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Abstract

The exokernel operating system architecture safely gives un-
trusted software efficient control over hardware and software
resources by separating management from protection. This
paper describes an exokernel system that allows specialized
applications to achieve high performance without sacrificing
the performance of unmodified UNIX programs. It evaluates
the exokernel architecture by measuring end-to-end applica-
tion performance on Xok, an exokernel for Intel x86-based
computers, and by comparing Xok’s performance to the per-
formance of two widely-used 4.4BSD UNIX systems (Free-
BSD and OpenBSD). The results show that common unmod-
ified UNIX applications can enjoy the benefits of exokernels:
applications either perform comparably on Xok/ExOS and
the BSD UNIXes, or perform significantly better. In addition,
the results show that customized applications can benefit sub-
stantially from control over their resources (e.g., a factor of
eight for a Web server). This paper also describes insights
about the exokernel approach gained through building three
different exokernel systems, and presents novel approaches
to resource multiplexing.

1 Introduction

In traditional operating systems, only privileged servers and
the kernel can manage system resources. Untrusted applica-
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tions are restricted to the interfaces and implementations of
this privileged software. This organization is flawed because
application demands vary widely. An interface designed to
accommodate every application must anticipate all possible
needs. The implementation of such an interface would need to
resolve all tradeoffs and anticipate all ways the interface could
be used. Experience suggests that such anticipation is infea-
sible and that the cost of mistakes is high [1, 4, 8, 11, 21, 39].

The exokernel architecture[11] solves this problem by
giving untrusted applications as much control over resources
as possible. It does so by dividing responsibilities differently
from the way conventional systems do. Exokernels separate
protection from management: they protect resources but del-
egate management to applications. For example, each appli-
cation manages its own disk-block cache, but the exokernel
allows cached pages to be shared securely across all appli-
cations. Thus, the exokernel protects pages and disk blocks,
but applications manage them.

Of course, not all applications need customized resource
management. Instead of communicating with the exokernel
directly, we expect most programs to be linked with libraries
that hide low-level resources behind traditional operatingsys-
tem abstractions. However, unlike traditional implementa-
tions of these abstractions, library implementations are un-
privileged and can therefore be modified or replaced at will.
We refer to these unprivileged libraries aslibrary operating
systems,or libOSes.

We hope the exokernel organization will facilitate operat-
ing system innovation: there are several orders of magnitude
more application programmers than OS implementors, and
any programmer can specialize a libOS without affecting the
rest of the system. LibOSes also allow incremental, selec-
tive adoption of new OS features: applications link with the
libOSes that provide what they need—new OS functionality
is effectively distributed with the application binary.

The exokernel approach raises several questions. Can
ambitious applications actually achieve significant perfor-
mance improvements on an exokernel? Will traditional
applications—for example, unaltered UNIX applications—
pay a price in reduced performance? Is global performance
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compromised when no centralized authority decides schedul-
ing and multiplexing policies? Does the lack of a centralized
management policy for shared OS structures lower the in-
tegrity of the system?

This paper attempts to answer these questions and thereby
evaluate the soundness of the exokernel approach. Our ex-
periments are performedon the Xok/ExOS exokernel system.
Xok is an exokernel for Intel x86-based computers and ExOS
is its default libOS. Xok/ExOS compiles on itself and runs
many unmodified UNIX programs (e.g., perl, gcc, telnet, and
most file utilities). We compare Xok/ExOS to two widely-
used 4.4BSD UNIX systems running on the same hardware,
using large, real-world applications.

ExOS ensures the integrity of many of its abstractions
using Xok’s support for protected sharing. Some abstractions,
however, still use shared global data structures. ExOS cannot
guarantee UNIX semantics for these abstractions until they
are protected from arbitrary writes by other processes. In our
measurements, we approximate the cost of this protection by
inserting system calls before all writes to shared global state.

Our results show that most unmodified UNIX applica-
tions perform comparably on Xok/ExOS and on FreeBSD or
OpenBSD. Some applications, however, run up to a factor of
four faster on Xok/ExOS. Experiments with multiple appli-
cations running concurrently also show that exokernels can
offer competitive global system performance.

We also demonstrate that application-level control can sig-
nificantly improve the performance of applications. For ex-
ample, we describe a new high-performance HTTP server,
Cheetah, that actively exploits exokernel extensibility. Chee-
tah uses a file system and a TCP implementation customized
for the properties of HTTP traffic. Cheetah performs up to
eight times faster than the best UNIX HTTP server we mea-
sured on the same hardware.

In addition to evaluating the exokernel approach, this pa-
per presents new kernel interfaces that separate protection
from management. We discuss the disk subsystem, XN, and
explain how unprivileged applications can define new file
systems and how these file systems can safely multiplex the
same disk at a fine granularity. Finally, we summarize what
we have learned from building three complete exokernel sys-
tems (Xok, Aegis [11] for DECstations, and Glaze [29] for
the Fugu multiprocessor).

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 summarizes the exokernel
architecture. Section 4 provides a detailed example of rec-
onciling application control with protection by presenting
the disk system XN. Section 5 briefly overviews Xok/ExOS,
the experimental environment for this paper. Section 6 re-
ports on the performance of unaltered UNIX applications,
while Section 7 reports on the performance of aggressively-
specialized applications, such as the high-performanceChee-
tah web server. Section 8 investigates global performance on
an exokernel system. Section 9 discusses our experiences
with building three different exokernel systems. Section 10
concludes.

2 Related Work

The exokernel architecture was proposed in [11], which de-
scribed a research prototype that performed significantly bet-
ter than Ultrix on microbenchmarks. While the paper pro-
vided evidence that the exokernel approach was promising,
it left many questions unanswered.

There is a large literature on extensible operating systems,
starting with the classic rationales by Lampson and Brinch
Hansen [19, 25, 26]. Previous approaches to extensibility can
be coarsely classified in three groups: better microkernels,
virtual machines, and downloading untrusted code into the
kernel. We discuss each in turn.

The principal goal of an exokernel—giving applications
control—is orthogonal to the question of monolithic versus
microkernel organization. If applications are restricted to in-
adequate interfaces, it makes little difference whether the
implementations reside in the kernel or privileged user-level
servers [20, 18]; in both cases applications lack control. For
example, it is difficult to change the buffer management pol-
icy of a shared file server. In many ways, servers can be
viewed as fixed kernel subsystems that happen to run in user
space. Whether monolithic or microkernel-based, the goal of
an exokernel system remains for privileged software to pro-
vide interfaces that do not limit the ability of unprivileged
applications to manage their own resources.

Some newer microkernels push the kernel interface closer
to the hardware [8, 20, 36], obtaining better performance
and robustness than previous microkernels and allowing for
a greater degree of flexibility, since shared monolithic servers
can be broken into several servers. Techniques to reduce
the cost of shared servers by improving IPC performance,
moving code from servers into libraries, mapping read-only
shared data structures, and batching system calls [2, 18, 28,
30] can also be successfully applied in an exokernel system.

Virtual machines [5, 12, 17] (VMs) are an OS structure in
which a privileged virtual machine monitor (VMM) isolates
less privileged software in emulated copies of the underly-
ing hardware. Unfortunately, emulation hides information.
This can lead to ineffective use of hardware resources; for
instance, the VMM has no way of knowing if a VM no
longer needs a particular virtual page. Moreover, VMs can
only share resources through remote communication proto-
cols. This prevents VMs from sharing many OS abstractions
such as processes or file descriptors with each other. Thus,
VMMs confine specialized operating systems and associated
processes to isolated virtual machines, while exokernels let
applications use customized libOSes without sacrificing a
single view of the machine,

Downloading code into the kernel is another approach
to extensibility. In many systems only trusted users can
download code, either through dynamically-loaded kernel
extensions or static configuration [13, 21]. In the SPIN and
Vino systems, any user can safely download code into the
kernel [4, 39]. Safe downloading of code through type-
safety [4, 37] and software fault-isolation [39, 42] is comple-
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Figure 1. A simplified exokernel system with two appli-
cations, each linked with its own libOS and sharing pages
through a buffer cache registry.

mentary to the exokernel approach of separating protection
from management. Exokernels use downloading of code to
let the kernel leave decisions to untrusted software [11].

In addition to these structural approaches, much work has
been done on better OS abstractions that give more control to
applications, such as user-level networking [40, 41], lottery
scheduling [43], application-controlled virtual memory [22,
27] and file systems [6, 35]. All of this work is directly
applicable to libOSes.

3 Exokernel Background

This section briefly summarizes the exokernel architecture.
Figure 1 shows a simplified exokernel system that is running
two applications: an unmodified UNIX application linked
against the ExOS libOS and a specialized exokernel applica-
tion using its own TCP and file system libraries. Applications
communicate with the kernel using low-level physical names
(e.g., block numbers); the kernel interface is as close to the
hardware as possible. LibOSes handle higher-level names
(e.g., file descriptors) and supply abstractions.

We briefly describe the exokernel principles, motivated
in [11]. These principles illustrate the mechanics of exokernel
systems and provide important motivation for many design
decisions discussed later in this paper. In addition, we show
how the principles can be applied and discuss the general
issue of protected sharing.

