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Abstract

Fault tolerance requirements for near term disk array
storage systems are analyzed. The excellent reliability
provided by RAID Level 5 data organization is seen to
be insufficient for these systems. We consider various
alternatives — improved MTBF and MTTR times as
well as smaller reliability groups and increased num-
bers of check disks per group — to obtain the necessary
tmproved reliability. The paper begins by introducing
two data organization schemes based on mazimum dis-
tance separable error correcting codes. Several figures
of merit are calculated using a standard Markov fail-
ure and repair model for these organizations. Based
on these results, the multiple check disk approach to
improved reliability is an excellent option.

1 Introduction

Disk array storage systems, especially those with re-
dundant array of independent disks (RAID) Level 5
data organization [13], provide excellent cost, run-time
performance as well as reliability and will meet the
needs of computing systems for the immediate future.
We project the needs of computing systems to the year
2000 and beyond and find that even greater reliability
than provided by RAID Level 5 may be needed.
Goldstein has collected data from moderate to large
commercial installations and he projects that the av-
erage installation in 1995 will contain two terabytes
(TB) of data [9]. We use his projection techniques
to obtain results for the year 2000 and conclude the
average commercial installation will have ten TB of
data. We expect this projection is pessimistic since it
does not account for the proliferation of data stored
for video images of multimedia applications.
Currently the typical disk form factor is 5.25 inches
but this is rapidly diminishing to 3.5 inches; already
20 MB 1.3 inch form factor disks are available. By
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year 2000, we expect the capacity of such disks to
expand to at least 200 MB due to areal density in-
creases. These small disks will be the typical storage
media within commercial installations. Accordingly
the average installation will have 50,000 drives. If
we assume highly reliable disk drives with mean-time-
between-failures (MTBF) of 500,000 hours and with
mean-time-to-repair (MTTR) of one hour, the mean-
time-to-data-loss (MTTDL) within a (104+P) RAID
Level 5 array is 2.3 x 10° hours. Then the average
ten TB installation, constituted of 5,000 such RAID
Level 5 arrays, has a 460,000 hour MTTDL. That is,
the installation MTTDL is just slightly less than its
constitutient disk MTBF.

Consider 1000 such installations; the MTTDL of
the group of installations is approximately 460 hours.
That is every 460 hours, less than 20 days, some in-
stallation within this 1000 will lose data. As the num-
ber of drives per installation becomes large and as the
number of such installations grows, even the excellent
reliabilities provided by RAID Level 5 disk organiza-
tions will not suffice. While the RAID Level 5 data
organization is sufficient for now, we need to consider
schemes that provide higher reliabilities.

Our goal within this paper is to present and ana-
lyze a data organization scheme for disk arrays that
provides better reliabilities than RAID Level 5. The
data organization, derived from maximal distance sep-
arable (MDS) codes, retains some of the advantages of
RAID Level 5 while providing higher reliability. The
scheme generalizes the RAID data organization and is
the most efficient data organization in the sense that
for a given number of data disks it can maintain data
integrity through ¢ concurrent disk failures with ex-
actly ¢ check disks. Several schemes for providing
better reliability than RAID Level 5 have been pro-
posed. Gibson et al. present the “multidimensional”
parity schemes [8]. Blaum et al. present a scheme that
accommodates two concurrent disk failures [2] that is



also based on a novel variety of MDS codes [3]. Cheung
and Kumar study “multi-parity” schemes that accom-
modate a fixed number of concurrent failures [6]. Nei-
ther the multidimensional or multi-parity schemes are
MDS organizations; both require considerably more
than ¢ check disks to withstand ¢ concurrent disk fail-
ures.

