
Converting a Swap-Based System to do Paging in an
Architecture Lacking Page-Referenced Bits

~ z a l p Babaoglu

Willim, Joy

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, California 94720

Abstract- This p a p e r discusses the modifications
made to the UNIX operating system for the VAX-
11/780 to convert it from a swap-based segmented
system to a paging-based virtual memory system. Of
particular interest is that the host machine archi-
tecture does not include page-referenced bits. We
discuss considerations in the design of page-
replacement and load-control policies for such an
architecture, and outline current work in modeling
the policies employed by the system. We describe
our experience with the chosen algorithms b a s e d on
benchmark-driven studies and production system use.

J e g i n s l m | s

I n t h e f a l l o f 1978 t h e Cemputer S c i e n c e D i v i -
s i o n of t h e U n i v e r s i t y , o f C a l i f o r n i a a t B e r k e l e y
p u r c h a s e d a VAX-11/78~, and a r r a n g e d t o run an
early version of UNIX for the VAX provided by
Bell Laboratories under a cooperative research
agreement. The VAX was purchased because it is a
32-bit machine with a large address space, and we
had hopes of running UNIXD which was being used on
other smaller machines.

This material is based upon work partially sup-
ported by the National Science Foundation under
Grants No. MCS 7807291, MCS 7824618, MCS
7407644-A03, Defense Advanced Research Projects
Agency (DoD) ARPA Order No. 4031, Monitored by
the Naval Electronics Systems Command under Con-
tract No. N00039-80-K-0649 and by an IBM Graduate
Fellowship to the second author.

Autborls present address: Department of Comput-
er S c i e n c e . C o r u e l l U n i v e r s i t y . I t h a c a . New York
14853.
* VAX and VMS are Trademarks of the Digital
Equipment Corporation.
** UNIX is a Trademark of Bell Laboratories.

Permission to copy without fee all or part of this material is granted
provided that the copies arc not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

@ 1981 ACM 0-89791-06g-1-12/81-0078 $00.75

Except for the machine-dependent sections of
code, UNIX for the VAX was quite similar to that
for the PDP-II which has a 16-bit address space and
no paging hardware. It made no use of the memory-
management hardware available on the VAX aside from
simulating the PDP-II segment registers with VAX
page table entries. The main-memory management
schemes employed by this first version of the sys-
tem were identical to their PDP-II counterparts--
processes were allocated contiguous blocks of real
memory on a first-fit basis and were swapped in
their entirety. A subsequent version of the system
was capable of loading processes into noncontiguous
real memory locations, called scatter ~ , and
was able to swap only portions of a process, called
partial swapping, as deemed necessary by the memory
contention. This would become the basis for the
paging system development discussed in this paper.

G o a l s

The user-friendliness and portability of the
UNIX environment were perceived to be large advan-
tages by our installation. However, application
progrems outgrew our resources with the original
swap-based system very quickly. The initial confi-
guration of the machine had only i/2 megabyte of
real memory. Although, in the long run more memory
would be available, it seemed natural to incor-
porate paging into UNIX and thereby support larger
applications and make better use of our limited
main memory. This would also provide a vehicle for
researching storage hierarchy performance evalua-
tion and memory-management techniques.

S e a r c h f o r a r e p l m c e a t e n t p o l i c y

The VAX memory-management architecture sup-
ports paging within three segments (two for user
processes, one for the system). The interesting
aspect of the architecture is the lack of page-
referenced bits (also called use bits). Such bits
typically provide the reference information which
commonly-implemented page replacement algorithms
such as ~Wclock1' and Sampled Working Set (SWS)
[DENN 68a] (to be described in the following sec-

78

tions) base their decisions on. Without even this
minimal page reference information, the only rea-
sonable algorithms for replacing pages are the
First-In-First-Out (FIFO) and the Random (RAND)
policies, which are known to have performances (as
measured by the number of page faults generated for
a given mean memory occupancy) inferior to the
c lock and SWS p o l i c i e s [BELA 66. KING 71] . To
remedy t h i s s i t u a t i o n , the dynamic a d d r e s s t r a n s l a -
t i o n mechanism of t he VAX was used to d e t e c t and
r eco rd r e f e r e n c e s to p a g e s . With t h i s scheme, a
page fo r which r e f e r e n c e i n f o r m a t i o n i s to be g a t h -
ered is marked as invalid although it remains in
main memory. This state for a page is called the

state. A reference generated to a
location within this page causes an address-
t r ~ n s l a t l o n - n o t - v a l l d fault. However. the fault
handler can detect this special state of the page
and thus refrains from initiating the page transfer
from secondary memory. In other words, the
reclaimable state for a page corresponds to a valld
page with the reference bit off if the reference
bit were available. Since this method of simulat-
ing page-referenced bits through software has a
nonnegligible cost associated with it, the relative
performance of some of the well-known replacement
algorithms in this enviro~ent is no longer obvi-
ous.

