset of the
proc_set. The proc_set and fail_set can only increase until a new ring is installed.
The ring_seq field allows the receiver of a Join message to determine if the sender
has abandoned a past round of consensus and is now attempting to form a new
membership. It is also used to create unique ring identifiers.

Configuration Change Message

The membership protocol also uses another special type of message, the Configu-
ration Change message, which contains the following fields:

o ring_id: The identifier of the regular configuration if this message initiates a regular
configuration, or the identifier of the preceding regular configuration if this message
initiates a transitional configuration.

e seq: 0 if this message initiates a regular configuration, or the largest sequence number
of a message delivered in the preceding regular configuration if this message initiates a
transitional configuration.

o conf_id: The identifier of the old transitional configuration from which the processor
is transitioning if this message initiates a regular configuration, or the identifier of the
transitional configuration to which the processor is transitioning if this message initiates
a transitional configuration.

e memb: The membership of the configuration that this message initiates.
The ring_id, seq, and conf-id fields comprise the identifier of the message.

A Configuration Change message may describe a change from an old configura-
tion to a transitional configuration or from a transitional configuration to a new
configuration. Configuration Change messages differ from regular messages in that
they are generated locally at each processor and are delivered directly to the appli-
cation without being broadcast.

Commit Token

Each new ring is initiated by one of its members, the representative, a processor
chosen deterministically from the members of the ring. The representative generates
a Commit token that differs from the regular token in that its type field is set to
Commit and it contains the following fields in place of the ritr field:

o memb_list: A list containing a processor identifier, old ring ring_id, old ring my_aru,
high_delivered, and received_flg fields for each member of the new ring.

o memb_index: The index of the processor in memb_list that last forwarded the Commit
token.

14 . Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, P. Ciarfella

For each processor identifier in memb_list, the high_delivered field is the largest
sequence number of a message that the processor has delivered on the old ring.
The received_flg field indicates that the processor has already received all of the
messages possessed by other processors in its transitional configuration.

On the first rotation of the Commit token around the new ring, each processor
sets its old ring_id, old ring my_aru, high_delivered, and received_flg fields. It also
updates memb_indez. The remaining fields are set by the representative when it
creates the Commit token.

Local Variables
Each processor maintains several local variables, including

e my_ring_itd: The ring identifier in the most recently accepted Commit token.

o my_memb: The set of identifiers of processors on the processor’s current ring.

o my_new_memb: The set of identifiers of processors on the processor’s new ring.

o my_proc_set: The set of identifiers of processors that the processor is considering for
membership of a new ring.

o my_fail_set: The set of identifiers of processors that the processor has determined to

have failed.

o consensus: A boolean array indexed by processors and indicating whether each processor
is committed to the processor’s my_proc_set and my_fail_set.

Stable storage is required to store a processor’s ring sequence number, my_ring_id.seq.
This stable storage is read only when a processor recovers from a failure, and is
written when a configuration change occurs.

6.2 The Protocol

The membership protocol can be described by a finite state machine with seven
events and four states, as illustrated in Figure 2.

6.2.1 The Seven Events of the Membership Protocol

Receiving a Foreign Message. Such a message was broadcast by a processor
that is not a member of the receiving processor’s ring, and activates the membership
protocol in the receiving processor.

Receiving a Join Message. This informs the receiver of the sender’s proposed
membership and may cause the receiver to enlarge its my_proc_set or my_fail_set.

Receiving a Commit Token. On the first reception of the Commit token, a
member of the proposed new ring updates the Commit token. On the second
reception, it obtains the updated information that the other members have supplied.

Token Loss Timeout. This timeout indicates that a processor did not receive
the token or a regular message within the required amount of time and activates
the membership protocol.

Token Retransmission Timeout. This timeout indicates that a processor should
retransmit the token because it has not received the token or a regular message
broadcast by another processor on the ring.

The Totem Single-Ring Ordering and Membership Protocol : 15

Commit token
received

Foreign or Join
message received

Deliver Configuration Change messages

Operational and install configurations

Join message received and

not (Consensus and Representative)
Token Loss

. with seq <= ring_seq
timeout

Token Loss timeout or
Join message received
with seq > ring_seq

Foreign and sender in my Join Foreign
message message
received received

Token Loss timeout or
Join message received
with seq > ring_seq

and sender in my Join

Consensus,
Token Loss, or
Join timeout

and representative

Commit token
received

(Join message received and
Consensus and Representative)
or Commit token received

Join message received Foreign
with seq <= ring_seq message
or sender not in my Join received

Fig. 2. The finite state machine for the membership protocol.

Join Timeout. This timeout is used to determine the interval after which a Join
message is rebroadcast in the Gather or Commit states.

Consensus Timeout. This timeout indicates that a processor participating in
the formation of a new ring failed to reach consensus in the required amount of
time.

Recognizing Failure to Receive. If the aru field has not advanced in several
rotations of the token, a processor determines that the processor that set the aru
has repeatedly failed to receive a message.