Our paper is organized of follows. Section 2 con-
tains our presentation of two MDS data organization
schemes. Within section 3 we begin with an approx-
imation for the reliability functions for MDS schemes
with one, two or three check disks. Then we present a
derivation of the mean-time-to-data-loss for the MDS
schemes. Next we present the data loss probability
as a function of the number of installed disk arrays.
We refine this result by determining the number of
disk arrays that remain operational from the start un-
til time ¢. In section 4 we explore several approaches
to improving reliability such as increased MTBF or
decreased MTTR. Our results indicate that the most
effective way to improve the fault-tolerant capabilities
of disk arrays is to include additional check disks. We
conclude by observing that if we have several thou-
sand disk arrays operational, we will want additional
fault-tolerance provided by the two check disk MDS
organizations.

2 MDS Disk Organization

The MDS disk organization is derived from the so-
called maximal distance separable (MDS) codes that
have been known for years in coding theory [11]. In-
dependently similar schemes have been reported by
Karnin, Greene, and Hellman[10] who study the shar-
ing of information within a “faulty environment.”
Rabin[15] also reports an identical scheme in the con-
text of message transmission. Abdel-Ghaffar and El
Abbadi report a file comparison scheme that uses this
approach [1]. Preparata [14] was one of the first to
observe the connection between Rabin’s approach and
the MDS codes. Recently Blaum et al. [2] have
created a novel MDS array coding scheme which we
present as well.

MDS disk organizations are described in terms of
two parameters n and m. MDS organizes a file into n
equal-sized pieces, referred to as fragments, with each
stored as an ordinary file on a different disk. The sec-
ond MDS parameter m specifies the number of frag-
ments such that any m suffice to reconstruct the file.
The fragments are approximately 1/m'® the size of
the file. We can construct the file if we have access to
all n fragments, but this approach need not provide

any fault tolerance. We could store, for example, ev-
ery n'M file character within the same fragment and
require all n fragments to construct the file. However
if the fragments are each identical to the file itself,
we have (re-named) file replication; this of course will
provide excellent fault tolerance but with extravagant
disk storage space requirements. The process of creat-
ing the n fragments is referred to as “file dispersal” and
the process of recreating the contents of the file from
m fragments is referred to as “file reconstruction.”

The dispersal operation maps a fixed number of
data character values to n fragment character values.
We present two MDS organizations, one mapping m
data byte values and the other mapping m x (n — 1)
data byte values. The first uses a dispersal matrix
which is similar to the generating matrix from cod-
ing theory and the second uses horizontal and diag-
onal syndromes also from coding theory. It is an in-
teresting task to verify that each scheme is based on
MDS codes but we will not pursue this here. As ex-
amples, we present an n = 5, m = 3 configuration
using each scheme; the size of each fragment will be
approximately one-third the size of the file.

The first MDS organization utilizes an m x n dis-
persal matrix D to specify the file dispersal operation.
The dispersal operation maps m data byte values to
n fragment byte values. The dispersal matrix must
have the property that any m columns are linearly in-
dependent; this condition assures the MDS property
will hold and we refer to it as the independence prop-
erty.

An example dispersal matrix is

10 0 1 1
D = 01 0 1 2
001 1 4

There are many such dispersal matrices even for the
n = 5, m = 3 configuration. File dispersal is ac-
complished using D such that three file characters are

mapped to five fragment characters.

(p3j, p3j+1,P3j+2) D = (foj, f1j, f25, f3.5, faj)

Fragment character f;; is stored as the 40 character
within fragment F;. Continuing our example, suppose
that our file contains the ASCII encoded text:

The old man and the sea.\n

Then the five fragments contain the following byte val-
ues expressed in octal notation: Fragments Fyy, F7 and
F5 consist of every third value in the file as demon-
strated in figure 1. Fragments F3 and F4 store the sum
and products of byte values as byte values without



Fy: 124 040 144 141 141 040 145 145 012
Fy: 150 157 040 156 156 164 040 141 000
Fy: 145 154 155 040 144 150 163 056 000
F3:131 043 051 057 153 074 066 052 012
Fy: 141 077 341 075 134 031 230 037 012

Fo: T \40 d a a \40 e e \n
Fi: n o \40 n n t \40 a \0o
Fy: e 1 m \40 d h s . \o

Figure 1: Fragments Fy, Fi, and Fy

overflow using arithmetic within finite field GF(2%).
This finite field is selected since a byte can assume
one of 256 = 2% values. Addition and subtraction op-
erations are the exclusive-or operation; the multiplica-
tion and division operations could use tables created
as described within [11].