In VMS, the vendor-supplied operating system
for the VAX, the solution to the replacement deci-
sion is simple. Each process is assigned a fixed-
size memory partitionj called a resident setq that
is managed according to the FIFO policy. Pages
that are not members of any of these resident sets
are grouped together to constitute the global free
list which functions as a disk cache. Although
there is some isolation between the paging behavior
of the various processes due to the strictly local
resident sets, the coupling that is introduced
through this global free list has significant per-
formance implications. Lazowska [LAZO 79] reports
that in his measurements based on a real workload,
system performance was significantly improved by
increasing the minimum size of the free list (a
system generation paremeter). An unfortunate
consequence of allocating fixed-size partitions to
processes is that a process has its pages taken
away from its resident set (relatively small in
size compared to the total real memory available on
the machine) and placed in the free list to be sub-
sequently reclaimed even though it may be the only
active process in the system.

Babaoglu has studied a class of hvbrid
replacement policies that employ different algo-
rithms for page replacement emongst two logical
~artitions of pages in main memory [BABA 80], This
class includes the VMS algorithm described above as
an instance where the resident set management is
according to the FIFO policy and the free list
management is approximately Least-Recently-Used
(LRU). [BABA 80] shows that for a given progrem
and a given amount of available memory, there
exists a resident set size for which the FIFO-LRU
h y b r id p o l i c y a c h i e v e s a f a u l t r a t e c l o s e to t h a t
of t h e pure LRU p o l i c y wh i l e i n c u r r i n g a c o s t com-
p a r a b l e to t h a t of the FIFO p o l i c y .

UNIX is particularly ill-suited for such a
scheme for several reasons. The UNIX system

encourages the creation of a number of processes to
accomplish most tasks-- processes are cheap. These
processes are nonhomogeneous; they vary greatly in
size and in the manner in which they access their
address space. Furthermore, in certain processes
the page reference behavior varies radically over
time as the process enters different phases of exe-
cution. The LISP system, which initiates garbage
collection after an interval of execution, is an
exemple of such a process. Thus, in this environ-
ment, it is unlikely that we will find a single
system-wide value for the fixed resident set size
that will nearly optimize a cost function that is
the weighted sum of the page fault rate and the
rate at which reclaimable pages are referenced for
the hybrid policy. In fact, even for a single pro-
cess, the value of the resident set size must vary
in time in order to track different phases of its
execution and the varying amounts of real memory
a v a i l a b l e to i t . As d e s c r i b e d e a r l i e r , the t o t a l
number of pages from the free list belonging to a
certain process is a dynemic quantity due to its
sensitivity to the system-wide paging activity. A
more r e c e n t v e r s i o n of the VMS o p e r a t i n g sy s t em
(v e r s i o n 2 .1) a t t e m p t s to remedy some of t h e s e
problems by a d j u s t i n g the p r o c e s s r e s i d e n t s e t s i z e
w i t h i n two f i x e d b o u n d a r i e s a c c o r d i n g to a h e u r i s -
t i c based on g l o b a l pag ing r a t e s [DEC 80] . Due to
its u n a v a i l a b i l i t y a t the time, this modified v e r -
s i o n of the system was not included in our studies.

S i m u l a t i o n s t u d i e s based on a c t u a l progrem
a d d r e s s t r a c e s showed the c lock page r e p l a c e m e n t
algorithm [CORB 68] to be much more robust with
respect to the cost function defined above to vari-
ations in the "mount of memory available to the
program, the relative costs of page faults and
reclaims, and the nature of the progrem itself than
the fixed-partition VMS scheme [BABA 81a]. Under
the simplest form of this policy, all the pages
allocated to a program are thought of as ordered
around the circuzference of a circle, called the
loo 9, according to their physical page frame
number. In addition, there is pointer, called the
hand, that is advanced circularly through them when
page faults occur until a replacement candidate is
located. A page is chosen for replacement if it
has not been referenced during the time interval
between two successive passages of the hand through
this page. Empirically, the clock page replacement
policy achieves fault rates that are very close to
those of the LRU policy although it is much easier
to implement [GRIT 75], On machines with reference
bits, it suffices to examine reference bits associ-
ated with pages as the hand passes over them. If a
page has the reference bit clear when the hand
passes, it has not been referenced for one revolu-
tion and thus it is selected for replacement. If a
page has been referenced, then the reference bit is
cleared and the page remains in the loop for at
least another revolution. This exemining of the
reference bit along with the associated action is
called the scan operation. For our environment,
this algorithm can remain unchanged since setting
the reference bit associated with a page
corresponds to moving it from the reclaimable to
the valid state whereas resetting its reference bit
corresponds to moving it from the valid to the
r e c l a i m a b l e s t a t e .

