
An Improved Long-Term File-Usage Prediction Algorithm

Lieutenant Colonel Tim Gibson
HQ USCINCPAC
C4 Systems Directorate (J6)
Camp H. M. Smith, HI, 96861
tgibson@acm.org

Ethan L. Miller*
Department of Computer Science and
Electrical Engineering
University of Maryland–Baltimore County
Baltimore, MD 21250
elm@csee.umbc.edu

* Supported by the NASA Ames Research Center
under grant NAG 2-1094.

As more computing centers collect files to use in data-mining or data-
marts, managing long-term storage space becomes more important. We
describe a new way to more accurately predict which files will be used in
the future. This new method is an order-of-magnitude more accurate than
any current technique. Fifty to eighty percent of all user files can be
compressed or moved to tertiary storage with little impact on the user
perceived performance. This paper supports these conclusions with an
analysis of long-term (5-8 months) data collected on different types of
computing environments.

1 Introduction
Disk storage prices continually decrease in price and

increase in capacity; people often think disk storage is
not a problem. However, this is not necessarily the
case. While disk capacity continually increases, so do
the number of files and the average size of the files we
store on these disks. Administering and maintaining
large file systems with many disks is difficult work
requiring a skilled administrator. As a result, while
storage capacity may not be a problem with newly
purchased personal computers, it is a problem for
network servers, scientific computing centers, and
older workstations. Many of the files on large file
systems are unused for long periods of time.
Additional storage capacity can be “added” to these
systems without adding more disks if the unused files
can be compressed or moved to integrated tertiary
storage, such as a tape or magneto-optical robot.1

This paper presents an inexpensive and
straightforward method to predict which files on a file

1 Note: The original purpose of this research was to
examine new tertiary storage migration algorithms. As
a result, we often focus on the migration aspect of the
problem. However, these techniques can be applied to
integrated file compression techniques.

system will be used next. The key to this new method
is exploiting the reference locality characteristic of an
individual file’s access patterns. This locality of
reference attribute has been observed previously by
many researchers [3, 6, 25, 26, 27, 28]. By exploiting
reference locality, large numbers of files can be
identified for movement to tertiary storage with minimal
user impact.

This paper is organized into an introduction and four
other sections. In Section 2 we describe the
environments we collected data from, how we
analyzed the data, and our basic file system activity
findings. We explain the different current migration
algorithms, describe our new migration technique,
apply both the old and the new migration algorithms to
our collected data, and analyze the results in Sections
3 and 4. The new technique presented here, called
file-aging, reduces the number of on-disk misses
significantly—a miss occurs when a requested file is
not on disk. The file-aging technique takes the activity
patterns of individual files into account by rewarding
frequently used files and punishing idle files.
Punishment in this case equates to migration off disk.
File-aging has been used previously to manage file
caches in networked workstations [5, 31], but has not
been applied to selecting tertiary storage
management. Using this new technique, tertiary

storage can be a viable way to extend current file
system size. In Section 5, we present our conclusions,
suggest how to implement the new technique on
existing file systems, and discuss our follow-on
research.

2 Data Collection, Computing Environments, and
Analysis Tools

To collect information we performed nightly traces on
different computing systems. Our tracing system was
designed with one major goal: gather useful
information without requiring operating system kernels
to be recompiled. Our trace gathering tool is a
modified version of the GNU find utility, which can be
used to collect information on all the files in a file
system or directory. The collected information includes
the file’s i-node number, size, name, access time, i-
node creation time, modification time, owner, and
group. The tracing program can be run any time, and if
the output is placed into a directory or file system that
is not being traced, the tracing process is invisible to
itself. Additionally, the file’s name and path can be
scrambled to ensure user privacy on public systems
while preserving information about the relationships of
files in the file system.

The data analyzed in this paper came from two
different computing systems at the University of
Maryland, Baltimore County (UMBC).2 Table 1
summarizes the systems.

The UMBC CS system is used primarily by the
department’s faculty and graduate students for
program development, writing technical papers, and
doing research. The UCS file systems are used by
UMBC’s 1,000 undergraduate CS majors and
approximately 14,000 other users (faculty, staff, and
non-CS majors) for electronic mail, writing papers, and
program development.