The reconstruction process is defined as a transfor-
mation that maps byte values from m fragments to m
data byte values for file. Since any m columns within
D are linearly independent, we construct the m x m
inverse matrix R for the columns associated with the
m fragments participating within the reconstruction.
The fragment entries are processed sequentially.

There are two varieties of fragments within our ex-
ample; the three fragments Fy, Fy and Fy allow very
easy file reconstruction since merging them is all that
is necessary. Any other combination of fragments
will require “real” computation during reconstruction.
While the presence of fragments allowing this simplis-
tic reconstruction is not required by the MDS data
organization scheme, it is certainly advantageous. Dis-
persal schemes containing these ease-of-reconstruction
fragments are said to have the systematic property.
More generally, we will require that our dispersal ma-
trices always have this property; that is, the dispersal
matrix contains m columns constituting an identity
matrix. Selecting a dispersal matrix satisfying both
the independence and systematic properties is rela-
tively straightforward as shown in [16]. Reconstruc-
tion will be the very straightforward merging of files
for the m fragments associated with these columns.
We refer to these m fragments as primary fragments
and the others as secondary fragments. In the absense
of failed sites and other conditions being equal (such
as site load) the reconstruction process will access only
the primary fragments.

We have two requirements for the dispersal matri-

ces: (1) the systematic property and (2) the indepen-
dence property. The independence property ensures
that any m fragments suffice to reconstruct the file
from the fragments. The systematic property ensures
that for one combination of m fragments, reconstruc-
tion is accomplished by merging the fragments. The
Vandermonde matrix [12] provides an n x n matrix
having non-zero determinant thereby assuring linear
independence of its columns. We can construct dis-
persal matrices by truncating the bottom n — m rows
of the Vandermonde matrix. Since any m shortened
columns constitute an m X m Vandermonde matrix,
any combination of m columns will be linearly inde-
pendent as required. We then utilize elementary ma-
trix transformations to obtain a dispersal matrix in
which the leftmost m columns form the identity ma-
trix. We can construct such a matrix over GF'(2%) with
as many as 256 columns. Going full circle, we utilize
results from coding theory regarding twice-extended
Reed Solomon codes [11] to obtain suitable dispersal
matrices over GF'(2%) with 257 columns. For practi-
cal applications this is probably more than adequate.
We note that our previous dispersal matrix was not
selected in this fashion.

The Blaum et al. MDS scheme is based on array
codes; we present an n = 5, m = 3 configuration exam-
ple here as well. Dispersal maps 12 data byte values
to 20 fragment values. Codewords are 4 x 5 arrays
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S o % O
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Figure 2: Array Code Parity Matrix Schema

in which each entry is a byte value. The byte values
within each column are stored on a disk drive. The
parity conditions (syndromes) are listed here for code-
word C'= {¢; j} where 0 <i<3and 0<j<4:

1
Doy = 0
j=0

3

P criirrymoas = 0

k=0

The first equation defines the horizontal syndromes
and the second the diagonal syndromes. The pair of
arrays within figure 2 geometrically define the parity



constraints for our code. In our example, each code-
word designates 20 byte values stored four per disk on
five disks. Twelve data character values are positioned
within the leftmost three columns of the matrix; this
is the systematic property for these codes. The right-
most two columns contain the parity information. We
continue our example and suppose that our file con-
tains the ASCII encoded text:

The old man and the sea.\n

Then the five fragments contain the following byte val-
ues expressed in octal notation:

124 040 144 141 141 040 145 145 012 000 000 000
150 157 040 156 156 164 040 141 000 000 000 000
145 154 155 040 144 150 163 056 000 000 000 000
171 120 175 126 105 175 112 146 012 012 012 012
040 163 124 171 056 101 174 114 000 012 012 012

Fragments Fy, F1; and Fy consist of every third
value in the file as demonstrated in figure 3. Frag-

:FQ
:Fl
:Fz
:F3
:F4

T\40 d a a\40 e e \n \O0 \O \O : Fp
h o\40 n n t\40 a \0o \NO \O \O :F}
e 1 m\40 d h s N0 \0 \O0 \O : Fy

Figure 3: Fragments Fy, Fi, and Fy

ments F3 and Fy contain the parity values according
to the eight equations presented above.