79

Another major departure in our UNIX memory
management from the VMS design resulted from our
decision to apply the clock page replacement algo-
rithm globally to all pages in the system rather
than locally to the pages for each process. This
results in a variable-size memory partition for
each process. This was motivated by studies where
global versions of fixed-partition replacement pol-
icies had been found to have better performances
than their local counterparts [OLIV 74, SMIT 80,
SMIT 81], and some special properties of our
enviroement,

(i) The relative simplicity of the global clock
policy and, consequently, the ease of imple-
mentation.

(ii) The projected workload for the system had no
requirement of guaranteed response times as
in real-time applications.

(iii) It was unreasonable to expect users to
specify the sizes of the fixed program parti-
tions since from the existing system they had
little or no information about the memory
requirements of programs.

(iv) Without reference bits, the cost of imple-
menting variable-partition local replacement
policies such as SWS and Page Fault Frequency
[CHU 76] was too high. We further comment on
this in the following section.

(v) UNIX encourages the construction of tasks
consisting of two or more processes communi-
cating through pipes, which must he co-
scheduled if they are to execute efficiently.
In most instances, the activity intensity,
thus the memory demand, shifts over time from
the left-most p r o c e s s to the right-most pro-
cess in the pipe while all of them remain
active. It was our belief that in such an
environment, dynamic partitioning of memory
amongst these processes in real time is more
appropriate than having local partitions
(working sets) that are maintained in process
virtual time.

H e m o r y d e m a n d a n d c l o c k t r i g g e r i n g

The c lock page replacement p o l i c y is on ly
engaged upon a page f a u l t , a t which t ime i t s e l e c t s

a page to be replaced. Given that the demand for
memory exhibits nonuniform patterns with occasional
high spikes (see Figure I), this strategy for the
activation of the replacement policy is clearly
suboptimal.

Having incurred the cost of page replacement
policy activation, we would like to select more
than a single page to be replaced in order to anti-
cipate short-term demand for more memory. To this
end, the system maintains a free page pool contain-
ing all of the page frames that are currently not
in the loop. Our version of the clock policy is
triggered whenever the size of this pool drops
below a threshold. Then, the algorithm scans a
given number of pages per second of real time Ca
simplified version of this algorithm is discused in
[EAST 793). Currently, the default trigger point
for the free page pool size is set at i/4 of the
real memory size and the default minimum scan rate
of the hand is approximately I00 pages per second.
As the free page pool size further drops below the
threshold, the scan rate of the hand is increased
linearly up to a given maximum value. The primary
factor that determines this maximum value is the
time that it takes to service a page reclaim from
the loop (i.e., the time to simulate the setting of
a reference bit). Measurements based on the
current system indicate that this action consumes
approximately 250 microseconds of processor time.
Since the number of pages scanned by the clock
algorithm provides an upper bound on the number of
pages that can be reclaimed, the processor overhead
due to the simulation of reference bits can be con-
trolled by limiting this maximum scan rate.
Currently, we allocate at most I0 percent of the
available processor cycles to this function which
implies that the maximum scan rate of the hand is
limited to approximately 300 pages per second. Due
to the existence of the free page pool, however,
short duration memory demands far in excess of this
value can be satisfied.

The system maintains enough data to be able to
reclaim any page from the free page pool regardless
of how it arrived there. In addition to being
replenished from the loop, the free page pool also
receives pages of processes that are swapped out or
comple t ed . In bo th c a s e s , t h e s e pages can be
r e c l a i m e d by t he p r o c e s s upon a s u b s e q u e n t swap i n
or a f u t u r e i n c a r n a t i o n of the same code. p r o v i d e d
of c ou r se t h a t t he pages have no t been a l l o c a t e d
f o r a n o t h e r p u r p o s e .

400

300

200

I00

I I]

500 i000

Real time (seconds)

1500

] r i S a r e 1 . Number of page f r ames r e q u e s t e d g l o b a l l y i n one
second i n t e r v a l s d u r i n g a 33 m i n u t e o b s e r v a t i o n p e r i o d .

80

Given the cost to simulate the setting of a
reference bit, our previous remark concerning the
unsuitability of local variable partition page
replacement policies in the UNIX enviror, nent is
justified. As an example, using the Sampled Work-
ing Set policy with a window size of I00,000
instructions (approximately I00 milliseconds on the
VAX) operating with a program having a 400-page
working set would consame i00 percent of the pro-
cessor cycles just to simulate reference bits
(assuming that the working set of the program
remained unchanged between two consecutive sample
points).