3.1 Exokernel principles

The goal of an exokernel is to give efficient control of re-
sources to untrusted applications in a secure, multi-user sys-
tem. We follow these principles to achieve this goal:

Separate protection and management.Exokernels pro-
vide primitives at the lowest possible level required for
protection—ideally, at the level of hardware (disk blocks,
context identifiers, TLB, etc.). Resource management is re-

stricted to functions necessary for protection: allocation, re-
vocation, sharing, and the tracking of ownership.

Expose allocation.Applications allocate resources explic-
itly. The kernel allows specific resources to be requested dur-
ing allocation.

Expose names.Exokernels use physical names wherever
possible. Physical names capture useful information and do
not require potentially costly or race-prone translations from
virtual names.

Expose revocation.Exokernels expose revocation policies
to applications. They let applications choose which instance
of a resource to give up. Each application has control over its
set of physical resources.

Expose information.Exokernels expose all system infor-
mation and collect data that applications cannot easily derive
locally. For example, applications can determine how many
hardware network buffers there are or which pages cache
file blocks. An exokernel might also record an approximate
least-recently-used ordering of all physical pages, something
individual applications cannot do without global information.

These principles apply not just to the kernel, but to any
component of an exokernel system. Privileged servers should
provide an interface boiled down to just what is required for
protection.

3.2 Kernel support for protected abstractions

Many of the resources protected by traditional operating sys-
tems are themselves high-level abstractions. Files, for in-
stance, consist of metadata, disk blocks, and buffer cache
pages, all of which are guarded by access control on high-
level file objects. While exokernels allow direct access to low-
level resources, exokernel systems must be able to provide
UNIX-like protection, including access control on high-level
objects where required for security. One of the main chal-
lenges in designing exokernels is to find kernel interfaces
that allow such higher-level access control without either
mandating a particular implementation or hindering applica-
tion control of hardware resources.

Xok meets this challenge with three design techniques.
First, it performs access control on all resources in the same
manner. Second, Xok provides software abstractions to bind
hardware resources together. For example, as shown in Fig-
ure 1, the Xok buffer cache registry binds disk blocks to the
memory pages caching them. Applications have control over
physical pages and disk I/O, but can also safely use each
other’s cached pages. Xok’s protection mechanism guaran-
tees that a process can only access a cache page if it has the
same level of access to the corresponding disk block. Third,
and most general, some of Xok’s abstractions allow appli-
cations to download code. This is required for abstractions
whose protection does not map to hardware abstractions. For
example, files may require valid updates to their modification
times.

The key to these exokernel software abstractions is that
they neither hinder low-level access to hardware resources
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nor unduly restrict the semantics of the protected abstrac-
tions they enable. Given these properties, a kernel software
abstraction does not violate the exokernel principles.

Though these software abstractions reside in the kernel
on Xok, they could also be implemented in trusted user-
level servers. This microkernel organizationwould cost many
additional context switches; these are particularly expensive
on the Intel Pentium Pro processors on which Xok runs.
Furthermore, partitioning functionality in user-level servers
tends to be more complex.

3.3 Protected sharing

The low-level exokernel interface gives libOSes enough hard-
ware control to implement all traditional operatingsystem ab-
stractions. Library implementations of abstractions have the
advantage that they can trust the applications they link with
and need not defend against malicious use. The flip side,
however, is that a libOS cannot necessarily trust all other
libOSes with access to a particular resource. When libOSes
guarantee invariants about their abstractions, they must be
aware of exactly which resources are involved, what other
processes have access to those resources, and what level of
trust they place in those other processes.

As an example, consider the semantics of the UNIX fork
system call. It spawns a new process initially identical to the
currently running one. This involves copying the entire virtual
address space of the parent process, a task operating systems
typically perform lazily through copy-on-write to avoid un-
necessary page copies. While copy-on-write can always be
done in a trusted, in-kernel virtual memory system, a libOS
must exercise care to avoid compromising the semantics of
fork when sharing pages with potentially untrusted processes.
This section details some of the approaches we have used to
allow a libOS to maintain invariants when sharing resources
with other libOSes.

The exokernel provides four mechanisms libOSes can use
to maintain invariants in shared abstractions. First,software
regions, areas of memory that can only be read or written
through system calls, provide sub-page protection and fault
isolation. Second, the exokernel allows on the-fly-creation
of hierarchically-named capabilitiesand requires that these
capabilities be specified explicitly on each system call [31].
Thus, a buggy child process accidentally requesting write ac-
cess to a page or software region of its parent will likely pro-
vide the wrong capability and be denied permission. Third,
the exokernel provideswakeup predicates: small, kernel-
downloaded functions that wake up processes when arbitrary
conditions become true (see Section 5.1 for details). Wakeup
predicates can ensure that a buggy or crashed process will not
hang a correctly behaved one. Fourth, the exokernel provides
robust critical sections: inexpensive critical sections that are
implemented by disabling software interrupts [3]. Using crit-
ical sections instead of locks eliminates the need to trust other
processes.

Three levels of trust determine what optimizations can be

used by the implementation of a shared abstraction.
Optimize for the common case: Mutual trust.It is often

the case that applications sharing resources place a consid-
erable amount of trust in each other. For instance, any two
UNIX programs run by the same user can arbitrarily mod-
ify each others’ memory through the debugger system call,
ptrace. When two exokernel processes can write each oth-
ers’ memory, their libOSes can clearly trust each other not
to be malicious. This reduces the problem of guaranteeing
invariants from one of security to one of fault-isolation, and
consequently allows libOS code to resemble that of mono-
lithic kernels implementing the same abstraction.

Unidirectional trust. Another common scenario occurs
when two processes share resources and one trusts the other,
but the trust is not mutual. Network servers often follow this
organization: a privileged process accepts network connec-
tions, forks, and then drops privileges to perform actions on
behalf of a particular user. Many abstractions implemented
for mutual trust can also function under unidirectional trust
with only slight modification. In the example of copy-on-
write, for instance, the trusted parent process must retain
exclusive control of shared pages and its own page tables,
preventing a child from child making copied pages writable
in the parent. While this requires more page faults in the
parent, it does not increase the number of page copies or
seriously complicate the code.

Defensive programming for mutual distrust. Finally,
there are situations where mutually distrustful processes must
share high-level abstractions with each other. For instance,
two unrelated processes may wish to communicate over a
UNIX domain socket, and neither may have any trust in the
other. For OS abstractions that can be shared by mutually
distrustful processes, libOSes must include defensive imple-
mentations that give reasonable interpretations to all possible
actions by the foreign process (for instance a socket write
larger than the buffer can be interpreted as an end of file).

Fortunately, sharing with mutual distrust occurs very infre-
quently for many abstractions. Many types of sharing occur
only between child and parent processes, where mutual or
unidirectional trust almost always holds. Where mutual dis-
trust does occur, defensive sanity checks are often not on
the critical path for performance. In the remaining cases, as
is the case for disk files, we have carefully crafted kernel
software abstractions to help libOSes maintain the necessary
invariants.

4 Multiplexing Stable Storage

An exokernel must provide a means to safely multiplex disks
among multiple library file systems (libFSes). Each libOS
contains one or more libFSes. Multiple libFSes can be used
to share the same files with different semantics. In addition to
accessing existing files, libFSes can define new on-disk file
types with arbitrary metadata formats. An exokernel must
give libFSes as much control over file management as pos-
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sible while still protecting files from unauthorized access. It
therefore cannot rely on simple-minded solutions like parti-
tioning to multiplex a disk: each file would require its own
partition.

To allow libFSes to perform their own file management,
an exokernel stable storage system must satisfy four require-
ments. First, creating new file formats should be simple and
lightweight. It should not require any special privilege. Sec-
ond, the protection substrate should allow multiple libFSes
to safely share files at the raw disk block and metadata level.
Third, the storage system must be efficient—as close to raw
hardware performance as possible. Fourth, the storage sys-
tem should facilitate cache sharing among libFSes, and allow
them to easily address problems of cache coherence, security,
and concurrency.

This section describes how Xok multiplexes stable storage,
both to show how we address these problems and to provide
a concrete example of the exokernel principles in practice.
First, we describe XN, Xok’s extensible, low-level in-kernel
stable storage system. We also describe the general interface
between XN and libFSes and present one particular libFS,
C-FFS, the co-locating fast file system [15].

4.1 Overview of XN

Designing a flexible exokernel stable storage system has
proven difficult: XN is our fourth design. This section pro-
vides an overview of UDFs, the cornerstone of XN; the fol-
lowing sections describe some earlier approaches (and why
they failed), and aspects of XN in greater depth.

XN provides access to stable storage at the level of disk
blocks, exporting a buffer cache registry (Section 4.3.3) as
well as free maps and other on-disk structures. The main
purpose of XN is to determine the access rights of a given
principal to a given disk block as efficiently as possible. XN
must prevent a malicious user from claiming another user’s
disk blocks as part of her own files. On a conventional OS, this
task is easy, since the kernel itself knows the file’s metadata
format. On an exokernel,where files have application-defined
metadata layouts, the task is more difficult.