6.2.2 The Four States of the Membership Protocol

Operational State. In the Operational state (Figure 3), messages are broadcast
and delivered in agreed or safe order, as requested by the originator of the message.
Since processor failure and network partitioning result in loss of the token, the
mechanism for detecting failures is the Token Loss timeout. When the Token Loss
timeout expires or when a processor receives a Join message or a foreign message,
the processor invokes the protocol for the formation of a new ring and shifts to the
Gather state (Figure 7).

A processor buffers a message for retransmission until the message has been
acknowledged by the other processors on the ring. If a processor repeatedly fails
to receive a particular message, then the other processors buffer that message and
all subsequent messages until that message is received. Consequently, a processor
cannot be allowed to fail to receive messages indefinitely. When its local variable
my_aru_count reaches a predetermined constant, a processor determines that some
other processor has failed to receive, namely the processor whose identifier is in
the aru_id field of the token. It then includes that processor’s identifier in its
my-_fail_set, shifts to the Gather state, and broadcasts a Join message.

Join message received

or sender not in my Join

Commit token received

16 . Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, P. Ciarfella

Regular token received:
if token.ring_id # my_ring_id or token.token_seq <= my_token_seq then
discard token
else
determine how many messages I'm allowed to broadcast by flow control
update retransmission requests
broadcast requested retransmissions
subtract retransmissions from allowed to broadcast
for as many messages as allowed to broadcast do
get message from new_message_queue
increment token.seq
set message header fields and broadcast message
update my_aru
if my_aru < token.aru or my_id = token.aru.d or token.aru.id = invalid then
token.aru := my_aru
if token.aru = token.seq then
token.aru_id := invalid
else token.aru_id := my_id
if token.aru = aru in token on last rotation and token.aru_id # invalid then
increment my_aru_count
else my_aru_count := 0
if my_aru_count > fail_to_rcv_const and token.aru_id = my_id then
add token.aru.id to my_fail_set
call Shift_to_Gather
else
update token.rtr and token flow control fields
increment token.token_seq
forward token
reset Token Loss and Token Retransmission timeouts
deliver messages that satisfy their delivery criteria

Regular message received:
cancel Token Retransmission timeout if set
add message to receive_message_queue
update retransmission request list
update my_aru
deliver messages that satisfy their delivery criteria

Token Loss timeout expired:

call Shift_to_Gather

Token Retransmission timeout expired:
retransmit token
reset Token Retransmission timeout

Foreign message from processor q received:
add message.sender_id to my_proc_set

call Shift_to_Gather

Join message from processor q received:
same as in Gather state except call Shift_to_Gather regardless of Join message’s content

Commit token received:
discard the Commit token

Fig. 3. The pseudocode executed by a processor in the Operational state.

The Totem Single-Ring Ordering and Membership Protocol : 17

Gather State. In the Gather state (Figure 4), a processor collects information
about operational processors and failed processors, and broadcasts that information
in Join messages. When a processor receives a Join message, the processor updates
its my_proc_set and my_fail_set. If its my_proc_set and my_fail_set have changed,
the processor abandons its previous membership, broadcasts a Join message con-
taining the updated sets, and resets the Join and Consensus timeouts. The Join
timeout is shorter than the Consensus timeout and is used to increase the probabil-
ity that Join messages from all currently operational processors are received during
a single round of consensus.

A processor reaches consensus when it has received Join messages with proc_set
and fail_set equal to its my_proc_set and my_fail_set, respectively, from every pro-
cessor in the difference of those sets, i.e. my_proc_set — my_fail_set. It then no
longer accepts incoming Join messages. A processor is also considered to have
reached consensus when it has received a Commit token with the same member-
ship as my_proc_set — my_fail_set. The processors in that difference constitute the
membership of the proposed new ring. If the Consensus timeout expires before
a processor has reached consensus, it adds to my_fail_set all of the processors in
my_proc_set from which it has not received a Join message with proc_set and fail_set
equal to its own sets, returns to the Gather state, and tries to reach consensus again
by broadcasting Join messages.

When a processor has reached consensus, it determines whether it has the lowest
processor identifier in the membership and, thus, is the representative of the pro-
posed new ring. If it is the representative, the processor generates a Commit token.
It determines the ring_id of the new ring, which is composed of a ring sequence
number equal to four plus the maximum of the ring sequence numbers in any of
the Join messages used to reach consensus and its own ring sequence number. (The
sequence number two less than that of the new ring is used as the transitional
configuration identifier.) The representative also determines the memb_list of the
Commit token, which specifies the membership of the new ring and the order in
which the token will circulate, with the representative placed first. It then transmits
the Commit token and shifts to the Commit state (Figure 7).

When a processor other than the representative has reached consensus, if it has
not received the Commit token, the processor sets the Token Loss timeout, cancels
the Consensus timeout, and continues in the Gather state waiting for the Commit
token. If the Token Loss timeout expires, the processor returns to the Gather state
and tries to reach consensus again. On receiving the Commit token, the processor
compares the proposed membership, given by the memb_list field of the Commit
token, with my_proc_set — my_fail_set. If they differ, the processor discards the
Commit token, returns to the Gather state, and repeats the attempt to form a new
ring. If they agree, the processor extracts the ring_id for the new ring from the
Commit token, sets the fields in its entry of memb_list, increments the memb_index
field, and shifts to the Commit state.