The use of a modified clock page replacement
algorithm where the scan rate is based on the
available memory has several other advantages, as
well. The length of the free page pool becomes a
natural indicator of the amount of memory conten-
tion in the system. As we shall see, the inability
of the system to maintain some specified amount of
free memory is the basis for load control, and
causes process deactivation by swapping. Control
of the rate of the scan allows modified page
write-back activity, that is initiated when dirty
pages are removed from the clock loop to be spread
more uniformly over time, thereby easing contention
for disk.

I u p l e n e u t a t i o n : n e w s y s t e m f a c i l i t i e s

The UNIX system memory-management facilities
are particularly simple. Each user process has a
read-only shared program area, a modifiable data
area, and a stack. An exec system call overlays a
process' address space with a particular program
image from a file consisting of the shared code and
the initialized data. New processes are created by
the fork system call which causes a process to
duplicate itself. Usually, the command interpreter
accomplishes its task by first creating a copy of
itself to establish the context for the command and
then causes this copy overlay itself with the file
that is the image of the command. Except for
shared progrem areas, no shared memory between
processes is available. Access to files and dev-
ices is through read and write system calls; no
segment-based or page-based shared access to file
pages is available.

Consistent with our design goals, we wished to
keep changes to the system as simple as possible
and orthogonal to the rest of the system design.
Then, further changes in the UNIX system would not
invalidate our efforts.

The conversion of the swap-based system to a
paged system began in the late spring of 1979 and
the first version of the paging system was put into
production use on a single machine in September of
1979. At that time, the primitives for the swap-
based UNIX system were still in use. Processes
were created using the f o r k system call which
copied a process' address space page-by-page to
create the new address space. This newly-formed
address space was then overlaid with a new image
through the exec system cat1. These primitives,
while simple to implement and relatively cheap
(involving memory-to=memory copy and file reading)
in a swap-based system, were very expensive under
the new system, since progrems might be partially
loaded in memory and could be much larger.

We found that a vast majority (over 80 per-
cent) of all forks executed in the system were due
to the command interpreter. Since these forks only
serve to establish the context for the new process,
duplication of the entire address space was wasted
effort. Most of the sharp spikes in the global
memory demand pattern of Figure 1 could be attri-
buted to processes forking and/or execing. The
nondemand nature of these requests for memory (in
the sense that they are an implementation artifact)
overtaxed the page replacement algorithm and had
grave performance consequences.

A natural solution to the problem would have
been to include a "copy-on-write" facility to
implement a fork similar to that used in various
PDP-10 operating systems (such as TENEX [BOBR 72]).
In this scheme, the two processes would be allowed
t o s h a r e the same a d d r e s s s p a c e and the copy ing a t
t he page l e v e l would be d e f e r r e d u n t i l t he t ime of
t he first modification of a page by either process.
However, this would have significantly increased
the number of modifications to UNIX and hence
delayed the completion of a workable and useful
system. At the time, the desires of our user com-
munity did not indicate that shared-memory primi-
tives would be necessary in the near future,
Copy-on-write paging seemed to introduce a good
deal of complexity into the relatively simple sys-
ten data structures to warrant support for the very
small emount of computation which occurs between a
fork and an exec system call.

A new primitive t o replace most instances of
t he fork system call was designed. This primitive,
called virtual-fork, allows the original process to
establish the system context for the new process
but refrains from creating the address space until
the subsequent exec system call that is issued by
the new process or the completion of the new pro-
cess. During this interval, the system context of
the original process is dormant. To put it another
way, the new process is allowed to run within the
address space of the original process until it
establishes its own address space through an exec
system call or completion at which point the origi-
nal process, which was dormant, regains its address
space. Obviously, during this transition time, the
new process must not modify the contents of the
address space that is ,ton loan tt to it. This
mechanism allows a new process to be created
without any copying of address space and without
requiring a mechanism like ,,copy.on.write t,

Note that there are instances of process crea-
tion where the virtual-fork system call is inap-
propriate. An example of such a case occurs when
comnmnds are executed in the ttbackground. It Then,
the new process is initiated but the command inter-
preter does not wait for its completion and is
ready to accept a new command line. However, all
other instances of the fork system call could be
(and were) replaced with the virtual-fork call
without change to the calling program. It is quite
easy to implement this primitive on non-paged
machines as well as paged machines, and there are
strong indications that the overhead of process
creation in the swap-based PDP-II implementation of
UNIX would be reduced if such a primitive were
imp I em ent ed.

81

A new load format was also provided to reduce
the implied overhead of the exec call. Progrems
loaded using this new format would have their pages
demand-loaded from the file system rather than
pre-loaded as in the previous swap-based system.
This reduced the overhead of process invocation.
and was soon made the default load format.