XN’s novel solution employsUDFs(untrusted determinis-
tic functions). UDFs are metadata translation functions spe-
cific to each file type. XN uses UDFs to analyze metadata
and translate it into a simple form the kernel understands. A
libFS developer can install UDFs to introduce new on-disk
metadata formats. The restricted language in which UDFs
are specified ensures that they are deterministic—their out-
put depends only on their input (the metadata itself). UDFs
allow the kernel to safely and efficiently handle any metadata
layout without understanding the layout itself.

UDFs are stored on disk in structures calledtemplates.
Each template corresponds to a particular metadata format;
for example, a UNIX file system would have templates for
data blocks, inode blocks, inodes, indirect blocks, etc. Each
templateT has one UDF:owns-udfT , and two untrusted but

potentially nondeterministic functions:acl-ufT andsize-ufT .
All three functions are specified in the same language but only
owns-udfT must be deterministic. The other two can have
access to, for example, the time of day. The limited language
used to write these functions is a pseudo-RISC assembly
language, checked by the kernel to ensure determinacy. Once
a template is specified, it cannot be changed.

For a piece of metadatam of template type T ,
owns-udfT (m) returns the set of blocks whichm points to
and their respective template types. UDF determinism guar-
antees thatowns-udfwill always compute the same output for
a given input: XN cannot be spoofed byowns-udf. The set
of blocksowns-udfreturns is represented as a set of tuples.
Each tuple constitutes a range: a block address that specifies
the start of the range, the number of blocks in the range, and
the template identifier for the blocks in the range. Because
owned sets can be large, XN allows libFSes to partition meta-
data blocks into disjoint pieces such that each set returned is
(typically) a single tuple.

For example, say a libFS wants to allocate a disk blockb by
placing a pointer to it in a metadata structure,m. The libFS
will call XN, passing itm, b, and the proposed modification
tom (specified as a list of bytes to write intom). To enforce
protection, XN needs to know that the libFS’s proposed mod-
ification actually does what it says it does—that is, allocates
b in m. Thus, XN runsowns-udfT (m); makes the proposed
modification onm0, a copy ofm; and runsowns-udfT (m0).
It then verifies that the new result is equal the old result plus
b.

The acl-uf function implements template-specific access
control and semantics; its input is a piece of metadata, a
proposed modification to that metadata, and set of credentials
(e.g., capabilities). Its output is a Boolean value approving
or disapproving of the modification. XN runs the properacl-
uf function before any metadata modification.acl-ufs can
implement access control lists, as well as providing certain
other guarantees; for example, anacl-uf could ensure that
inode modification times are kept current by rejecting any
metadata changes that do not update them.

Thesize-uffunction simply returns the size of a data struc-
ture in bytes.

4.2 XN: Problem and history

The most difficult requirement for XN is efficiently deter-
mining the access rights of a given principal to a given disk
block. We discuss the successive approaches that we have
pursued.

Disk-block-level multiplexing. One approach is to asso-
ciate with each block or extent a capability (or access control
list) that guards it. Unfortunately, if the capability is spatially
separated from the disk block (e.g., stored separately in a ta-
ble), accessing a block can require two disk accesses (one to
fetch the capability and one to fetch the block). While caching
can mitigate this problem to a degree, we are nervous about
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its overhead on disk-intensive workloads. An alternative ap-
proach is to co-locate capabilities with disk blocks by placing
them immediately before a disk block’s data [26]. Unfortu-
nately, on common hardware, reserving space for a capability
would prevent blocks from being multiples of the page size,
adding overhead and complexity to disk operations.

Self-descriptive metadata.Our first serious attempt at
efficient disk multiplexing provided a means for each in-
stance of metadata to describe itself. For example, a disk
block would start with some number of bytes of application-
specific data and then say “the next ten integers are disk block
pointers.” The complexity of space-efficient self-description
caused us to limit what metadata could be described. We dis-
covered that this approach both caused unacceptable amounts
of space overhead and required excessive effort to modify ex-
isting file system code, because it was difficult to shoehorn
existing file system data structures into a universal format.

Template-based description. Self-description and its
problems were eliminated by the insight that each file sys-
tem is built from only a handful of different on-disk data
structures, each of which can be considered a type. Since the
number of types is small, it is feasible to describe each type
only once per file system—rather than once per instance of a
type—using atemplate.

Originally, templates were written in a declarative descrip-
tion language (similar to that used in self-descriptive meta-
data) rather than UDFs. This system was simple and better
than self-descriptive metadata, but still exhibited what we
have come to appreciate as an indication that applications do
not have enough control: the system made too many trade-
offs. We had to make a myriad of decisions about which base
types were available and how they were represented (how
large disk block pointers could be, how the type layout could
change, how extents were specified). Given the variety of on-
disk data structures described in the file system literature, it
seems unlikely that any fixed set of components will ever be
enough to describe all useful metadata.

Our current solution uses templates, but trades the declar-
ative description language for a more expressive, interpreted
language—UDFs. This lets libFSes track their own access
rights without XN understanding how they do so; XN merely
verifies that libFSes track block ownership correctly.

4.3 XN: Design and implementation

We first describe the requirements for XN and then present
the design.

4.3.1 Requirements and approach

In our experience so far, the following requirements have
been sufficient to reconcile application control with protected
sharing.

1. To prevent unauthorized access, every operation on disk
data must be guarded. For speed, XN usessecure bind-

ings[11] to move access checks to bind time rather than
checking at every access. For example, the permission
to read a cached disk block is checked when the page is
inserted into the page table of the libFS’s environment,
rather than on every access.

2. XN must be able to determine unambiguously what ac-
cess rights a principal has to a given disk block. For
speed, it uses the UDF mechanism to protect disk blocks
using the libFS’s own metadata rather than guarding
each block individually.

3. XN must guarantee that disk updates are ordered such
that a crash will not incorrectly grant a libFS access
to data it either has freed or has not allocated. This
requirement means that metadata that is persistent across
crashes cannot be written when it contains pointers to
uninitialized metadata, and that reallocation of a freed
block must be delayed until all persistent pointers to it
have been removed.

While isolation allows separate libFSes to coexist safely,
protected sharing of file system state by mutually distrustful
libFSes requires three additional features:

1. Coherent caching of disk blocks. Distributed, per-
application disk block caches create a consistency prob-
lem: if two applications obliviously cache the same disk
block in two different physical pages, then modifica-
tions will not be shared. XN solves this problem with
an in-kernel, system-wide, protected cache registry that
maps cached disk blocks to the physical pages holding
them.

2. Atomic metadata updates. Many file system updates
have multiple steps. To ensure that shared state always
ends up in a consistent and correct state, libFSes can
lock cache registry entries. (Future work will explore
optimistic concurrency control based on versioning.)

3. Well-formed updates. File abstractions above the XN in-
terface may require that metadata modifications satisfy
invariants (e.g., that link counts in inodes match the num-
ber of associated directory entries). UDFs allow XN to
guarantee such invariants in a file-system-specific man-
ner, allowing mutually distrustful applications to safely
share metadata.

XN controls only what is necessary to enforce these pro-
tection rules. All other abilities—I/O initiation, disk block
layout and allocation policies, recovery semantics, and con-
sistency guarantees—are left to untrusted libFSes.

4.3.2 Ordered disk writes

Another difficulty XN must face is guaranteeing the rules
Ganger and Patt [16] give for achieving strict file system in-
tegrity across crashes: First, never reuse an on-disk resource
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before nullifying all previous pointers to it. Second, never
create persistent pointers to structures before they are initial-
ized. Third, when moving an on-disk resource, never reset
the old pointer in persistent storage before the new one has
been set.

The first two rules are required for global system
integrity—and thus must be enforced by XN—while a file
system violating the third rule will only affect itself.

The rules are simple but difficult to enforce efficiently: a
naive implementation will incur frequent costly synchronous
disk writes. XN allows libFSes to address this by enforcing
the rules without legislating how to follow them. In particular,
libFSes can choose any operation order which satisfies the
constraints.

The first rule is implemented by deferring a block’s deal-
location until all on-disk pointers to that block have been
deleted; a reference count performed at crash recovery time
helps libFSes implement the third rule.

The second rule is the hardest of the three. To implement
it, XN keeps track oftaintedblocks. Any block is considered
tainted if it points either to an uninitialized block or to a
tainted block. LibFSes must not be allowed to write a tainted
block to disk. However, two exceptions allow XN to enforce
the general rule more efficiently:

First, XN allows entire file systems to be marked “tempo-
rary” (i.e., not persistent across reboots). Since these file sys-
tems are not persistent, they are not required to adhere to any
of the integrity rules. This technique allows memory-based
file systems to be implemented with no loss of efficiency.

The second exception is based on the observation that
unattached subtrees—trees whose root is not reachable from
any persistent root—will not be preserved across reboots and
thus, like temporary trees, are free of any ordering constraints.
Thus, XN does not track tainted blocks in an unreachable tree
until it is connected to a persistent root.

4.3.3 The buffer cache registry

Finally, we discuss the XN buffer cache registry, which allows
protected sharing of disk blocks among libFSes. The registry
tracks the mapping of cached disk blocks and their metadata
to physical pages (and vice versa). Unlike traditional buffer
caches, it only records the mapping, not the disk blocks them-
selves. The disk blocks are stored in application-managed
physical-memory pages. The registry tracks both the map-
ping and its state (dirty, out of core, uninitialized, locked). To
allow libFSes to see which disk blocks are cached, the buffer
cache registry is mapped read-only into application space.