Commit State. In the Commit state (Figure 5), the first rotation of the Com-
mit token around the proposed new ring confirms that all of the members whose
identifiers appear in the memb_list of the Commit token are committed to the mem-
bership. It also collects information needed to determine correct handling of the

18 . Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, P. Ciarfella

Regular token or regular message received:
same as in Operational state

Foreign message from processor q received:
if g not in my_proc_set then
add message.sender_id to my_proc_set

call Shift_to_Gather

Join message from processor q received:
if my_proc_set = message.proc_set and my_fail_set = message.fail set then
consensus[q] := true
if for all r in my_proc_set — my _fail_set
consensus[r] = true and my_id = smallest id of my_proc_set — my_fail_set then
token.ring_id.seq := (maximum of my_ring_id.seq and Join ring_seqs) + 4
token_memb := my_proc_set — my_fail_set
call Shift_to_Commit
else return
else if message.proc_set subset of my_proc_set and
message.fail set subset of my_fail_set then return
else if g in my_fail_set then return
else
merge message.proc_set into my_proc_set
if my_id in message.fail set then
add message.sender_id to my_fail_set
else
merge message.fail_set into my _fail_set

call Shift_to_Gather

Commit token received:
if my_proc_set — my_fail_set = token.memb and token.seq > my_ring_id then
call Shift_to_Commit

Join timeout expired:
broadcast Join message with my_proc_set, my_fail_set, seq = my_ring_id.seq
set Join timeout

Consensus timeout expired:
if consensus not reached then
for all r such that consensus|r] # true do
add r to my_fail_set
call Shift_to_Gather

else
for all r do
consensus|r] := false
consensus[my_id] := true

set Token Loss timeout

Token Loss timeout expired:
execute code for Consensus timeout expired in Gather state

call Shift_to_Gather

Fig. 4. The pseudocode executed by a processor in the Gather state.

The Totem Single-Ring Ordering and Membership Protocol : 19

Regular token received: discard token
Regular message received: same as in Operational state
Foreign message received: discard message

Join message from processor q received:
if q in my_new_memb and message.ring_seq > my _ring_id.seq then
execute code for receipt of Join message in Gather state

call Shift_to_Gather

Commit token received:
if token.seq = my_ring_id.seq then
call Shift_to_Recovery

Join timeout expired: same as in Gather state

Token Loss timeout expired: call Shift_to_Gather

Fig. 5. The pseudocode executed by a processor in the Commit state.

messages from the old ring that still require retransmission when the membership
protocol was invoked.

The second rotation of the Commit token disseminates the information collected
in the first rotation. On receiving the Commit token for the second time, a pro-
cessor shifts to the Recovery state (Figure 7) and writes the sequence number,
my-ring_id.seq, for its new ring into stable storage.

Recovery State. In the Recovery state (Figure 6), when the representative re-
ceives the Commit token after its second rotation, it converts the Commit token
into the regular token for the new ring, replacing the memb_list and memb_index
fields by the rtr field. At this point, the new ring is formed but not yet installed,
and the execution of the recovery protocol begins.

The processors use the new ring to retransmit messages from their old rings
that must be exchanged to maintain agreed and safe delivery guarantees. In one
atomic action, each processor delivers the exchanged messages to the application
along with Configuration Change messages, installs the new ring, and shifts to the
Operational state (Figure 7). The recovery protocol is described in more detail in
Section 7.

When a processor starts or restarts, it first forms and installs a singleton ring,
consisting of only the processor itself. The processor then broadcasts a Join message
containing the value of my_ring_id.seq, obtained from its stable storage, and shifts
to the Gather state.

The membership protocol described above is guaranteed to terminate in bounded
time because proc_set and fail_set increase monotonically within a fixed finite do-
main, because timeouts bound the time that a processor spends in each of the
states, and because an additional failure (which increases the fail_set) is forced to
prevent the repetition of a proposed membership. In the base case, the membership,
proc_set — fail_set, consists of a single processor identifier.

20 . Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, P. Ciarfella

Regular token received:

same as in Operational state except get messages from retrans_message_queue
instead of new_message_queue and before forwarding the token execute:

if retrans_message_queue is not empty then
if token.retrans_flg = false then
token.retrans_flg := true
else if token.retrans_flg = true and I set it then
token.retrans_flg := false
if token.retrans_flg = false then
increment my _retrans_flg_count
else my_retrans_flg_count := 0
if my_retrans_flg_count = 2 then
my_install_seq := token.seq
if my_retrans_flg_count > 2 and my_aru > my_install_seq and my_received_flg = false then
my _received_flg := true
my_deliver_memb := my_trans_memb

if my_retrans_flg_count > 3 and token.aru > my_install seq on last two rotations then
call Shift_to_Operational

Regular message received:
reset Token Retransmission timeout
add message to receive_message_queue
update my_aru
if retransmitted message from my old ring then
add to receive_message_queue for old ring

remove message from retrans_message_queue for old ring

Foreign message from processor q received:
discard message

Join message from processor q received:
if q in my_new_memb and message.ring_seq > my _ring_id.seq then
execute code for receipt of Join message in Commit state
execute code for Token Loss timeout expired in Recovery state

Commit token received by new representative:
convert Commit token to regular token
if retrans_message_queue is not empty then
token.retrans flg := true
else token.retrans flg := false
forward regular token

reset Token Loss and Token Retransmission timeouts

Token Loss timeout expired:

discard all new messages received on the new ring
empty retrans_message_queue

determine current old ring aru (it may have increased)
call Shift_to_Gather

Token Retransmission timeout expired:
retransmit token

reset Token Retransmission timeout

Fig. 6. The pseudocode executed by a processor in the Recovery state.