L i a i t i u g page t r a f f i c and c o n t r o l l i n g n u l -
t i p r o g r m i n g l e a d

I n a d d i t i o n t o t h e p r o c e s s o r ove rhe ad con-
s i d e r a t i o n s which limit the scan rate of the clock
replacement algorithm, there are global system con-
siderations involved in limiting page traffic.
Input-output activity generated by page replacement
should not displace too much of the input-output
activity generated by program request. UNIX typi-
cally runs on relatively small machines that usu-
ally have only two moving head disk drives which
are used for all system activity including paging,
swapping and file system transfers. Special paging
devices are rare in such systems. It is not prac-
tical to design a system that saturates one of
these arms to maximize memory usage. Input-output
bandwidth is often as precious as memory residency.
Load control mechanisms such as the ttL=S~t or the
t'50 percent Iv criterion [DENN 76, DENN 77], which
assume the availability of a separate paging dev-
ice, are therefore inappropriate. We therefore
decided to deactivate processes by swapping them to
secondary storage when demand for main memory
exceeded our ability to s u p p l y it.

Multiprogramming load control in our system is
thus based on a desire to limit paging overhead.
When the system finds that it cannot maintain an
acceptable -mount of free memory while consuming
approximately 10 percent of the available processor
time to sample page utilization it lowers memory
demand by removing a process from the set of run-
able processes. The process to be swapped out is
selected by choosing the oldest amongst the n larg-
est resident processes. This policy represents a
compromise between the lar~est-flrst and the
oldest-~ policies [COFF 73-]. Neither of these
policies was found to be satisfactory in its pure
form; the former prohibits a large process from
making any progress while the latter wastes effort
by constantly swapping out small processes that do
not contribute much to the memory demand.
Currently, the default value for the variable n is
4. The pages of the swapped-out process are writ-
ten to secondary storage if necessaryl and removed
from the loop and returned to the free list.
Processes that are swapped out are assigned priori-
ties to return to the tunable set based on their
size (smaller jobs have higher priority) and the
amount of time they have been swapped out (priority
increases as time goes by). Sufficient time delay
is built into the swapping algorithm to ensure that
useful work gets done between swaps. Since in a
reasonably-configured system swapping out a process
is a rare eventD we do not swap in the resident set
a process had at the time it is swapped out. In
our environment, the long period of inactivity that
caused the swap out is usually a leading indicator
of a locality transition through the invocation of
a new function (for example, a new input line to
the command interpreter). In such casesD the over-

l a p be tween t h e o ld r e s i d e n t s e t and t h e new i s
m i n i m a l . However . even w i t h an i n i t i a l l y empty
resident set, chances are the process will find
some of its pages in the free page pool, and can
simply reclaim them by referencing them.

H o d e l i n g t h e f r e e page p o o l

The purpose of the free page pool is to
ttamoothlt the high frequency components of the
memory demand by absorbing the sharp peaks with
little resistance. To accomplish this, the free
page pool requires periodic replenishment. Page
replacement, process completion and process swap
out replenish this pool, the latter two without
explicit action by the page replacement policy.
Our variant of the tttriggered sweep tt clock page
replacement algorithm with varying sweep rates has
three parameters: the free memory threshold at
which it is engaged, the scanning rate at this
threshold, and the maximum scanning rate. Unfor-
tunately, this does not lend itself easily to ana-
lytic modeling efforts.

To formalize the free memory control policy,
one can view the free page pool as a stock room
containing a certain inventory of a commodity and
memory requests as the demands for that commodity.
We can then apply inventory control theory to our
problem with the hope of selecting a policy for the
replenishment action (the ttorder point It and the
~order quantity te in inventory control terminol-
ogy) that can be demonstrated to be stochastically
optimal with respect to a certain objective func-
tion defined for the process. Using a mapping of
the costs involved in the classical inventory prob-
lem to the problem at hand and an adequate modeling
of the stochastic demand process, we can obtain
policy parameters that will result in approximately
minimum cost in the long run. This effort is
currently underway and will be reported in [BABA
81b].

C o m p a r i s o n w i t h t h e s w a p - b a s e d s y s t e m

A f t e r two mon ths of p r o d u c t i o n u s e and a r e a -
s o n a b l e amount of t u n i n g , we dec ided t o compare t h e
performance of the system running with and without
the virtual-memory changes. A script-driven exper-
iment was designed for a stand-alone configuration
consisting of 1 megabyte of main memoryD two disk
arms on two different controllers, each with a peak
transfer rate of 1 megabyte per second and a 40
millisecond average access time. For the com-
parison we used the version of the swap-based sys-
tem that was the base for the paging developments.
The page size in use in the paging version of the
system was 512 bytes.

The basic unit of work generated by the script
was made up of four concurrent terminal sessions:

l i s p A LISP c o m p i l a t i o n o f a p o r t i o n o f t h e
LISP c o m p i l e r , f o l l o w e d by a t t d u m p l i s p t l
using the lisp interpreter to create a
new b i n a r y version of t h e c o m p i l e r .