Access control is performed when a libFS attempts to map
a physical page containing a disk block into its address space,
rather than when that block is requested from disk. That is,
registry entries can be inserted without requiring that the ob-
ject they describe be in memory. Blocks can also be installed
in the registry before their template or parent is known. As a
result, libFSes have significant freedom to prefetch.

Registry entries are installed in two ways. First, an appli-
cation that has write access to a block can directly install a
mapping to it into the registry. Second, applications that do
not have write access to a block can indirectly install an entry
for it by performing a “read and insert,” which tells the kernel
to read a disk block, associate it with an application-provided
physical page, set the protection of that page page appropri-
ately, and insert this mapping into the registry. This latter
mechanism is used to prevent applications that do not have
permission to write a block from modifying it by installing a
bogus in-core copy.

XN does not replace physical pages from the registry (ex-
cept for those freed by applications), allowing applications
to determine the most appropriate caching policy. Because
applications also manage virtual memory paging, the parti-
tioning of disk cache and virtual memory backing store is un-
der application control. To simplify the application’s task and
because it is inexpensive to provide, XN maintains an LRU
list of unused but valid buffers. By default, when LibOSes
need pages and none are free, they recycle the oldest buffer
on this LRU list.

XN allows any process to write “unowned” dirty blocks
to disk (i.e., blocks not associated with a running process),
even if that process does not have write permission for the
dirty blocks. This allows the construction of daemons that
asynchronously write dirty blocks. LibFSes do not have to
trust daemons with write access to their files, only to flush the
blocks. This ability has three benefits. First, the contents of
the registry can be safely retained across process invocations
rather than having to be brought in and paged out on creation
and exit. Second, this design simplifies the implementations
of libFSes, since a libFS can rely on a daemon of its choice
to flush dirty blocks even in difficult situations (e.g., if the
application containing the libFS is swapped out). Third, this
design allows different write-back policies.

4.4 XN usage

To illustrate how XN is used, we sketch how a libFS can
implement common file system operations. These two setup
operations are used to install a libFS:

Type creation. The libFS describes its types by storing
templates, described above in Section 4.1, into atype cata-
logue.Each template is identified by a unique string (e.g.,
“FFS Inode”). Once installed, types are persistent across re-
boots.

LibFS persistence.To ensure that libFS data is persistent
across reboots, a libFS can register the root of its tree in XN’s
root catalogue.A root entry consists of a disk extent and
corresponding template type, identified by a unique string
(e.g., “mylibFS”).

After a crash, XN uses these roots to garbage-collect the
disk by reconstructing the free map. It does so by logically
traversing all roots and all blocks reachable from them: reach-
able blocks are allocated, non-reachable blocks are not. If
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rebuilding the free map after a crash needs to be fast, this
step can be eliminated by ordering writes to the free map.

After initialization, the new libFS can use XN. We describe
a simplified version of the most common operations.

Startup. To start using XN, a libFS loads its root(s) and
any types it needs from the root catalogue into the buffer
cache registry. Usually both will already be cached.

Read.Reading a block from disk is a two-stage process,
where the stages can be combined or separated. First, the
libFS creates entries in the registry by passing block ad-
dresses for the requested disk blocks and the metadata blocks
controlling them (theirparents). The parents must already ex-
ist in the registry—libFSes are responsible for loading them.
XN usesowns-udfto determine if the requested blocks are
controlled by the supplied metadata blocks and, if so, installs
registry entries.

In the second stage, the libFS initiates a read request, op-
tionally supplying pages to place the data in. Access control
throughacl-uf is performed at the parent (e.g., if the data
loaded is a bare disk block), at the child (e.g., if the data is
an inode), or both.

A libFS can load any block in its tree by traversing from
its root entry, or optionally by starting from any intermedi-
ate node cached in the registry. Note that XN specifically
disallows metadata blocks from being mapped read/write.

To speculatively read a block before its parent is known,
a libFS can issue a raw read command. If the block is not
in the registry, it will be marked as “unknown type” and a
disk request initiated. The block cannot be used until after
it is bound to a parent by the first stage of the read process,
which will determine its type and allow access control to be
performed.

Allocate. A libFS selects blocks to allocate by reading
XN’s map of free blocks, allowing libFSes to control file lay-
out and grouping. Free blocks are allocated to a given meta-
data node by calling XN with the metadata node, the blocks
to allocate, and the proposed modification to the metadata
node. XN checks that the requested blocks are free, runs the
appropriateacl-uf to see if the libFS has permission to allo-
cate, and runsowns-udf, as described in Section 4.1, to see
that the correct block is being allocated. If these checks all
succeed, the metadata is changed, the allocated blocks are re-
moved from the free list, and any allocated metadata blocks
are marked tainted (see Section 4.3.2).

Write. A libFS writes dirty blocks to disk by passing the
blocks to write to XN. If the blocks are not in memory, or they
have been pinned in memory by some other application, the
write is prevented. The write also fails if any of the blocks are
tainted and reachable from a persistent root. Otherwise, the
write succeeds. If the block was previously tainted and now is
not (either by eliminating pointers to uninitialized metadata
or by becoming initialized itself), XN modifies its state and
removes it from the tainted list.

Since applications control what is fetched and what is
paged out when (and in what order), they can control many

disk management policies and can enforce strong stability
guarantees.

Deallocate.XN uses UDFs to check deallocate operations
analogously to allocate operations. If there are no on-disk
pointers to a deallocated disk block, XN places it on the free
list. Otherwise, XN enqueues the block on a “will free” list
until the block’s reference count is zero. Reference counts
are decremented when a parent that had an on-disk pointer to
the block deletes that pointer via a write.

4.5 C-FFS: a library file system

This subsection briefly describes C-FFS (co-locating fast file
system [15])—a UNIX-like library file system we built—
with special reference to additional protection guarantees it
provides.

XN provides the basic protection guarantees needed for
file system integrity, but real-world file systems often require
other, file-system-specific invariants. For instance, UNIX file
systems must ensure the uniqueness of file names within a
directory. This type of guarantee can be provided in any num-
ber of ways: in the kernel, in a server, or, in some cases, by
simple defensive programming. C-FFS currently downloads
methods into the kernel to check its invariants. We are cur-
rently developing a system similar to UDFs that can be used
to enforce type-specific invariants in an efficient, extensible
way.

Our experience with C-FFS shows that, even with the
strongest desired guarantees, a protected interface can still
provide significant flexibility to unprivileged software, and
that the exokernel approach can deal as readily with high-
level protection requirements as it can with those closer to
hardware.

C-FFS makes four main additions to XN’s protection
mechanisms:

1. Access control: it maps the UNIX representation and
semantics of access control (uids and gids, etc.) to those
of exokernel capabilities.

2. Well-formed updates: C-FFS guarantees UNIX-specific
file semantics: for example, that directories contain le-
gal, aligned file names.

3. Atomicity: C-FFS performs locking to ensure that its
data is always recoverable and disk writes only occur
when metadata is internally consistent.

4. Implicit updates: C-FFS ensures that certain state tran-
sitions are implicit on certain actions. Some examples
are that modification times are updated when file data
are changed, and that renaming or deleting a file updates
the name cache.

It is not difficult to implement UNIX protection without
significantly degrading application power. C-FFS protection
is implemented mainly by a small number of if-statements
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rather than by procedures that limit flexibility. The most intri-
cate operation—ensuring that files in a directory have unique
names—is less than 100 lines of code that scans through a
linked list of cached directory blocks to ensure name unique-
ness.

4.6 Future work

Stable storage is the most challenging resource we have mul-
tiplexed. Future work will focus on two areas. First, we plan
to implement a range of file systems (log-structured file sys-
tems, RAID, and memory-based file systems), thus testing if
the XN interface is powerful enough to support concurrent
use by radically different file systems. Second we will in-
vestigate using lightweight protected methods like UDFs to
implement the simple protection checks required by higher-
level abstractions.

5 Overview of Xok/ExOS

For the experiments in this paper, we use Xok/ExOS. This
section describes both Xok and ExOS.

5.1 Xok
Xok safely multiplexes the physical resources on Intel x86-
based computers. Xok performs this task in a manner similar
to the Aegis exokernel, which runs on MIPS-based DEC-
stations [11]. The CPU is multiplexed by dividing time into
round-robin-scheduled slices with explicit notification of the
beginning and the end of a time slice. Environments provide
the hardware-specific state needed to run a process (e.g., an
exception stack) and to respond to any event occurring dur-
ing process execution (e.g., interrupts and exceptions). The
network is multiplexed with dynamic packet filters [10]. This
subsection briefly describes the differences between Aegis
and Xok.

Physical memory.Unlike the MIPS architecture, the x86
architecture defines the page-table structure. Since x86 TLB
refills are handled in hardware, this structure cannot be over-
ridden by applications. Additionally, since the hardware does
not verify that the physical page of a translation can be
mapped by a process, applications are prevented from di-
rectly modifying the page table and must instead use system
calls. Although these restrictions make Xok less extensible
than Aegis, they simplify the implementation of libOSes (see
Section 9) with only a small reduction in application flexibil-
ity.