The Totem Single-Ring Ordering and Membership Protocol : 21

Shift_to_Gather:
broadcast Join message containing my_proc_set, my _fail_set, seq = my_ring_id.seq
cancel Token Loss timeout and Token Retransmission timeouts
reset Join and Consensus timeouts
for all r in my_proc_set do
consensus|r] := false
consensus[my_id] := true
state := Gather

Shift _to_Commit:
update memb_list in Commit token with my_ring_id, my_aru, my_received flg,
my_high_delivered
my_ring_id := Commit token ring_id
forward Commit token
cancel Join and Consensus timeouts
reset Token Loss and Token Retransmission timeouts
state := Commit

Shift_to_Recovery:
forward Commit token for the second time
my_new_memb := membership in Commit token
my_trans_memb := members on old ring transitioning to new ring
if for some processor in my_trans_memb received_flg = false then
my_deliver_memb := my_trans_memb
low_ring_aru := lowest aru for old ring for processors in my_deliver_memb
high_ring_delivered := highest sequence number of message delivered for old ring
by a processor in my_deliver_memb
copy all messages from old ring with sequence number > low_ring_aru
into retrans_message_queue
my_aru := 0
my_aru_count := 0
reset Token Loss and Token Retransmission timeouts
state := Recovery

Shift_to_Operational:
deliver messages deliverable on old ring (at least up through high_ring_delivered)
deliver membership change for transitional configuration
deliver remaining messages from processors in my_deliver_memb in
transitional configuration
deliver membership change for new ring
my_memb := my_new_memb
my_proc_set := my_memb
my _fail_set := empty set
state := Operational

Fig. 7. The pseudocode executed by a processor when shifting between states.

7. THE RECOVERY PROTOCOL

The objective of the recovery protocol is to recover the messages that had not been
received when the membership protocol was invoked, and to enable the processors
transitioning from the same old configuration to the same new configuration to
deliver the same messages from the old configuration. The recovery protocol also
provides message delivery guarantees, and thus maintains extended virtual syn-

22 . Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, P. Ciarfella

chrony, during recovery from failures. Maintenance of extended virtual synchrony
is essential to applications such as fault-tolerant distributed databases.

7.1 The Data Structures

The recovery protocol uses the following data structures in addition to those above.
Regular Token Field

The regular token has the following additional field:

o retrans_flg: A flag that is used to determine whether there are any additional old ring
messages that must be rebroadcast on the new ring.

Local Variables

The recovery protocol also depends on the following local variables:

o my_new_memb: The set of identifiers of processors on the processor’s new ring.

o my_trans_memb: The set of identifiers of processors that are transitioning from the
processor’s old ring to its new ring.

o my_deliver_memb: The set of identifiers of processors whose messages the processor
must deliver in the transitional configuration.

o low_ring_aru: The lowest aru for the old ring for processors in my_deliver_memb.

o high_ring_delivered: The highest message sequence number such that some processor
delivered the message with that sequence number as safe on the old ring.

o my_install_seq: The highest new ring sequence number of any old ring message trans-
mitted on the new ring.

o retrans_message_queue: A queue of messages from the old ring awaiting retransmission
to ensure that all remaining processors from the old ring have the same set of messages.

o my_retrans_count: The number of successive token rotations in which the processor has
received the token with retrans_flg false.

7.2 The Protocol

A processor executing the recovery protocol takes the following steps:

(1) Exchange messages with the other processors that were members of the same
old ring to ensure that they have the same set of messages broadcast on the
old ring but not yet delivered.

(2) Deliver to the application those messages that can be delivered on the old ring
according to the agreed or safe delivery requirements, including all messages
with old ring sequence numbers less than or equal to high_ring_delivered.

(3) Deliver the first Configuration Change message, which initiates the transitional
configuration.

(4) Deliver to the application further messages that could not be delivered in agreed
or safe order on the old ring (because delivery might violate the requirements
for agreed or safe delivery), but that can be delivered in agreed or safe order
in the smaller transitional configuration.

(5) Deliver the second Configuration Change message, which initiates the new reg-
ular configuration.

(6) Shift to the Operational state.

The Totem Single-Ring Ordering and Membership Protocol : 23

Steps 2 through 6 involve no communication with other processors and are per-
formed as one atomic action. The pseudocode executed by a processor to complete
these steps is given in Figure 6.

Exchange of Messages from the Old Ring

In the first step of the recovery protocol, each processor determines the lowest
my_ary of any processor from its old ring that is also a member of the new ring.
The processor then broadcasts on the new ring every message for the old ring that
it has received and that has a sequence number greater than the lowest my_aru.
The retrans_flg field in the token is used to determine when all old ring messages
have been retransmitted. This exchange of messages ensures that each processor
receives as many messages as possible from the old ring.