The analysis tools used in this paper analyze the
data collected and provide a wide range of information
about both daily and long-term file activity. In addition
to collecting file statistics, the analysis tools
incorporate a file system simulator designed to test the
effectiveness of different tertiary storage techniques.
Many of these file system activity results have been
reported earlier [8, 10, 12]. The findings can be
summarized as follows:
• Normally less than 1% of all files on a file system

are used every day, where used equates to being
accessed, or modified;

• Files which are used have short inter-access and
inter-modification times;

2 We also collected long-term data at the U.S. Army’s
Aberdeen Proving Ground, and were provided data
from the University of California, Santa Cruz. These
data sets are not presented in this paper because the
Aberdeen file system was very small and the UCSC
traces were incomplete.

• Files which are used exhibit reference locality,
where a file that is used is likely to be used again;

• Files which are not used for several days are
unlikely to be used again;

• Files which have never been used are deleted
more quickly than files that have been used; and

• The likelihood of a file being used decreases as
the time since its last use increases.

Our file system collection and analysis package has
some weaknesses. Ousterhout and others [3, 25, 31]
noted that 80% of all file creations have a lifetime of
less than three minutes. However, our system is
designed to gather and analyze long-term disk use
and file system activity; temporary files that exist for
less than three minutes will not be moved to long-term
storage and do not contribute to long-term growth.
Hence, they can be safely ignored.

Additionally, our analysis system cannot determine
how many times a file is accessed or modified in a
single day. It only notices that an access or
modification occurred and when the most recent event
happened. Fortunately, what matters from either a
long-term storage or a migration perspective is that the
file was used on a certain day, not how many times it
was used.

A separate but related issue is the politics of
collecting data. While detailed information can be
collected by changing the operating system kernel and
generating a large detailed log file, it severely restricts
the number and type of computing installations willing
to collect traces. We had a difficult time convincing
system administrators to allow us to run our daily
collection program; we do not believe modifying
multiple operating system kernels and convincing the
different system support managers to use the modified
kernels—and to provide us the additional log file disk
space—is a feasible solution.

University Computing
Services (UCS)

Computer Science
Dept. (Long Period)

Computer Science
Dept. (Short Period)

Average Files on System 1,320,000 230,000 690,000
Disk Capacity (avg. percent full) 35 GB (70%) 11 GB (70%) 28 GB (50%)
Type(s) of file systems traced User only User only User and System
Number of file systems traced 9 user FS 4 user FS 6 user FS, 2 system FS
Type of system General-purpose Development Development
Number of users ~15,000 ~500 ~500
Trace length 239 days 287 days 157 days

Table 1. Summary of Systems Examined.

3 File Selection Algorithms
The algorithms described in this section focus on

selecting when a file should be moved from disk to
tertiary storage. The algorithms themselves are simply
how a computer program chooses which files to move
to free disk space.

3.1 Current Algorithms
We examined four previously tested migration

algorithms in this research. While we did not expect to
discover anything beyond the information provided by
Smith [29, 30], Lawrie [18], and Strange [32, 33], we
wanted to corroborate our methodology and findings
with their research. The algorithms we examined are
first-in, first-out (FIFO), least-recently used, (LRU),
size only, and space-time.

The FIFO algorithm is very simple and is a common
algorithm better known for its simplicity and ease of
implementation than its efficiency. Using this
technique, files on the system are migrated to tertiary
storage based on how long they have been on the
system. For example, files which have been on the file
system for twelve months and are used daily will be
moved to tertiary storage before a file that has never
been used and is eleven months old. While it is simple,
this technique has obvious limitations.

The least-recently used (LRU) algorithm moves files
that have not been used in the longest time to tertiary
storage first. This technique works well for memory
systems and performs fairly well as a tertiary storage
algorithm. Its biggest drawback is that it treats all files
equally, regardless of size, which can cause problems
for tertiary storage systems. The problem arises
because LRU does not take into account the time the
system needs to transfer files to tertiary storage.