Like Aegis, Xok allows efficient and powerful virtual
memory abstractions to be built at the application level. It
does so by exposing the capabilities of the hardware (e.g., all
MMU protection bits) and exposing many kernel data struc-
tures (e.g., free lists, inverse page mappings). Xok’s low-level
interface means that paging is handled by applications. As
such, it can be done from disk, across the network, or by data
regeneration. Additionally, applications can readily perform

per-page transformations such as compression, verification
of contents using digital signatures (to allow untrusted nodes
in a network to cache pages), or encryption.

Wakeup predicates.Applications often want to sleep un-
til a condition is true. Unfortunately, it may be difficult for
an application to express this condition to the kernel. This
problem is more prevalent on exokernels because the bulk of
OS functionality resides in the application.

To solve this problem, Xok provides applications with the
ability to inject wakeup predicates into the kernel. Wakeup
predicates are boolean expressions used by applications to
sleep until the state of the system satisfies some condition;
they are evaluated by the kernel when an environment is
about to be scheduled. The application is not scheduled if the
predicate does not hold.

Predicate evaluation is efficient. Like dynamic packet fil-
ters, Xok compiles predicates on-the-fly to executable code.
The significant overheadof an address space context switch is
eliminated by evaluating the predicates in the exokernel and
pre-translating all predicate virtual addresses to their associ-
ated physical addresses. When a virtual page referenced in a
predicate is unmapped, the physical page is not marked as free
until a new predicate is downloaded or until the application
exits. Furthermore, the implementation of wakeup predicates
is simple (fewer than 200 lines of commented code) because
careful language design (no loops and easy to understand
operations) allows predicates to be easily controlled.

Predicates are simple but powerful. Coupled with Xok’s
exposure of data structures, they have provided us with a
robust wakeup facility—none of the new uses of wakeup
predicates required changes to Xok. For example, to wait for
a disk block to be paged in, a wakeup predicate can bind to the
block’s state and wake up when it changes from “in transit”
to “resident.” To bound the amount of time a predicate sleeps,
it can compare against the system clock. The composition of
multiple predicates allows atomic checking of disjoint data
structures.

Access controlUnlike Aegis, Xok performs access control
through hierarchically-named capabilities [31]; despite the
name, these capabilities more closely resemble a generalized
form of UNIX user and group ID than traditional capabili-
ties [9]. All Xok calls require explicit credentials. We believe
that the combination of an exokernel interface, hierarchically-
named capabilities, and explicit credentials will simplify the
implementation of secure applications, as we hope to demon-
strate in future work.

5.2 ExOS 1.0

ExOS is a libOS that supports most of the abstractions found
in 4.4BSD. It runs many unmodified UNIX applications, in-
cluding all of the applications that are needed to build the
complete system (kernel, ExOS, and applications) on itself.
It also runs most shells, file utilities (wc, grep, ls, vi, etc.), and
many networking applications (telnetd, ftp, etc.). The most
salient missing functions are full paging, process swapping,
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process groups, and a windowing system. There is no funda-
mental reason why these are not supported; we simply have
not yet had the time to implement or port them. On Aegis,
for instance, ExOS supported full paging to disk and over the
network.

The primary goals of ExOS are simplicity and flexibility.
To allow applications to override any implementation feature,
we made the system entirely library based, rather than place
objects such as process tables in non-customizable servers. As
a result, customization of the resulting system is limited only
by an application’s understanding of the system interfaces
and by the protection enforced by shared abstractions—any
ExOS functionality can be replaced by application-specific
code.

The two primary caveats of the current implementation are
that the system is research, not production quality and that
it uses shared global state for some abstractions. These lim-
itations are not fundamental and we do not expect removing
either caveat to have a significant impact on our results. To
compensate for the effects of shared state on performance,
measurements in Sections 6 and 8 include the cost of inserting
system calls before all writes to shared state. This represents
the overhead of invoking the kernel to check writes to shared
state.

5.2.1 Implementing UNIX abstractions on Xok

To implement UNIX abstractions in a library, we partitioned
most of the UNIX kernel state and made it private to each
process. The remainder is shared. Most critical shared state
(inode table, file system metadata, page tables, buffer cache,
process table, and pipes), is protected using Xok’s protections
mechanisms. However, for some shared state (the process
map, file descriptor table, sockets, TTYs, mount table, and
system V shared memory table), ExOS uses shared memory.
Using software regions, we plan to make this shared state
fully protected in the near future. A limited degree of fault
isolation is provided for these abstractions by mappingshared
data at addresses far from the application text and data.

Processes.The process mapmaps UNIX process identi-
fiers to Xok environment numbers using a shared table. The
process tablerecords the process identifiers of each process,
that of its parent, the arguments with which the process was
called, its run status, and the identity of its children. The
table is partitioned across application-reserved memory of
Xok’s environment structure, which is mapped readable for
all processes and writeable for only the environment’s own-
ing process. ExOS uses Xok’s IPC to safely update parent and
child process state. The UNIXps(process status) program is
implemented by reading all the entries of the process table.

UNIX provides thefork system call to duplicate the cur-
rent process andexec to overlay it with another.Exec is
implemented by creating a new address space for the new
process, loading on demand the disk image of the process
into the new address space, and then discarding the address
space that calledexec. Implementing fork in a library is pe-

culiar since it requires that a process create a replica of its
address space and statewhile it is executing. To make fork
efficient, ExOS uses copy-on-write to lazily create separate
copies of the parent’s address space. ExOS scans through its
page tables, which are exposed by Xok, marking all pages as
copy-on-write except those data segment and stack pages that
theforkcall itself is using. These pages must be duplicated so
as not to generate copy-on-write faults while running thefork
and page fault handling code. Groups of page table entries
are updated at once by batching system calls to amortize the
system call overhead over many updates.

Interprocess communication.UNIX defines a variety of
interprocess communication primitives: signals (software in-
terrupts that can be sent between processes or to a process
itself), pipes (producer-consumer untyped message queues),
and sockets (differing from pipes in that they can be estab-
lished between non-related processes, potentially executing
on different machines).

Signals are layered on top of Xok IPC. Pipes are imple-
mented using Xok’s software regions, coupled with a “di-
rected yield” to the other party when it is required to do work
(i.e., if the queue is full or empty). Sockets communicatingon
the same machine are currently implemented using a shared
buffer.

Inter-machine sockets are implemented through user-level
network libraries for UDP and TCP. The network libraries are
implemented using Xok’s timers, upcalls, and packet rings,
which allow protected buffering of received network packet,

File descriptors. File descriptors are small integers used
to access many UNIX resources (e.g., files, sockets, pipes).
On ExOS they name entries in a globalfile descriptor ta-
ble, which is currently stored in shared memory. As in the
UNIX kernel itself, ExOS accesses each table element in an
object-oriented manner: each resource is associated with a
table of pointers to functions implementing each operation
(read, write, etc.). However, unlike UNIX, ExOS allows ap-
plications to install their own methods.

Files.Local files are accessed through C-FFS, which uses
XN to protect file metadata; remote files are accessed through
the Network File System protocol (NFS) [38]. Both file sys-
tems are library based. ExOS uses XN’s buffer cache registry
to safely share both C-FFS and NFS disk blocks.

UNIX allows different file systems to be attached to its
hierarchical name space. ExOS duplicates this functionality
by maintaining a currently unprotected shared mount table
that maps directories from one file system to another.

5.2.2 Shared libraries

Since ExOS is implemented as a library, shared libraries are
crucial. Without shared libraries, every application would
contain its own copy of ExOS, wasting memory and making
process creation expensive. We employ a simple but primitive
scheme for shared libraries. ExOS is linked as a stand-alone
executable with its base address starting at a reserved section
of the application’s address space. Its exported symbols are
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then extracted and stored in an assembly file. To resolve calls
to library routines, the application links against this assembly
file. During process creation the application is loaded and
ExOS maps the library at its indicated address.

This organizationseparates the file that the libOS resides in
from applications, allowing multiple applications to share the
same on-disk copy and, more importantly, any cached disk
blocks from this file. Code sharing reduces the size of ExOS
executables to roughly that of normal UNIX applications.
Unlike traditional dynamic linking, procedure calls are no
more expensive than for normal code since they do not require
the use of a relocation table.

6 Application Performance on Xok

This section shows that unmodified UNIX applications run as
fast on Xok/ExOS as on conventional centralized operating
systems. In fact, because of C-FFS, some applications run
considerably faster on Xok/ExOS. We compare Xok/ExOS
to both FreeBSD 2.2.2 and OpenBSD 2.1 on the same hard-
ware. Xok uses device drivers that are derived from those
of OpenBSD. ExOS also shares a large source code base
with OpenBSD, including most applications and most of
libc. Compared to OpenBSD and FreeBSD, ExOS has not
had much time to mature; we built the system in less than
two years and moved to the x86 platform only a year ago.