Reconstruction of the data should one or two disks
fail proceeds in a two phase process. First we calcu-
late the horizontal and diagonal syndromes assuming
two disks have failed; the associated columns within
the codewords contain zero entries. The second phase
determines the values in the two “erased” columns.

This scheme utilizes only the exclusive-or operation
and it is applicable for disk arrays containing a prime
number of disks; it is discussed with far greater gen-
erality within [2, 3]. One generalization is the number
of concurrent faulty disks accommodated and another
relaxes the restriction to only prime numbers of disks
per array.

3 Failure Models

Gibson presents a characterization of disk failures [7]
from which he concludes that an exponential lifetime
distribution is a reasonable approximation especially
for disk units with mean time to failure of at least
200,000 hours. He compares the exponential and

Weibull distributions for disk units having smaller ex-
pected lifetime figures. In this situation, he concludes
that neither distribution adequately models these life-
times and possibly a three parameter distribution is
necessary. However Gibson states that the exponen-
tial distribution is plausible throughout.

The infant mortality phenomena within disk units
has been observed. We have anecdotal evidence stat-
ing that one-half of the failures, occurring within a
nominal lifetime span for disk units, occur within the
the first four months of operation. We have modeled
this effect by piecing together two exponential lifetime
distributions; the difference between using a single and
a pair of exponential distributions is very small within
our results. Accordingly we present results for a single
exponential distribution lifetime model.

The Markov model depicted in figure 4 is a sim-
ple model sufficient for reliability groups containing
n = m + ¢ disks and accommodating up to ¢ concur-
rent disk failures without data loss. We assume disk

m (1A

Figure 4: MDS Markov Model

(i+DA

(n-iu

(n-m)p

(Mm+1)A

ix

mA

failures are independent and that both the MTBF and
MTTR for the disks is time independent. It is conve-
nient to use the reciprocals of these quantities, which
are rates of change rather than time intervals, within
our model — the failure rate per disk A is MTBF~!
and the repair rate per disk g is MTTR™!. The state
labels designate the number of operational and acces-
sible fragments. Associated with each state is prob-
ability P;(t) designating the probability of being in
state ¢ at time ¢. The failure state F' is absorbing
in our model since it is entered only if fewer than m
fragments are accessible. Other Markov models are
possible here. We could repair a single disk at a time,
but the repair process produces all fragments at once.
To a first approximation, this variety of model change
only slightly affects the reliability values and not our
conclusions.

In this section, we present three measures of fault
tolerance suitable for disk arrays. We begin by pre-
senting an approximation to the reliability function
derived from the Markov model within figure 4. We
utilize this approximation in section 4. Our first
fault tolerance measure is the traditional mean-time-
to-data-loss (MTTDL). Both the second measure, the



data loss probabilty (DLP), and the third measure, the
expected number of failures, refine the MTTDL mea-
sure. In all cases, improving the reliability improves
our result. The second and third measures are based
on ensembles of disk arrays.