82

¢ ¢ o m p An editor session followed by the compi-
lation and loading of several small pro-
grams that support the line-printer
spooler.

typeset An editor session followed by the
typesetting of a mathematical paper and
production of output for a raster
plotter.

trivial Repeated execution of a trivial command
(printing the date) every few seconds.

~o
0o

i .

lisp
~ s w a p
- - - p a g e

12 I'6
L o a d (terminals)

(a)

typeset
12 - - s w a p

,0[_-_pa~,
~ B

f , ,

8

4 8 12 16
Load (terminals)

(b)

7 12
8
e ® 10

=o
8

i .

ccomp
• --swap
--- p a g e

/
trivial

7~--swap
- - - - - p a g e

= 61-
g

8 12 16 4 8 12 16
L o a d (terminals) Load (terminals)

(c) (d)

F i g u r e 20 Average completion times
(a) lisp, (b) typeset, (c) ccomp, (d) trivial.

Staggered multiple initiations of from one to
four of t hese t e rmina l s e s s i o n s were used to c r e a t e
i n c r e a s i n g l e v e l s of load on the sys tem. F igure 2,
g i v e s the average comple t ion t imes f o r each type of
s e s s i o n under the two sys tems . For the n o n t r i v i a l
s e s s i o n s , comple t ion t imes were ve ry s i m i l a r under
the two sys tems , wi th the paging v e r s i o n of the
system running (i n a l l hut one case) f a s t e r . The
interesting observation is that the swap-based sys-
tem departed from linear degradation more rapidly.
This trend is most noticeable in the response time
for the trivial sessions.

Figure 3 gives system-wide measure~ents col-
lected during the same experiments whose results
were given in Figure 2. These measurements show
the same trend for both the time when the last
script completed execution and average completion
times for individual sessions, with the paging sys-
tem slightly faster and degrading more linearly
than the swap system w i t h i n the measured range .
Under heavy load . system overhead was un i fo rmly
g r e a t e r under the paging systema c o n s t i t u t i n g 26

8
~ 1 0

|
= 8

8 6

3

total
- - s w a p

p a g e

/ /
/ ///

Load (terminals)
(a)

• .~ a v e r a g e

8 ~ - - s w a p
o - - - p a g e //

/./

~3

L o a d (terminals)
(b)

28O

2 4 0

160

120

8o

-- swap /
- - - p a g e /

/

///

d ~2 ~6
Load (terminals)

(c)

6O
=o

~o

,o

30

2o L

10

--swap
--- page/~

Load (terminals)
(d)

Figure 3. System-wide measurements.
(a) total completion time, (b) average completion
time, (c) system time, (d) page traffic.

percent of the CPU utilization as compared to 20
percent under the swap system. User-CPU utiliza-
tion under this load was, however, uniformly
greater for the paging system, averaging 1-18 per-
cent, while the swap-based system averaged only 42
percent.

Finally. the total page traffic generated
under the two systems was measured. The measure-
ment accounts for both paging and swapping traffic
under the paging system, as well as transfer of all
system information (control blocks and page tables)
under both systems. Although the paging system
resulted in far fewer total pages transferred, the
number of transactions required to accomplish this
was much greater since most transfers under the
paging system were due to paging activity rather
than swapping activity. In this version of the
paging system, all paging input~output activity was
on single 512 byte pages.

P e r f o r m a n c e emhmmcemeut8 emd compmriooma
v i t h h y b r i d paKinK

After measuring the system and seeing that the
performance was comparable with the swap system, we
determined that there was a major bottleneck in the
system due to the small page and file block size--
512 bytes. Measurements of typical system progrems
which processed files one character at a time
showed that the fastest such progr-ms produced and
consumed data at a rate of about 80 512-byte pages
per second. The file system in use on UNIX at that

83

time, however, could produce about 40 blocks per
second on average, resulting in a factor of two
mismatch between typical program speed and average
file system throughput.

The file block size was increased from 512 to
1024 bytes and physically adjacent pages were
grouped in pairs producing the current 1024-byte
"pages''. In this paper, all future references to
"pages'' will imply this new size unless noted
otherwise. With the new page and file block size,
total system throughput on the script-driven bench-
marks discussed above improved significantly, with
the completion time dropping an average of 30 per-
cent, user-CPU utilization rising nearly 20 percent
and system overhead dropping below that of the
swap-based system.

Benchmarks of paging intensive synthetic pro-
grams run on VMS and UNIX showed, however, that
UNIX could not supply memory to heavily paging pro-
grams at a rate comparable to VMS [KASH 80]. aim-
pie test programs that sequentially or randomly
(with varying degrees of randomness) accessed vir-
tual memory were run on both systems and ran much
faster on the VMS system which clustered pages both
on input and output. The problem, here, was simi-
lar to the problem with the file system: inadequate
blocking. Transferring only 1024 bytes of data
after incurring 25-30 milliseconds while waiting
for a moving-head storage device kept the bandwidth
IOW.