All experiments are performed on 200-MHz Intel Pentium
Pro processors with a 256-KByte on-chip L2 cache and 64-
MByte of main memory. The disk system consists of an NCR
815 SCSI controller connecting a fast SCSI chain with one
or more Quantum Atlas XP32150 disk drives to the PCI bus
(vs440fx PCI chip set). Reported times are the minimum time
of ten trials (the standard deviations of the total run times are
less than three percent).

The measurements establish two results. First, the base
performance of unaltered UNIX applications linked against
ExOS is comparable to OpenBSD and FreeBSD. Untrusted
libOSes on an exokernel can support unchanged UNIX appli-
cations with the same performance as centralized monolithic
UNIX operating systems. Second, because of ExOS’s high-
performance file system, some unaltered UNIX applications
perform better on ExOS than on FreeBSD and OpenBSD.
Applications do not need to be re-written or even modified in
order to take advantage of an exokernel.

It is important to note that a sufficiently motivated kernel
programmer can implement any optimization that is imple-
mented in an extensible system. In fact, a member of our
research group, Costa Sapuntzakis, has implemented a ver-
sion of C-FFS within OpenBSD. Extensible systems (and we
believe exokernels in particular) make these optimizations
significantly easier to implement than centralized systems
do. For example, porting C-FFS to OpenBSD took more
effort than designing C-FFS and implementing it as a li-
brary file system. The experiments below demonstrate that by
using unprivileged application-level resource management,

Benchmark Description (application)
Copy small file copy the compressed archived source tree (cp)
Uncompress uncompress the archive (gunzip)
Copy large file copy the uncompressed archive (cp)
Unpack file unpack archive (pax)
Copy large tree recursively copy the created directories (cp).
Diff large tree compute the difference between the trees (diff)
Compile compile source code (gcc)
Delete files delete binary files (rm)
Pack tree archive the tree (pax)
Compress compress the archive tree (gzip)
Delete delete the created source tree (rm)

Table 1.The I/O-intensive workload installs a large applica-
tion (the lcc compiler). The size of the compressed archive
file for lcc is 1.1 MByte.

any skilled programmer can implement useful OS optimiza-
tions. The extra layer of protection required to make this
application-level management safe costs little.

6.1 Base system performance

We test ExOS’s base performance by running the I/O-
intensive benchmarks from Table 1 over ExOS’s library im-
plementation of C-FFS on top of XN and comparing it to
OpenBSD with a C-FFS file system. The workload in the ex-
periments represents unmodified UNIX programs involved
with installing a software package: copying a compressed
archive file, uncompressing it, unpacking it (which results in
a source tree), copying the resulting tree, comparing the two
trees, compiling the source tree, deleting binaries, archiving
the source tree, compressing the archive file, and deleting the
source tree (see Table 1).

Figure 2 shows the performance of these applications over
Xok/ExOS, OpenBSD/C-FFS, OpenBSD, and FreeBSD. To
establish base system performance, we compare Xok/ExOS
with OpenBSD/C-FSS, since they both use a C-FFS file sys-
tem. The total running time for Xok/ExOS is 41 seconds
and for OpenBSD/C-FFS is 51 seconds. Since ExOS and
OpenBSD/C-FFS use the same type of file system, one would
expect that ExOS and OpenBSD perform equally well. As can
be seen in Figure 2, Xok/ExOS performance is indeed com-
parable to OpenBSD/C-FFS on eight of the 11 applications.
On three applications (pax, cp, diff), Xok/ExOS runs consid-
erably faster (though we do not yet have a good explanation
for this).

From these measurements we conclude that, even though
ExOS implements the bulk of the operating system at the
application level, common software development operations
on Xok/ExOS perform comparably to OpenBSD/C-FFS.
They demonstrate that—at least for this common domain of
applications—an exokernel’s flexibility can be provided for
free: even without aggressive optimizations ExOS’s perfor-
mance is comparable to that of mature monolithic systems.
The cost of low-level multiplexing is negligible.
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Figure 2. Performance of unmodified UNIX applications.
Xok/ExOS and OpenBSD/C-FFS use a C-FFS file system
while Free/OpenBSD use their native FFS file systems. Times
are in seconds.

6.2 Invisible optimization using C-FFS

These comparisons concentrate on I/O intensive operations
that exploit the C-FFS library file system [15]. We again
use the I/O-intensive benchmarks described in Table 1, but
now compare Xok/C-FFS with OpenBSD and FreeBSD. As
Figure 2 shows, unaltered UNIX applications can run signif-
icantly faster on top of Xok/ExOS. Xok/ExOS completes all
benchmarks in 41 seconds, 19 seconds faster than FreeBSD
and OpenBSD. On eight of the eleven benchmarks Xok/ExOS
performs better than Free/OpenBSD (in one case by over a
factor of four). ExOS’s performance improvements are due
to its C-FFS file system.

We also ran the Modified Andrew Benchmark (MAB) [33].
On this benchmark, Xok/ExOS takes 11.5 seconds,
OpenBSD/C-FFS takes 12.5 seconds, OpenBSD takes 14.2
seconds, and FreeBSD takes 11.5 seconds. The difference
in performance on MAB is less profound than on the I/O-
intensive benchmark, because MAB stresses fork, an expen-
sive function in Xok/ExOS. ExOS’s fork performance suffers
because Xok does not yet allow environments to share page
tables. Fork takes six milliseconds on ExOS, compared to
less than one millisecond on OpenBSD.

6.3 The cost of protection

In this section, we investigate the cost of protection on
Xok/ExOS. As discussed in the previous section, we have not
yet completed the protected implementation of all data struc-
tures. ExOS stores some tables in writeable global shared
memory, including the file descriptor table. In order for our
measurements to estimate the performance of a fully pro-
tected ExOS, we inserted three system calls before every
write to these shared tables. All measurements reported in
Section 6 include these extra calls.

To measure the costs of all protection we ran the bench-
marks presented in Figure 2 without XN or any of the extra
system calls. This reduces the overall number of Xok system

Benchmark Shared memory Protection OpenBSD
Latency 1-byte 13 30 34
Latency 8-Kbyte 150 148 160

Table 2. The cost of a local-trust implementation of pipes
(times in microseconds).

calls from 300,000 to 81,000, but only changes the total run-
ning time from 41.1 seconds to 39.7 seconds. Real workloads
are dominated by costs other than system call overhead.

To investigate the cost of protection in more detail, we
measure the cost of the protection mechanisms described in
Section 3. We do so by comparing two implementations of
pipes (see Table 2). The first implementation places all data
in shared memory and performs no sanity checking. The
second implementation uses software regions to protect pipe
data and installs a wakeup predicate on every read (something
unnecessary even with mutual distrust). The results show that
even with gratuitous use of Xok’s protection mechanisms,
user-level pipes can still outperform OpenBSD.

7 Exploiting Extensibility in Applica-
tions

This section demonstrates some of the interesting possibili-
ties in functionality and performance enabled by application-
level resource management.We report on a binary emulator, a
“zero-touch” file-copy program, and the Cheetah web server.
Because XN was developed recently, the applications in this
section were not measured with XN.

7.1 Fast, simple binary emulation
Xok provides facilities to efficiently reroute specific INT in-
structions. We have used this ability to build a binary emula-
tor for OpenBSD applications by capturing the system calls
made by emulated OpenBSD programs. This binary emulator
is useful for OpenBSD programs for which we do not have
source code. Although the emulator is only partially com-
pleted (it supports 90 of the approximately 155 OpenBSD
system calls), initial results are promising: it has been able to
execute large programs such as Mosaic.

The main interesting feature of the emulator is that it runs in
the same address space as the emulated program, and conse-
quently does not need any privilege. Measurements show that
most programs on the emulator run only a few percent slower
than the same programs running directly under Xok/ExOS.

A counter-intuitive result is that, because the emulator runs
in the same address space as ExOS, it is possible to run em-
ulated programs faster than on their native OS. For exam-
ple, the trivial “get process id” system call takes 270 cycles
on OpenBSD and 100 cycles on the emulator running on
Xok/ExOS (on a 120-MHz Intel Pentium). This difference
comes from the fact that the emulator replaces OpenBSD
system calls with procedure calls into ExOS. ExOS can omit
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many expensive checks that UNIX must perform in order to
guard against application errors (on an exokernel, if an ap-
plication passes the wrong arguments to a libOS, only the
application will be affected).

7.2 XCP: a “zero-touch” file copying program

XCP is an efficient file copy program. It exploits the low-level
disk interface by removing artificial ordering constraints, by
improving disk scheduling through large schedules, by elim-
inating data touching by the CPU, and by performing all disk
operations asynchronously.

Given a list of files,XCP works as follows. First, it enu-
merates and sorts the disk blocks of all files and issues large,
asynchronous disk reads using this schedule. (If multiple in-
stances ofXCP run concurrently, the disk driver will merge
the schedules.) Second, it creates new files of the correct
size, overlapping inode and disk block allocation with the
disk reads. Finally, as the disk reads complete, it constructs
large writes to the new disk blocks using the buffer cache
entries. This strategy eliminates all copies; the file is DMAed
into and out of the buffer cache by the disk controller—the
CPU never touches the data.

XCPis a factor of three faster than the copy program (CP) on
Xok/ExOS that uses UNIX interfaces, irrespective of whether
all files are in core (becauseXCP does not touch the data) or
on disk (becauseXCP issues disk schedules with a minimum
number of seeks and the largest contiguous ranges of disk
blocks).