3.1 Mean Time To Data Loss

The mean time to data loss MTTDL is the expected
time to enter state F'. A similar derivation obtaining
approximate values is presented in the USENIX Pro-
ceedings [5]. The reliability function R, ,,(t) is the
probability of being in one of the non-failure states at
time t; that is

Rem = Pagel) + -+ Puga () + Pu(). (1)

We adopt the notation R, ,(t) to emphasize the uni-
formity assumed of the disk arrays, each array contains
m data and ¢ check disks; the state probability nota-
tion requires a second subscript as well but we choose
to rely on the context for these notations. The mean
time to data loss for the configuration with ¢ check
and m data disks is

MTTDL,,, = / Rem(t) dt. (2)
0

We determine MTTDL, ,, using the Laplace transfor-
mation “integral property.” Then

MTTDL.,, = R;,(0) = > P/(0)

where R* and P;* designate transformed functions. We
present a specific case here and the general result in
[4]. The Laplace state transition equations for ¢ = 2
are

Phio(s) = (s+Am+1)+ p)(s+Am+2u)/A(s)
Prpi(s) = Mm+2)(s + Am+2u)/A(s)
Px(s) A2 (m + 1)(m + 2)/A(s)

where A(s) is

(s +A(m+2))(s+ Mm+ 1)+ p)(s + Am + 2p)—
2ur?(m + 1)(m +2) — pA(m + 2)(s + Am + 2p).

Finally we obtain the following

2p% + pA(Bm + 6) + A%(3m? + 6m + 2)

MTTDLs ., =
> Xm(m + 1)(m + 2)

For reliability modeling such as the above, the ratio
w1/ is very large; accordingly we can approximate the

mean time to data loss expressions by the following [5]
forc=0,1,2,---

wc

where w = p/A. The improvement in MTTDL, ,,
as a function of ¢ is rather dramatic. The mean

MTTDL,,, =

time to data loss values are given in Table 1 where

¢ MTTDL years

0 2.8

1 2.6 x 10°
2 4.3 x 1010
3 1.0 x 1018

Table 1: Mean Time to Data Loss Results

m = 10 data disks per array, A = 4 x 107° failures
per hour, and g = 4 repairs per hour. These results
are very impressive; incrementing ¢ increases the ex-
pected longevity by approximately w which is 10° in
this example. However as we will observe in the next
sections, these figures provide too rosy a view on the
performance of an ensemble of disk arrays.

3.2 Reliability

Our measures of disk array fault tolerance depend
upon the reliability R, .(¢) of the array. The pro-
cess of determining these values is tedious at best and
we seek an accurate approximation. For ¢ = 0, the
reliability is

RO,m(t) — e—t)\m e—t/MTTDLU (4)

In the cases ¢ > 0, we have Theorem 1 which contains
approximations to the reliability function; we derive
and verify this approximation in [4].

Theorem 1 For each disk array containing m data
disks and ¢ = 1,2, or 3 check disks with failure rate A
and repair rate p we have the following approzimate
reliability functions

Ry m(2) (5)

—¢/MTTDLy, m —t(u+A(2m+1
= Cymoe L 4 O € (u+A(2m+1))

FLELS)

Ram(t) (6)

Como ¢~ t/MTTDL, | CZ,m,—ue_t(H+)\(2m+3)) T

Com Y 6—t(2,u+>\m)



RS,m(t) (7)
_ CS mo 6—t/MTTDL3,m 4 CS " 6—t(u+)\(2m+5)) +

CS 2 e—t(2,u+)\(m+l)) + CS -3 6—t(3,u+)\m)

where MTTDLy ,, MTTDLy ,, and MTTDL3 ,,, are
gven in equation 3 forc=1,2, and 3,

c+1
_ m+c A
s = vestn ("1 ) ()

and H, is the ¢!® harmonic number. The other coeffi-
cients are

AMm(m+1
Clym,—,u = _272)1
Am(m + 1)(m + 2)
CZ,m,—,u - - HB )
Am(m + 1)(m + 2)
C2ym,—2,u = 4;”3 )
Atm(m + 1)(m + 2)(m + 3)
CSym,—,u = - 2,U4 ’
Mm(m + 1)(m + 2)(m + 3)
CBym,—Q,u = 4;”4 )
/\4m(m + 1)(m+2)(m+3)
CB,m,—S,u = - 18#4 .