To remedy the situation, a simple form of
pre-paging was implemented. Upon a page fault, the
faulting page as well as the next several virtually
(and physically) adjacent pages were read in as a
single operation. Similarly, upon a page out deci-
sion, the set of modified pages would be searched
to construct clusters of virtually (again also phy-
sically) adjacent pages that would be cleaned in a
single operation. Both the input and output clus-
ter sizes are variables that can be varied while
the system is in operation. This drastically
improved system performance on the simple test pro-
grams due to their sequential nature and the fact
that they always dirtied pages by writing into
them.

There remained, however, a performance gap
between our system and VMS whose cause eluded us at
the time. The problem was discovered to be the
placement of pre-paged data. Such data was placed
in the clock loop, but marked as being not refer-
enced, so it would be moved to the free page pool
in ~ single revolution of the clock if it remained
unreferenced by the program. For progrems like the
test program, which have a very high data rate but
do not use all the prefetched data, this resulted
in an excessive load on the clock algorithm.

This flaw in the pre-paging algorithm was
corrected by placing the pre-paged pages at the
bottom of the free page pool list rather than the
clock loop. Recal l that the system f r ee page pool,
which is implemented as a queue, is fairly long.
On a busy system, pages near the bottom of this
list may survive (i.e., remain reclaimable) for a
few seconds before being re-used. Since the pages
were pre-paged because they were adjacent to a
recently referenced page, it is desirable to retain

them only for a short while if they are not refer-
enced. The modified pre-paging placement policy
more closely reflects this intent.

A new system call was added to notify the sys-
ten that a process would be exhibiting anomalous
behavior. This call caused the reference bit simu-
lation to be turned off resulting in approximately
random page replacement (since the physical order-
ing of page frames in the free page pool from wbere
they are allocated is destined to be random after a
period of operation of the system) for these
processes. Currently, the LISP system issues such
a call before entering the garbage collection
phase,

After these changes, the performance of the
two systems on the test programs became comparable.
In practice, however, the UNIX page replacement
algorithm has the advantage that it does not give
processes fixed partitions and therefore tends to
avoid unnecessary processor overhead (a different
form of thrashing [DENN 68b3 that is unique to our
environment) in a way that a fixed partition scheme
cannot do. We are currently measuring the perfor-
mance of different pre-paging and clustering stra-
tegies using trace data that was collected from the
system. It is hoped that we can develop a model
for the different techniques and justify or improve
on the current system algorithms. [JOY 80] gives
more information on the current performance charac-
teristics of the UNIX system on the VAX.

U s e r e x p e r i e n c e a n d f u t u r e d i r e c t i o n s

Even before the performance improvements
described above were incorporated, the system had
met its original goals by being able to support
applications that we could not earlier. Distribu-
tion of the system to other VAX UNIX sites began in
January 1980, and over 50 other sites were running
the system in the spring of 1980. The decision to
keep the system simple worked extremely well; after
fixing a few bugs during beta-site testing, the
January 1980 system was distributed for a full year
with no further kernel changes.

Since the initial distribution of the system
in January 1980, the use of the system has expanded
to over I00 sites. A number of portions of the
system have been tuned to increase system effi-
ciency. We feel that the system performs well in
our time-sharing environment. The popularity of
the system has encouraged its use with the most
demanding of application programs and in environ-
ments foreign to a time-sharing systems.

We are currently investigating the paging
behavior of progr~.s that process very large
amounts of data. Large scale mathematical programs
and image processing programs tend to have virtual
memory behaviors unlike those which have been stu-
died in most of the literature. By exploiting the
properties of these programs, it is hoped that the
system will be able monitor their behavior and
adapt the system's paging policy to run them more
efficiently.

84

Smmtazy amd c o n c l u s i o n s

A page replacement algorithm that is to func-
tion in a machine lacking reference bits must use a
minimum of reference information because such
information is expensive to gather. The global
clock paging algorithm appears to satisfy this con-
dition.

System performance under extreme paging load
can be as good using the global clock algorithm as
it is using a hybrid paging technique. In prac-
tice, the ability of the clock algorithm to vary
the memory partitions dynamically increases memory
utilization significantly over a scheme which allo-
cates fixed partitions.

The global clock page replacement algorithm is
limited in its ability to supply pages on a machine
with no reference bits. This is normally not a
problem under a time-sharing load, but can be when
high data rate programs are run.

Acknowled~ment f l . We are grateful to Domenico Fer-
rari, Juan Porcar, Jehan-Fran~ois P~ris, Tom B.
London and John F. Reiser for their contribution to
the early design effort, and to Charles Roberts,
Richard Fateman. Robert Fabry, William Rowan and M.
Kirk McKusick for their advice and support.