The fact that the file system is an application library al-
lows us both to have integration when appropriate and to
craft new abstractions as needed. This latter ability is espe-
cially profitable for the disk both because of the high cost
of disk operations and because of the demonstrated reluc-
tance of operating systems vendors to provide useful, sim-
ple improvements to their interfaces (e.g., prefetching, asyn-
chronous reads and writes, fine-grained disk restructuring and
“sync” operations).

7.3 The Cheetah HTTP/1.0 Server

The exokernel architecture is well suited to building fast
servers (e.g., for NFS servers or web servers). Server per-
formance is crucial to client/server applications [23], and the
I/O-centric nature of servers makes operating system-based
optimizations profitable.

We have developed an extensible I/O library (XIO) for fast
servers and a sample application that uses it, the Cheetah
HTTP server. This library is designed to allow application
writers to exploit domain-specific knowledge and to simplify
the construction of high-performance servers by removing
the need to “trick” the operating system into doing what the
application requires (e.g., Harvest [7] stores cached pages in
multiple directories to achieve fast name lookup).

An HTTP server’s task is simple: given a client request,
it finds the appropriate document and sends it. The Cheetah
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Figure 3. HTTP document throughput as a function of the
document size for several HTTP/1.0 servers.NCSA/BSD
represents the NCSA/1.4.2 server running on OpenBSD.
Harvest/BSD represents the Harvest proxy cache running
on OpenBSD.Socket/BSDrepresents our HTTP server using
TCP sockets on OpenBSD.Socket/Xokrepresents our HTTP
server using the TCP socket interface built on our extensible
TCP/IP implementation on the Xok exokernel.Cheetah/Xok
represents the Cheetah HTTP server, which exploits the TCP
and file system implementations for speed.

Web server performs the following set of optimizations as
well as others not listed here.

Merged File Cache and Retransmission Pool.Cheetah
avoids all in-memory data touching (by the CPU) and the
need for a distinct TCP retransmission pool by transmitting
file data directly from the file cache using precomputed file
checksums (which are stored with each file). Data are trans-
mitted (and retransmitted, if necessary) to the client directly
from the file cache without CPU copy operations. (Pai et al.
have also used this technique [34].)

Knowledge-based Packet Merging.Cheetah exploits
knowledge of its per-request state transitions to reduce the
number of I/O actions it initiates. For example, it avoids send-
ing redundant control packets by delaying ACKs on client
HTTP requests, since it knows it will be able to piggy-back
them on the response. This optimization is particularly valu-
able for small document sizes, where the reduction represents
a substantial fraction (e.g., 20%) of the total number of pack-
ets.

HTML-based File Grouping. Cheetah co-locates files in-
cluded in an HTML document by allocating them in disk
blocks adjacent to that file when possible. When the file
cache does not capture the majority of client requests, this
extension can improve HTTP throughput by up to a factor of
two.

Figure 3 shows HTTP request throughput as a function of
the requested document size for five servers: the NCSA 1.4.2
server [32] running on OpenBSD 2.0, the Harvest cache [7]
running on OpenBSD 2.0, the base socket-based server run-
ning on OpenBSD 2.0 (i.e., our HTTP server without any
optimizations), the base socket-based server running on the
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Xok exokernel system (i.e., our HTTP server without any
optimizations with vanilla socket and file descriptor imple-
mentations layered over XIO), and the Cheetah server run-
ning on the Xok exokernel (i.e., our HTTP server with all
optimizations enabled).

Figure 3 provides several important pieces of information.
First, our base HTTP server performs roughly as well as the
Harvest cache, which has been shown to outperform many
other HTTP server implementations on general-purpose oper-
ating systems. Both outperform the NCSA server. This gives
us a reasonable starting point for evaluating extensions that
improve performance. Second, the default socket and file
system implementations built on top of XIO perform signifi-
cantly better than the OpenBSD implementations of the same
interfaces (by 80–100%). The improvement comes mainly
from simple (though generally valuable) extensions, such as
packet merging, application-level caching of pointers to file
cache blocks, and protocol control block reuse.

Third, and most importantly, Cheetah significantly outper-
forms the servers that use traditional interfaces. By exploiting
Xok’s extensibility, Cheetah gains a four times performance
improvement for small documents (1 KByte and smaller),
making it eight times faster than the best performance we
could achieve on OpenBSD. Furthermore, the large docu-
ment performance for Cheetah is limited by the available
network bandwidth (three 100Mbit/s Ethernets) rather than
by the server hardware. While the socket-based implemen-
tation is limited to only 16.5 MByte/s with 100% CPU uti-
lization, Cheetah delivers over 29.3 MByte/s with the CPU
idle over 30% of the time. The extensibility of ExOS’s de-
fault unprivileged TCP/IP and file system implementations
made it possible to achieve these performance improvements
incrementally and with low complexity.

The optimizations performed by Cheetah are architecture
independent. In Aegis, Cheetah obtained similar performance
improvements over Ultrix web servers [24].

8 Global Performance

Xok/ExOS’s decentralization of resource management al-
lows the performance of individual applications to be im-
proved, but Xok/ExOS must also guarantee good global per-
formance when running multiple applications concurrently.
The experiments in this section measure the situation where
the exokernel architecture seems potentially weak: under sub-
stantial load where selfish applications are consuming large
resources and utilizing I/O devices heavily. The results indi-
cate that an exokernelcan successfully reconcile local control
with global performance.

Global performance has not been extensively studied. We
use the total time to complete a set of concurrent tasks
as a measure of system throughput, and the minimum and
the maximum latency of individual applications as a mea-
sure of interactive performance. For simplicity we compare
Xok/ExOS’s performance under high load to that of Free-
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Figure 4. Measured global performance of Xok/ExOS (the
first bar) and FreeBSD (the second bar), using the first appli-
cation pool. Times are in seconds and on a log scale.num-
ber/numberrefers to the the total number of applications run
by the script and the maximum number of jobs run concur-
rently. Total is the total running time of each experiment,
Max is the longest runtime of any process in a given run
(giving the worst latency).Min is the minimum.

BSD; in these experiments, FreeBSD always performs better
than OpenBSD, because of OpenBSD’s small, non-unified
buffer cache. While this methodology does not guarantee
that an exokernel can compare to any centralized system, it
does offer a useful relative metric.

The space of possible combinations of applications to run
is large. The experiments use randomization to ensure we get
a reasonable sample of this space. The inputs are a set of
applications to pick from, the total number to run, and the
maximum number that can be running concurrently. Each
experiment maintains the number of concurrent processes at
the specified maximum. The outputs are the total running
time, giving throughput, and the time to run each application.
Poor interactive performance will show up as a high minimum
latency.

The first application pool includes a mix of I/O-intensive
and CPU-intensive programs: pack archive (pax -w), search
for a word in a large file (grep), compute a checksum many
times over a small set of files (cksum), solve a traveling sales-
man problem (tsp), solve iteratively a large discrete Laplace
equation using successive overrelaxation (sor), count words
(wc), compile (gcc), compress (gzip), and uncompress (gun-
zip). For this experiment, we chose applications on which
both Xok/ExOS and FreeBSD run roughly equivalently.Each
application runs for at least several seconds and is run in
a separate directory from the others (to avoid cooperative
buffer cache reuse). The pseudo-random number generators
are identical and start with the same seed, thus producing
identical schedules. The applications we chose compete for
the CPU, memory, and the disk.

Figure 4 shows on a log scale the results for five different
experiments: seven jobs with a maximum concurrency of
one job through 35 jobs with a maximum concurrency of
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Figure 5. Measured global performance of Xok/ExOS (the
first bar) and FreeBSD (the second bar), using the second
application pool. Methodology and presentation are as de-
scribed for Figure 4.

five jobs. The results show that an exokernel system can
achieve performance roughly comparable to UNIX, despite
being mostly untuned for global performance.

With a second application pool, we examine global per-
formance when specialized applications (emulated by appli-
cations that benefit from C-FFS’s performance advantages)
compete with each other and non-specialized applications.
This pool includes tsp and sor from above, unpack archive
(pax -r) from Section 6, recursive copy (cp -r) from Section 6,
and comparison (diff) of two identical 5 MB files. The pax
and cp applications represent the specialized applications.

Figure 5 shows on a log scale the results for five experi-
ments: seven jobs with a maximum concurrency of one job
through 35 jobs with a maximum concurrency of 5 jobs.
The results show that global performance on an exokernel
system does not degrade even when some applications use
resources aggressively. In fact, the relative performance dif-
ference between FreeBSD and Xok/ExOS increases with job
concurrency.

The central challenge in an exokernel system is notenforc-
ing a global system policy but, rather,deriving the informa-
tion needed to decide what enforcement involves and doing
so in such a way that application flexibility is minimally
curtailed. Since an exokernel controls resource allocation
and revocation, it has the power to enforce global policies.
Quota-based schemes, for instance, can be trivially enforced
using only allocation denial and revocation. Fortunately, the
crudeness of successful global optimizations allows global
schemes to be readily implemented by an exokernel. For
example, Xok currently tracks global LRU information that
applications can use when deallocating resources.