This approximation is valid provided A/ is very small.
The coefficients are determined using the partial-
fraction expansion of the transformed reliability func-
tion. The roots of the denominator are approxi-
mated using Newton’s iteration scheme. Moreover, the
largest discarded term in each coefficient is smaller, in
magnitude, by a factor of A/pu.

3.3 Data Loss vs Number of Units

Our second figure of merit is obtained by considering a
large ensemble of disk arrays. We desire each array not
lose data during the typical lifetime of the constituent
disk arrays, since loss of any data, however small, is
highly traumatic for the users losing data. The data
loss probability DLP, ,,(n,t) depends on the number
of disk arrays nm within the ensemble, the number of
check disks per array ¢, the number of data disks per
array m as well as the time interval ¢. We consider only
uniform ensembles of arrays in this analysis; moreover
we assume that array failures are independent. Then
we have

DLP. n(n,t) = 1—R.n(t)" (8)

measuring the probability of at least one data loss
within the interval from the start to time t. We

o
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o
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Figure 5: Data Loss vs Number of Subsystems

plot DLP,,(n,t) for fixed t in figures 5, 6, 7
and 8. The three sets of curves in figure 5
have the same parameters except for c; each ar-
ray constains 10 data disks and the time interval
is 7 years. The individual disk failure rates A =
1/100000, 1/200000, 1/300000, 1/400000 and 1/500000
failures per hour. The five curves, in the upper left-
hand corner of the graph, immediately to the left of
the phrase ¢ = 0 designate no check disk within the
arrays. The leftmost curve has probability of data loss
greater than 0.9978 for one array; this curve appears
almost as a horizontal line within Figure 5. The prob-
ability of failure is practically one for as few as ten
disk arrays for any of our five failure rates when ¢ is
zero. The five curves immediately to the left of the
phrase ¢ = 1 designate single check disk probabilities
and the curves to the right of ¢ = 2 pertain to two
check disks. Within each set, the curves from left to
right have decreasing A values. Thus for example, with
n = 10000 arrays each configured with a single check
disk, we expect at least one data loss with probability
approximately 2/5 for A = 1/200000. However utiliz-
ing two check disks per array, the probability of data
loss is very close to zero for the same number of arrays.

3.4 Expected Number of Failures

The probability of data loss depends on whether our
array configurations contain two, one or no check
disks. We are interested in reducing the expected
number of “unhappy” clients who lose data during
the disk array lifetime. We propose to refine our
measure by determining the expected number of ar-



rays that will lose data during the observation inter-
val. Let X, (t,n) designate the number of arrays,
each containing ¢ check disks and m data disks, re-
maining operational at time ¢ provided that n are ini-
tially placed in service. Then prob{X. (t,n) = i} for
1=0,1,...,nis

< ’Z ) Repn(1) (1= Repn(1))"~°.

Since X, ,, has a binomial distribution, the expected
number of array remaining operational at time ¢ is
nR.m(t). Thus we can interpret R, ,(t) as the ex-
pected fraction of the arrays remaining operational
during the interval from the start until time ¢. The
expected number of failures over a seven year period
for an ensemble of 10,000 disk arrays each with 10
data disks, with a failure rate per disk of 5 x 1076
per hour, and repair rate of 4 disks per hour are tabu-
lated within Table 2. The expected number of failures
becomes insignificant only when ¢ is at least two for
repair and failure rates typical of current technologies.
We conclude that RAID Level 5 (¢ = 1) may not be
a satisfactory storage architecture for massively em-
ployed subsystems since the probability of at least one
unhappy client is not small.

c Expected Failures
0 9535

1 0.42

2 5% 1076

Table 2: Expected Failures

4 Parameter Sensitivity

If a given configuration with one check disk is not re-
liable enough, we desire to improve it. Using addi-
tional check disks (increasing ¢) is only one of sev-
eral alternatives to improving its reliability. Other
approaches include manufacturing disk drives with
greater MTBF (decreasing A), repairing failed disks
faster with smaller MTTR (increasing p) and using
smaller reliability groups (decreasing m). So we need
to explore the effects of incremental changes in A, p,
m or c individually have on the reliability. We can
calculate partial derivatives of K., with respect to
A and p as well as differences with respect to m and
c. We are left with the question of trade-offs among

the reliability improvements and the costs of the in-
cremental changes. We present curves demonstrating
the sensitivity of the parameters and then conclude
with some analytical results. Within figure 5 we have
already noted the significant improvement in the data
loss probabilities when ¢ is incremented.