Each such message is broadcast with a new ring identifier, and encapsulates the
old ring message with its old ring identifier. The new ring sequence numbers of
these messages are used to ensure that messages are received; the old ring sequence
numbers are used to order messages as messages of the old ring. Messages from an
old ring retransmitted on the new ring are not delivered to the application by any
processor that was not a member of the old ring. No new messages originated on
the new ring are broadcast in the Recovery state.

Delivery of Messages on the Old Ring

For each message, the processor must determine the appropriate configuration in
which to deliver the message. A processor can deliver a message in agreed order
for the old ring if it has delivered all messages originated on that ring with lower
sequence numbers. A processor can deliver a message in safe order for the old ring
(1) if it has received the old ring token twice in succession with the aru at least equal
to the sequence number of the message, or (2) if some other processor has already
delivered the message as safe on the old ring as indicated by high_ring_delivered.

The processor sorts the messages for the old ring that were broadcast on the new
ring into the order of their sequence numbers on the old ring, and delivers messages
in order until it encounters a gap in the sorted sequence or a message requiring
safe delivery with a sequence number greater than high_ring_delivered. Messages
beyond this point cannot be delivered as safe on the old ring, but may be delivered
in a transitional configuration.

The processor then delivers the first Configuration Change message, which con-
tains the identifier of the old regular configuration, the identifier of the transitional
configuration, and the membership of the transitional configuration. The mem-
bership of the transitional configuration is my_trans_memb. The identifier of the
transitional configuration has a sequence number one less than the sequence num-
ber of the new ring, and the representative’s identifier is chosen deterministically
from my_trans_memb.

Delivery of Messages in the Transitional Configuration

Following the first Configuration Change message, the processor delivers in order
all remaining messages that were originated on the old ring by processors in my_de-
liver_memb. The processor then delivers a second Configuration Change message,
which contains the identifier of the transitional configuration, the identifier of the
new regular configuration, and the membership of the new regular configuration.
The processor then shifts to the Operational state.

24 . Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, P. Ciarfella

Note that some messages cannot be delivered on the old ring or even in the
transitional configuration because delivery of those messages might violate causality.
Such messages follow a gap in the message sequence. For example, if processor p
originates or delivers message mj before it originates message my and processor g
received ms but did not receive m; in the message exchange, then ¢ cannot deliver
ms because causality would be violated. Here p is not in the same transitional
configuration as ¢ because, if it were, then ¢ would have received all of the messages
originated by p before or during the message exchange.

Failure of Recovery

If the recovery fails while the recovery protocol is being executed, some processors
may have installed the new ring while others have not. Prior to installation, a
processor’s old ring is the ring of which it was a member when it was last in the
Operational state. FEach processor must preserve its old ring identifier until it
installs a new ring.

When a processor delivers a message in safe order in a transitional configuration,
it must have a guarantee that each of the other members of the configuration will
deliver the message before it installs the new ring, unless that processor fails. If a
processor does not install the new ring, it will proceed in due course to install a dif-
ferent new ring with a corresponding transitional configuration. It must deliver the
message in that transitional configuration in order to honor the delivery guarantee.

Thus, if a processor finds the received_flg in the Commit token set to true for
every processor in my_trans-memb, it must retain the old ring messages origi-
nated by members of my_deliver_memb and deliver them as safe in my_trans_memb,
the transitional configuration for the new ring that it actually installs. Note that
my_trans_memb is a subset of my_deliver_memb and that my_trans_memb must de-
crease on successive passes through the Recovery state before a new ring is installed.

7.3 An Example

As shown in Figure 8, a ring containing processors p, ¢, r, s and ¢ partitions, so
that p becomes isolated while ¢, 7, s and ¢ merge into a new ring with u and v.
Processors ¢, r, s and t successfully complete the recovery protocol and deliver
two Configuration Change messages, one to switch from the regular configuration
{p, q,r,s,t} to the transitional configuration {g¢,r,s,t} and one to switch from the
transitional configuration {q,r, s,t} to the regular configuration {q,r,s,t,u,v}.

Processors ¢, 7, s and ¢ may not be able to deliver all of the messages originated
in the regular configuration {p, q,r, s,1}, because they may not have received some
of the messages from p before p became isolated; however, it can be guaranteed
that they deliver all of the messages originated by a processor in the transitional
configuration {q,r,s,t}. Similarly, processors ¢, r, s and ¢ may not be able to
deliver a message as safe in the regular configuration {p, ¢, r, s,t} because they may
have no information as to whether p had received the message before it became
isolated; however, it can be guaranteed that they deliver the message as safe in
the transitional configuration {q,7,s,t}. The first Configuration Change message
separates the messages for which delivery guarantees can be provided in the regular
configuration {p, q, r, s,t} from the messages for which delivery guarantees apply in
the reduced transitional configuration {g,r,s,t}.

The Totem Single-Ring Ordering and Membership Protocol : 25

D p] qrst I regular
p D configuration
ceegmees- UV

H transitional
configuration

Fig. 8: Regular and transitional configurations. The vertical lines represent total or-
ders of messages, and the horizontal lines represent Configuration Change messages.