We believe that an exokernel can provide global perfor-
mancesuperiorto current systems. First, effective local op-
timization can mean there are more resources for the en-
tire system. Second, an exokernel gives application writers
machinery to orchestrate inter-application resource manage-
ment, allowing them to perform domain-specific global op-

timizations not possible on current centralized systems (e.g.,
the UNIX “make” program could be modified to orchestrate
the complete build process). Third, an exokernel can unify
the many space-partitioned caches in current systems (e.g.,
the buffer cache, network buffers, etc.). Fourth, since appli-
cations can know when resources are scarce, they can make
better use of resources when layering abstractions. For exam-
ple, a web server that caches documents in virtual memory
could stop caching documents when its cache does not fit in
main memory. Future research will pursue these issues.

9 Experience

Over the past three years, we have built three exokernel sys-
tems. We distill our experience by discussing the clear advan-
tages, the costs, and lessons learned from building exokernel
systems.

9.1 Clear advantages
Exposing kernel data structures.Allowing libOSes to map
kernel and hardware data structures into their address spaces
is a powerful extensibility mechanism. (Of course, these
structures must not contain sensitive information to which
the application lacks privileges.) The benefits of mapping
data structures are two-fold. First, exposed data structures
can be accessed without system call overhead. More impor-
tantly, however, mapping the data structures directly allows
libOSes to make use of information the exokernel did not
anticipate exporting.

Because exposed data structures do not constitute a well-
defined API, software that directly relies on them (e.g., the
hardware abstraction layer in a libOS) may need to be recom-
piled or modified if the kernel changes. This can be seen as a
disadvantage. On the other hand, code affected by changes in
exposed data structures will typically reside in dynamically-
linked libOSes, so that applications need not concern them-
selves with these changes. Moreover, most improvements that
would require kernel modification on a traditional operating
systems need only effect libOSes on exokernels. This is one
of the main advantages of the exokernel, as libOSes can be
modified and debugged considerably more easily than ker-
nels. Finally, we expect most changes to the exokernel proper
to be along the lines of new device drivers or hardware-
oriented functionality, which expose new structures rather
than modify existing ones.

In the end, some aggressive applications may not work
across all versions of the exokernel, even if they are dy-
namically linked. This problem is nothing new, however. A
number of UNIX programs such as top, gated, lsof, and net-
stat already make use of private kernel data structures through
the kernel memory device/dev/kmem. Administrators have
simply learned to reinstall these programs whenever major
kernel data structures change.

The use of “wakeup predicates” has forcefullydriven home
the advantages of exposing kernel data structures. Frequently,
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we have required unusual information about the system. In
all cases, this information was already provided by the kernel
data structures.

The CPU interface.The combination of time slices, initi-
ation/termination upcalls, and directed yields has proven its
value repeatedly. (Subsequent to our work, others have found
these primitives useful [14].) We have used the primitives
for inter-process communication optimization (e.g., two ap-
plications communicating through a shared message queue
can yield to each other), global gang-scheduling, and robust
critical sections (see below).

Libraries are simpler than kernels. The “edit, compile,
debug” cycle of applications is considerably faster than the
“edit, compile, reboot, debug” cycle of kernels. A practical
benefit of placing OS functionality in libraries is that the
“reboot” is replaced by “relink.” Accumulated over many it-
erations, this replacement reduces development time substan-
tially. Additionally, the fact that the library is isolated from
the rest of the system allows easy debugging of basic ab-
stractions. Untrusted user-level servers in microkernel-based
systems also have this benefit.

9.2 Costs

Exokernels are not a panacea. This subsection lists some of
the costs we have encountered.

Exokernel interface design is not simple.The goal of
an exokernel system is for privileged software to export in-
terfaces that let unprivileged applications manage their own
resources. At the same time, these interfaces must offer rich
enough protection that libOSes can assure themselves of in-
variants on high-level abstractions. It generally takes several
iterations to obtain a satisfactory interface, as the designer
struggles to increase power and remove unnecessary func-
tionality while still providing the necessary level of pro-
tection. Most of our major exokernel interfaces have gone
through multiple designs over several years.

Information loss. Valuable information can be lost by im-
plementing OS abstractions at application level. For instance,
if virtual memory and the file system are completely at appli-
cation level, the exokernel may be unable to distinguish pages
used to cache disk blocks and pages used for virtual memory.
Glaze, the Fugu exokernel, has the additional complication
that it cannot distinguish such uses from the physical pages
used for buffering messages [29]. Frequently-used informa-
tion can often be derived with little effort. For example, if
page tables are managed by the application, the exokernel
can approximate LRU page ordering by tracking the inser-
tion of translations into the TLB. However, at the very least,
this inference requires thought.

Self-paging libOSes.Self-paging is difficult (only a few
commercial operating systems page their kernel). Self-paging
libOSes are even more difficult because paging can be caused
by external entities (e.g., the kernel touching a paged-out
buffer that a libOS provided). Careful planning is necessary
to ensure that libOSes can quickly select and return a page

to the exokernel, and that there is a facility to swap in pro-
cesses without knowledge of their internals (otherwise virtual
memory customization will be infeasible).

9.3 Lessons

Provide space for application data in kernel structures.
LibOSes are often easier to develop if they can store shared
state in kernel data structures. In particular, this ability can
simplify the task of locating shared state and often avoids
awkward (and complex) replication of indexing structures
at the application level. For example, Xok lets libOSes use
the software-only bits of page tables, greatly simplifying the
implementation of copy on write.

Fast applications do not require good microbenchmark
performance.The main benefit of an exokernel is not that it
makes primitive operations efficient, but that it gives appli-
cations control over expensive operations such as I/O. It is
this control that gives order of magnitude performance im-
provements to applications, not fast system calls. We heav-
ily tuned Aegis to achieve excellent microbenchmark per-
formance. Xok, on the other hand, is completely untuned.
Nevertheless, applications perform well.

Inexpensive critical sections are useful for LibOSes.In
traditional OSes, inexpensive critical sections can be imple-
mented by disabling interrupts [3]. ExOS implements such
critical sections by disabling software interrupts (e.g., time
slice termination upcalls). Using critical sections instead of
locks removes the need to communicate to manage a lock,
to trust software to acquire and release locks correctly, and
to use complex algorithms to reclaim a lock when a process
dies while still holding it. This approach has proven to be
similarly useful on the Fugu multiprocessor; it is the basis of
Fugu’s fast message passing.

User-level page tables are complex.If page tables are
migrated to user level (as on Aegis), a concerted effort must
be made to ensure that the user’s TLB refill handler can run
in unusual situations. The reason is not performance, but that
the naming context provided by virtual memory mappings is
a requirement for most useful operations. For example, in the
case of downloaded code run in an interrupt handler, if the
kernel is not willing to allow application code to service TLB
misses then there are many situations where the code will
be unable to make progress. User-level page tables made the
implementation of libOSes tricky on Aegis; since the x86 has
hardware page tables, this issue disappeared on Xok/ExOS.

Downloaded interrupt handlers are of questionable
utility on exokernels. Aegis used downloaded code exten-
sively in interrupt servicing [44]. The two main benefits are
elimination of kernel crossings and fast upcalls to unsched-
uled processes, thereby reducing processing latency (e.g., of
send-response style network messages). On current genera-
tion chips, however, the latency of I/O devices is large com-
pared to the overhead of kernel crossings, making the first
benefit negligible. The second does not require downloading
code, only an upcall mechanism. In practice, it is the latter
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ability that gives us speed. Downloading interrupt handlers
seems more useful on commercial operating systems with ex-
tremely high overhead for kernel crossing than on exokernel
systems. It is easier to download interrupt handlers into an
existing commercial OS than to turn the commercial OS into
an exokernel system.

Downloaded code is powerful.Downloaded code lets the
kernel leave decisions to untrusted software. We have found
this delegation invaluable in many places. The main benefit
of downloaded code isnot execution speed, but rather trust
and consequently power: The kernel can invoke downloaded
code in cases where it cannot trust application code. For ex-
ample, packet filters are downloaded code fragments used
by applications to claim incoming network packets. Because
they are in the kernel, the kernel can inspect them and verify
that they do not steal packets intended for other applications.
The alternative, asking each application if it claims a given
packet, is clearly unworkable; the kernel would not know
how decisions were made and could not guarantee their cor-
rectness. Another example is the use of downloaded code
for metadata interpretation: since the kernel can ensure that
UDFs are deterministic and do not change, it can trust their
output without having to understand what they do.

10 Conclusion

This paper evaluates the exokernel architecture proposed
in [11]. It shows how we built an exokernel system that sepa-
rates protection from management to give untrusted software
control over resource management. Our exokernel system
gives significant performance advantages to aggressively-
specialized applications while maintaining competitive per-
formance on unmodified UNIX applications, even under
heavily multitasked workloads. Exokernels also simplify the
job of operating system development by allowing one library
operating system to be developed and debugged from an-
other one running on the same machine. The advantages of
rapid operating system development extend beyond special-
ized niche applications. Thus, while some questions about the
full implications of the exokernel architecture remain to be
answered, it is a viable approach that offers many advantages
over conventional systems.
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