We begin with one check disk configurations. Fig-
ure 6 demonstrates the effect of various failure rates
with other parameters constant. The failure rates, fail-
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Figure 6: Probability of Data Loss vs Number of Sub-
systems: Various Failure Rates

ures per hour, are written diagonally across the curves;
each disk array contains ten data disks and one check
disk, the repair rate is four disks per hour and the
observation interval is seven years. A typical failure
rate, within current technology, is 1/500000 per hour;
this curve rapidly goes to one at approximately 10*
disk arrays. We next consider various repair rates,
very slow to “impossibly” fast, and present the results
within figure 7. The repair rates, disk repairs per hour,
are written diagonally across the curves. Repair rates
much larger than four per hour are not currently pos-
sible. Each disk array contains ten data and one check
disk and the observation interval is seven years. The
incremental improvement for the data loss probabil-
ity is less for repair increments than for failure decre-
ments.

We conclude our presentation of one check configu-
rations with the curves of figure 8 in which we explore
the effects of varying m on the reliability. We maintain
constant data storage capability and each subsystem
contains exactly 120 data disks. The data disks are
logically partitioned into disjoint arrays. Each com-
ponent array contains a single check disk, its repair
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Figure 7: Probability of Data Loss vs Number of Sub-
systems: Various Repair Rates
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Figure §8: Probability of Data Loss vs Number of Sub-
systems: Constant Data Disk Capacity

rate is four per hour and the observation interval is
seven years. For example, we might have one array
with 120 data disks and one check disk or we could
have 2 arrays each containing 60 data disks and one
check disk and so forth. The notation i(m+1) desig-
nates i arrays each with m data disks; the product m x
i is always 120. The 120(141) configuration designates
data replication, there are 120 check disks within this
configuration. The probabilities of data loss specified
within figure 8 are for organizations each containing
120 data disks comprised of a number of disk arrays.
The probability of data loss diminishes with increased
numbers of check disks within the ensemble.

Next we consider two check disk configurations. We
present figures 9, 10 and 11 which contain the data loss
probabilities for various failure rates, repair rates, and
the constant data capacity configurations respectively;
each is for a seven year observation interval. We note
within that the curves are spread further apart than
for the single check disk curves. The extra check disk
increases the sensitivity to changes in the failure rate;
that is, small changes in failure yield larger data loss
probability improvements within figure 9 than in fig-
ure 6. We observe a similar behavior with respect to
the repair rates in figure 10. We observe again the
improved sensitivity to increases in the repair rate;
the curves are spread further apart than for the single
check disk curves. Finally, we present constant stor-
age capacity curves in figure 11. These curves spread
over a very wide range providing improved sensitiv-
ity to increased numbers of check disks. The notation
i(m+2) within the figure designates a group of i disk

arrays each containing m data disks and two check
disks such that i x mis 120.

Within figure 11, the repair rate is four disks per
hour and the observation interval is seven years.

We consider the improvement obtained due to an
extra check disk per disk array versus partitioning
the disks into smaller groups. For example, we con-
sider within figure 8 the 1(120+1) and 2(60+1) curves.
The pair of smaller groups has a slightly lower prob-
ability of data loss values. However, if we consider
the 1(12042) configuration within figure 11 we note
the probability of data loss dominates either of the
previous curves. Adding two more disks to obtain a
2(60+2) configuration is even better. We note that all
the one check disk curves are dominated by each two
check disk curves. For one check disk, the probability
of data loss is very close to one for 10* subsystems; for
two check disks, the probability is very close to zero
for otherwise identical parameters.