Extended virtual synchrony does not, of course, solve all of the problems of
maintaining consistency in a fault-tolerant distributed system, but it does provide
a foundation upon which these problems can be solved. Consider, for example, the
set of messages delivered by processor p. Prior to the first Configuration Change
message delivered by p to terminate the regular configuration {p,q,r,s,t}, there
are no missing messages. In the transitional configuration, p delivers all remaining
messages originated by itself and also other messages that have become safe. There
may, however, be messages broadcast by processors ¢, r, s and ¢ that are not
available to, and are not delivered by, processor p. After the second Configuration
Change message, p is a member of the regular configuration {p}, and p does not
deliver messages from the other processors.

When p rejoins the other processors in some subsequent configuration, the appli-
cation programs must update their states, using application-specific algorithms, to
reflect activities that were not communicated while the system was partitioned. The
Configuration Change messages warn the application that a membership change oc-
curred, so that the application programs can take appropriate actions based on the
membership change. Extended virtual synchrony guarantees a consistent order of
message delivery, which is essential if the application programs are to reconcile their
states following repair of a failed processor or remerging of a partitioned network.

8. THE FLOW CONTROL MECHANISM

The Totem protocol is designed to provide high performance under high load. The
performance measures we consider are throughput (messages ordered per second)
and latency (delay from message origination to delivery in agreed or safe order).
Effective flow control is required to achieve the desired performance.

With point-to-point communication, positive acknowledgment protocols, such as
the sliding-window protocol, have been refined to provide excellent flow control.
However, with broadcast and multicast communication, positive acknowledgment
protocols result in excessive numbers of acknowledgments. Rate-controlled proto-
cols have attracted attention recently, but have the disadvantage for broadcast and
multicast communication that the transmission rate must be set for each processor
individually rather than for the multicast group. With bursty communication, the

26 . Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, P. Ciarfella

maximum transmission rate for a processor must be set to a value that is unaccept-
ably low, even when other processors have few messages to transmit.

A basic characteristic of reliable ordered broadcast and multicast protocols is
that the rate of broadcasting messages cannot exceed the rate at which the slowest
processor can receive messages. At higher rates of broadcasting, the input buffer of
the slowest processor will become full and messages will be lost. In our experience,
this is the primary cause of message loss. Retransmission of lost messages increases
the message traffic and reduces the effective transmission rate.

The Totem single-ring protocol uses a simple flow control mechanism to control
the maximum number of messages broadcast during one token rotation. If a pro-
cessor is unable to process messages at the rate at which they are broadcast, one or
more messages will be in its input buffer when the token arrives. Before process-
ing the token and broadcasting messages, a processor must empty its input buffer.
Thus, the rate of broadcasting messages is reduced to the rate at which messages
can be handled by the slowest processor. If the maximum number of messages
broadcast during any one token rotation is limited by the size of each processor’s
input buffer, then input buffer overflow cannot occur.

When the rate of broadcasting is not equally spread across all processors, the
protocol can be modified to allow the token to visit more than once per token
rotation those processors that have the highest transmission rates, and to allow
those processors to transmit more messages on each visit. To minimize the latency,
the rate at which the token visits a processor should be approximately proportional
to the square root of the rate at which the processor broadcasts [Boxma et al. 1990].

8.1 The Data Structures
Regular Token Fields
The flow control mechanism depends on two fields of the regular token:

e fcc: A count of the number of messages broadcast by all processors during the previous
rotation of the token.

o backlog: The sum of the number of new messages waiting to be transmitted by each
processor on the ring at the time at which that processor forwarded the token during
the previous rotation.

Flow Control Constants
The flow control mechanism also depends on two global constants:

o window_size: The maximum number of messages that all processors are allowed to
broadcast in any token rotation.

o maz_messages: The maximum number of messages that each processor is allowed to
broadcast during one visit of the token.

These constants can be determined analytically from the number of processors and
their characteristics, or can be negotiated during ring formation. The constant
maz_messages may be different for different processors.

Local Variables

Each processor maintains the following local variables:

The Totem Single-Ring Ordering and Membership Protocol : 27

e my_trc: The number of messages broadcast by this processor on this rotation of the
token (my this rotation count).

o my_pbl: The number of new messages waiting to be transmitted by this processor when
it forwarded the token on the previous rotation (my previous backlog).

o my_tbl: The number of new messages waiting to be transmitted by this processor when
it forwards the token on this rotation (my this backlog).

The values of my_pbl and my_tbl are limited by the amount of buffer space available
for messages awaiting transmission.

8.2 The Algorithm

The value of my_tre, the number of messages broadcast by this processor on this
token rotation, is subject to the following constraints:

my_trec < maxz_messages: The number of messages broadcast by this processor
must not exceed the maximum number it is allowed to broadcast during one visit
of the token.

my_tre < window_size — fece: The number of messages broadcast by this pro-
cessor must not exceed the window size minus the number of messages broadcast
in the previous rotation of the token.

my_trc < window_size x my_thl/(backlog + my_tbl — my_pbl): The number
of messages broadcast by this processor must not exceed its fair share of the
window size, based on the ratio of its backlog to the sum of the backlogs of all
the processors as they released the token during the previous rotation.