R e f e E e n c e s

[BABA 80] 6. Babao~lu, ''Analysis of a Class of
Hybrid Page Replacement Policies,'' Col-
lection ~ INRIA, Model isation
et Evaluation des ~Y2J.EPARA ~X~X~,
1980, pp. 289-317.

[BABA 81a] 6. Bahaoglu, "Virtual Storage Manage-
ment in the Absence of Reference Bits,''
Ph.D. Thesis, Computer Science Division,
University of California, Berkeley,
November 1981.

[BABA 81b] 6. Babao~lu, ' 'Memory Management as
Inventory Control,'' in preparation,
1981.

[BELA 66] L. A, Belady, ''A Study of Replacement
Algorithms for a Virtual Storage Com-
puter, t, IBM Syst. J., vol. 5, pp. 78-
I01, 1966.

[BOBR 72] D. G, Bobrow, J. D. Burchfiel, D. L.
Murphy and R. S. Tomlinson, ''TENEX, a
Paged Time Sharing System for the PDP-
I0," Comm. ACM, vol. 15, March 1972,
pp. 135-143.

[CHU 76] W. W. Chu and H. Opderbeck, ''Program
Behavior and the Page Fault Frequency
Replacement Algorithm,'' ~ , vol.
9, November 1976, pp. 29-38.

[COFF 73] E. G. Coffman and P.J. Denning, Ooerat-
ing ~ Theory, Prentice-Hall, Enle-
wood Cliff, New Jersey, 1973.

[CORB 68] F. J. Corbato, "A Paging Experiment
with the Multics System.'' Project MAC
Memo MAC-M-384, Mass. Inst. of Tech.,
July 1968, published in In Honor of ~.
~. Morse4 MIT Press 1969, pp. 217-228.

[DEC 80] Digital Equipment Corporation, ''VAX/VMS
Internals and Data Structures," Prelim-
inary version AA-K785A-TE, November
1980.

[DENN 68a] P. J. Denning, ''The Working Set Model
for Program Behavior," Comm. ACM, vol.
II, pp. 323-333, May 1968.

[DENN 68b] P. J. Denning, "Thrashing: It's Causes
and Prevention, 't Proc. Fall Joint
~ . Conf., 1968, pp. 915-922.

[DENN 76] P. J. Denning, K. C. Kahn, J. Leroudier,
D. Potier and R. Suri, "Optimal Mul-
tiprogrammingtI' Acts ~ , vol.
7, 1976, pp. 197-216.

[DENN 77] P. J. Denning and K. Kahn, ''An L=S Cri-
terion for Optimal Multi-Programming,''
Proc. In,. ~. on Commuter Performancg
Mode] in~ ~ and Evaluation,
Cambridge, Mass., August 1977, pp. 219-
229.

[EAST 79] M. Easton and P. A. Franaszek, ''Use Bit
Scanning in Replacement Decisions,''
IEEE Trans. Comntrs. i vol. C-28, Febru-
ary 1979, pp. 133-141.

[GRIT 75] D. H. Grit and R. Y. Kain, ''An Analysis
of the Use Bit Page Replacement Algo-
rithm,'' Proc. ACM Ann. Conf, Minneapo-
lis, Minn., 1975, pp. 187-192.

[JOY 80] W.N. Joy, ''Comments on the Performance
of UNIX on the VAX," Computer Science
Division internal report, University of
California, Berkeley, 1980.

[KASH 80] D. Kashtan, '',MS and UNIX: A Perfor-
mance Comparison," Stanford Research
Institute internal memorandum, February
1980.

[KING 713 W. F. King III, "Analysis of Demand
Paging Algorithms,it Proc, IFIPS
C o n g r e . s , Ljubljana, Yugoslavia, 1971,
pp. TA-3-155 - TA-3-159.

[LAZO 79] E. Lazowska, ''The Benchmarking, Tuning
and Analytic Modeling of VAX/VMS,''
P r o c a ~ d l n ~ q o f t h e ~ D~l I S ~ m u] a -
tion, ~ and Mode l in~ o f Com-
nuter ~ , Boulder, Colorado, August
13-15, 1979, pp. 57-64.

[OLIV 74] N. A. Oliver, ''Experimental Data on
Page Replacement Algorithm,'' Proc. NCC,
1974, pp. 179-184.

[SMIT 80] A. J. Smith, "Multiprogramming and
Memory Contention,'' Software- Practice
and ~ , vol. 10, July 1980, pp.
531-552.

85

[SMIT 813 A. J. Smith, 'tlnternal Scheduling and
Memory Contention, 't IEEE Trans. on
So£tw~r~ ~.~L~, vol. SE-7, January
1981, pp. 135-146.

86