5 Conclusions

Many commercial applications are projected to require
10 terabytes of on-line storage by year 2000. Even with
projected improved disk form factors and storage den-
sities, the reliabilities provided by RAID Level 5 archi-
tectures are not sufficient for configurations with this
number of disk drives. The storage sizing projections
are very conservative, without including video image
storage requirements.

We have presented the MDS disk array architec-
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tures capable of providing reliabilities arbitrarily close
to one. These schemes utilize the smallest number of
additional disks ¢ to ensure data integrity in spite of
up to ¢ disk failures. Two MDS schemes are outlined
— the first based on Reed-Solomom error correcting
codes and the second on Blaum-Roth error correcting
codes.

We considered various parameters in our reliability
study; the failure and repair rates for disk drives and
the number of check and data disks in a disk array.
Figure 5 indicates the dramatic improvements to the
data loss probability obtained by incrementing c. The
probability of data loss depends exponentially on the
reliability as specified in equation 12. Increasing the
reliability lowers the data loss probability. The en-
semble of one check disk data loss probability curves,
for RAID Level 5, are approximately one for approxi-
mately 10° disk arrays. However for two check disks,
the data loss probability is approximately zero for the
same number of disk arrays. We conclude that by
year 2000 the additional check disk is called for within
large-sized storage systems.

The figure 5 curves also provide insights regarding
the sensitivity of the data loss probability to changes in
the failure rate A. Figures 6 and 9 elaborate this study;
in figure 6 the failure rates are varied from 2 x 10~* to
2 x 1079, The range 2 x 10=%* to 2 x 1075, in figure 9,
provides equally good probabilities of data loss. The
2 x 107 rate is typical of current technology; within
the ¢ = 2 configuration, the probabilities of data loss is
approximately zero for up to 103 disk arrays while for
¢ = 1 the failure rate must be diminished to 2 x 10~°

to obtain approximately the same result.

Figures 7 and 10 presents the results of varying the
repair rate g while holding the failure rate constant.
Within figure 7, the repair rate varies from 4 x 10~* to
4 x 10%; rates above 4 are beyond current technologies.
Within figure 10, the repair rate varies from 4 x 10~*
to 4. Considering the repair rate 4, within figure 7
one check disk configurations, the probability of data
loss is approximately zero for less than approximately
103 disk arrays. Within figure 10 two check disk con-
figurations, the probability of data loss remains ap-
proximately zero for less than approximately 10° disk
arrays.

Figure 8 compares several constant storage con-
figurations comprised of disk arrays each with one
check disk. Figure 11 is similar except each array
contains two check disks. All configurations contain
120 data disks; the number of disk arrays ranges over
1,2,3,4,...,30,40,60,120. Within figure 8, for ap-
proximately 10* ensembles of disk arrays, the proba-
bility of data loss is approximately one. Within figure
11, for less than 103 and up to 10* for all curves ex-
cept one, the probability of data loss is approximately
zero. In these configurations, the repair rate p is 4
and failure rate A is 1 x 107° a rate typical of current
technology.

We have considered four approaches to improving
the reliability; however, we have not considered the
relative costs of these actions. Decreasing the failure
rate (increasing MTBF) represents an improvement
in the manufacturing techniques for disks. Increasing
the repair rate (decreased MTTR) requires improved
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disk seek, latency or transfer times. Changes in the
number of data storage disks within a disk array have
moderate effect on the probability of data loss; the to-
tal number of disks required increases as the size of
the reliability groups decreases. We have not tried to
optimize the reliability as a function of incremental
costs. An optimization we have not considered in this
study is the run-time performance of the disk arrays
as a function of m and ¢. We expect that increasing ¢
will have negative effect on run-time performance. We
conclude that the two check disk configurations pro-
vide excellent fault tolerance. We need only address
the run-time performance issue; this is the subject of
our continuing research in disk arrays.
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