The backlog mechanism achieves a more uniform transmission rate for individual
processors under high, but not overloaded, traffic conditions than does the simple
window-size mechanism used by FDDI.

9. IMPLEMENTATION AND PERFORMANCE

The Totem single-ring ordering and membership protocol has been implemented in
the C programming language on a network of Sun 4/IPC workstations connected by
an Ethernet. The implementation uses only standard Unix features and is highly
portable. It has been transferred from our Sun workstations to DEC and SGI
workstations and has worked with little modification.

The implementation uses the UDP broadcast interface in the Unix operating
system SunOS 4.1.1 with Sun’s default kernel allocations. One UDP socket is used
for all broadcast messages, and a separate UDP socket is used by each processor
to receive the token from its predecessor on the ring. The input buffers are a
combination of the buffers managed by the physical Ethernet controller and those
managed by the Unix UDP service. Four bytes of stable storage are required to
store the ring sequence number.

We have measured the performance of our implementation on a network of five
Sun 4/IPC workstations, each ready to broadcast at all times with minimal ex-
traneous load on the processors and on the Ethernet. For each measurement, the
window_size and maz_messages were adjusted to the maximum values for which
message loss is negligible in order to maximize throughput.

The throughput was measured for equal numbers of messages broadcast by all
processors on the ring and also for all messages broadcast by a single processor.

28 . Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, P. Ciarfella

1300 1 80
Five Sun 4/IPC Processors Five Sun 4/IPC Processors
Ethernet Ethernet, 1024 Byte Messages

1200 1
°
c
81100 1 60
n
$ 1000 ~ 2

c
9 o
£ 900 A S 401
e 2
o i =
5 800 s
)
% 4 All processors 20
A 700 broadcast equally 3
Q
= | ... One processor 10,
600 broadcasts all messages \,’d“"“(;'j\ix)e\\“e‘\J
pore®
500 T T T T T T T G T T T T T
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000
Message Size in Bytes Messages Originated per Second

Fig. 9: To the left, the throughput as a function of message size. To the right, the
latency to agreed and safe delivery as a function of load.

As the left graph of Figure 9 shows, there was little difference in the throughput.
With 1024 byte messages, more than 800 messages are ordered per second. For
smaller messages, over 1000 messages are ordered per second. The highest prior
rates of message ordering for reliable totally ordered message delivery for 1024 byte
messages are about 300 messages per second for the Transis system using the same
equipment and for the Amoeba system using equipment of similar performance.

We have also investigated the latency from origination to delivery of a message
in agreed and safe order; a detailed analysis can be found in [Moser and Melliar-
Smith 1994]. The right graph of Figure 9 shows the mean latency to agreed and safe
delivery for Poisson arrivals at lower, more typical loads for 1024 byte messages.
At low loads (e.g., 400 ordered messages per second which is much more than the
maximum throughput for prior protocols), the latency to agreed delivery is under 10
milliseconds. Even at 50% useful utilization of the Ethernet (625 ordered messages
per second), the latency to agreed delivery is still only about 13 milliseconds. In
general, the latency to agreed delivery is approximately half the token rotation
time and the latency to safe delivery is approximately twice the token rotation
time, except at very high loads where the latency is dominated by queueing delays
in the buffers.

Other performance characteristics of interest are the time to recover from token
loss and the time to execute the membership protocol and reconfigure the system
when failures occur. With the token retransmission mechanism enabled, the time
to return to normal operation after loss of the token is on average 16 milliseconds.
With the token retransmission mechanism disabled, loss of the token triggers a
Token Loss timeout and forces a complete reformation of the membership. The
time to form a new ring, generate a new token, recover messages from the old
ring, and return to normal operation is on average the Token Loss timeout plus 40
milliseconds, with the Token Loss timeout set to 100 milliseconds.

The Totem Single-Ring Ordering and Membership Protocol : 29

10. CONCLUSION

The Totem single-ring protocol provides fast reliable ordered delivery of messages
in a broadcast domain where processors may fail and the network may partition.
A token circulating around a logical ring imposed on the broadcast domain is used
to recover lost messages and to order messages on the ring. Delivery of messages
in agreed and safe order is provided.

The membership protocol handles processor failure and recovery, as well as net-
work partitioning and remerging. Extended virtual synchrony ensures consistent
actions by processors that fail and are repaired with stable storage intact and in
networks that partition and remerge. A recovery protocol that maintains extended
virtual synchrony during recovery after a failure has been provided.

The flow control mechanism avoids message loss due to buffer overflow and pro-
vides significantly higher throughput than prior total ordering protocols. Given the
high performance of Totem, there is no need to provide a weaker message ordering
service, such as causally ordered delivery, because totally ordered agreed delivery
can be provided at no greater cost. Moreover, applications can be programmed
more easily and more reliably with totally ordered messages.

Continuing work on Totem is exploiting the single-ring protocol to provide more
general services. Agreed and safe delivery services, as well as membership services,
are being provided to multiple rings interconnected by gateways. It remains to be
investigated whether the exceptional performance of the Totem single-ring protocol
can be sustained when Totem is extended to multiple rings.

REFERENCES

AMIR, Y., DoLEv, D., KRAMER, S., AND MALKI, D. 1992a. Membership algorithms in broad-
cast domains. In Proceedings of the 6th International Workshop on Distributed Algorithms
(Haifa, Israel). Springer-Verlag, Berlin, Germany, 292-312.

AMIR, Y., DoLEV, D., KRAMER, S., AND MALKI, D. 1992b. Transis: A communication sub-
system for high availability. In Proceedings of the IEEE 22nd Annual International Sym-
posium on Fault-Tolerant Computing (Boston, MA). IEEE, New York, 76-84.

AMIR, Y., MOSER, L. E., MELLIAR-SMITH, P. M., AGArwAL, D. A., AND CIARFELLA, P. 1993.
Fast message ordering and membership using a logical token-passingring. In Proceedings of
the IEEE 13th International Conference on Distributed Computing Systems (Pittsburgh,
PA). IEEE, New York, 551-560.

AMIR, Y., MOSER, L. E., MELLIAR-SMITH, P. M., AGArRwAL, D. A., AND CIARFELLA, P. 1994.
The Totem single-ring ordering and membership protocol. Technical Report 94-19 (Au-
gust), Department of Electrical and Computer Engineering, University of California, Santa
Barbara.

BirMmaN, K. P. AND RENESSE, R. V. 1994. Reliable Distributed Computing with the Isis Toolkit.
IEEE Computer Society Press.

Boxma, O. J., Levy, H., AND WESTSTRATE, J. A. 1990. Optimization of polling systems.
In Performance ’90, Proceedings of the 14th IFIP WG 7.3 International Symposium on
Computer Performance Modelling, Measurement and Evaluation (Edinburgh, UK). North-
Holland, Amsterdam, Netherlands, 349-361.

CHANG, J. M. AND MAXEMCHUK, N. F. 1984. Reliable broadcast protocols. ACM Transactions
on Computer Systems 2, 3 (August), 251-273.

FiscHER, M. J., LyNcH, N. A., AND PATERSON, M. S. 1985. Impossibility of distributed con-
sensus with one faulty process. Journal of the ACM 32, 2 (April), 374-382.

Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, P. Ciarfella

KaasHoek, M. F. AND TANENBAUM, A. S. 1991. Group communication in the Amoeba dis-
tributed operating system. In Proceedings of the IEEE 11th International Conference on
Distributed Computing Systems (Arlington, TX). IEEE, New York, 882-891.

Lamport, L. 1978. Time, clocks, and the ordering of events in a distributed system. Commu-
nications of the ACM 21, 7 (July), 558-565.

MELLIAR-SMITH, P. M., MOSER, L. E., AND AGArRwAL, D. A. 1991. Ring-based ordering pro-
tocols. In Proceedings of the IEE International Conference on Information Engineering
(Singapore). IEE, Stevenage, Herts, U.K., 882-891.

MELLIAR-SMITH, P. M., MOSER, L. E., AND AGRAWALA, V. 1990. Broadcast protocols for dis-
tributed systems. IEEE Transactions on Parallel and Distributed Systems 1, 1 (January),
17-25.

MisHRA, S., PETERSON, L. L., AND SCHLICHTING, R. D. 1991. A membership protocol based on
partial order. In Proceedings of the 2nd IFIP WG 10.4 International Working Conference
on Dependable Computing for Critical Applications 2 (Tucson, AZ). Springer-Verlag, Wien,
Austria, 309-331.

MosER, L. E., AMIR, Y., MELLIAR-SMITH, P. M., AND AGArRwAL, D. A. 1994. Extended vir-
tual synchrony. In Proceedings of the IEEE 14th International Conference on Distributed
Computing Systems (Poznan, Poland). IEEE, New York, 56-65.

MoseR, L. E. AND MELLIAR-SMITH, P. M. 1994. Probabilistic bounds on message delivery
for the Totem single-ring protocol. In Proceedings of the IEEE 15th Real-Time Systems
Symposium (San Juan, Puerto Rico). IEEE, New York, 238-248.

MOsER, L. E., MELLIAR-SMITH, P. M., AND AGRAWALA, V. 1994. Processor membershipin asyn-
chronous distributed systems. IEEE Transactions on Parallel and Distributed Systems 5, 5
(May), 459-473.

PeETERSON, L. L., BucHHOLZ, N. C., AND SCHLICHTING, R. D. 1989. Preserving and using
context information in interprocess communication. ACM Transactions on Computer Sys-
tems 7, 3 (August), 217-246.

RajacorpaLaN, B. aND McKINLEY, P. K. 1989. A token-based protocol for reliable, ordered mul-
ticast communication. In Proceedings of the IEEE 8th Symposium on Reliable Distributed
Systems (Seattle, WA). IEEE, New York, 84-93.

VAN RENESSE, R., HIckEY, T. M., AND BIRMAN, K. P. 1994. Design and performance of Horus:
A lightweight group communications system. Technical Report 94-1442 (August), Cornell
University, Department of Computer Science.