This shortcoming is particularly noticeable when file
size varies radically. When a tertiary storage system
with magnetic tape stores large files (hundreds of MB
or larger), the time required to read or write these files
is a large part of the total transfer time (the remainder
of the time being spent loading the cartridge and fast-
forwarding to the file) [21, 22, 23]. However, with
smaller files, the read / write time is often negligible,
and the time required to mount the tape and find the
file dominates the user wait-time [11, 14, 15, 16, 20].
An algorithm that ignores file size may migrate many
small files to tertiary storage, instead of one large file

with a slightly different migration value. The result is
fewer files on-disk, and normally a higher on-disk miss
rate and longer user wait times. Despite this drawback,
some commercial systems, notably the AMASS
software product from E-Mass, use the LRU algorithm
exclusively [7].

At the other end of the spectrum from the LRU
algorithm is the size-only algorithm. While the LRU
algorithm moves files to tertiary storage simply based
upon how much time has passed since the file’s last
use, the size-only algorithm picks migration targets
based upon size alone. This algorithm suffers from the
same problem as FIFO—a file’s past activity pattern
has nothing to do with selecting whether a file is
chosen for migration. Despite this drawback, the size-
only algorithm performs relatively well. Both Smith in
1981 [29, 30] and Strange in 1992 [32, 33], using
supercomputing center data and the Berkeley
Computer Science Department file systems
respectively, found that using only the size as a
migration indicator performed nearly as well as the
space-time algorithm described in the next paragraph.
From a practical standpoint, size-only is not always
practical. Because it uses only a file’s size, and hence
ignores the time required to move files back from
tertiary storage, the size-only algorithm can cause
problems for users with large files. Large files will be
constantly migrated using the size-only algorithm,
regardless of how often these large files are used.

The final migration algorithm that was examined by
previous researchers is the space-time algorithm, first
described by Alan Smith in 1981 [29, 30]. The space-
time algorithm uses the product of a file’s size and
time since its last use, essentially combining LRU and
size-only. Additionally, the time component is normally
raised to a power. Smith found that raising the time to
the power 1.4 was optimal for his data. The complete

formula is
4.1TimeSpace× , where Time is the time

since last use. A migration system using the space-
time algorithm computes a migration value with this
formula for every file on the file system. The files with
the highest (or lowest, depending on the
implementation) migration values are copied to tape,
until the necessary disk space is freed.

Strange verified that the space-time algorithm was
still optimal in 1992 [32, 33]. Additionally, Strange tried

different values for the time factor’s exponent, but
empirically verified Smith’s finding that 1.4 is optimal.3

The space-time algorithm improves upon the LRU
algorithm’s success by also considering the file’s size
when choosing which files should be moved to disk.
Currently, space-time is considered to be the best
tertiary storage migration algorithm.

Despite this success, space-time does have a
problem—it does not take file activity patterns into
account. For example, consider two files of identical
size are created Monday; one of the files is used daily
for a week, and the second file is used only on
Sunday. On Sunday evening, both files have similar
migration values. An obvious solution to this problem
is to recompute the migration value every time the file
is used. However, files that are used frequently are still
not distinguished from those which are used
occasionally. A migration algorithm that takes activity
patterns into account should improve on the space-
time algorithm’s performance.

3.2 The File-Aging Algorithm
The concept of file-aging was first introduced in 1994

by Dahlin [5] as a method for improving network file
cache performance (in a file cache, the local
workstation retains copies of frequently used files to
minimize network traffic). Aging was also examined by
Smith and Seltzer [31] in the context of file system
benchmarks in 1997. The aging concept changes a
file’s migration value each day a file is used, so a file
that is used regularly becomes a less likely candidate
for migration. Similarly, if a file is not used, the
migration value is altered so the file is more likely to
migrate. The difference between file-aging and the
other algorithms is how the migration value is
computed and what information is used in the
computation.

All the previous algorithms select files to migrate
based upon a snapshot of the file’s current age and
size. None of these algorithms takes into account any
past activity. The file-aging technique bases the
migration value upon the time of the file’s last use, the
file’s size, and the previously computed migration
value. Using the previous migration value gives the
file-aging algorithm an advantage over a simple snap-
shot view of a file because the file’s activity patterns
are reflected in the file-aging algorithm’s migration
value. Files with small migration values are migrated
off disk before files with larger values. The general
steps the file-aging algorithm follows are:

3 We also experimented with different values for the
migration exponent, ranging from 0.5 to 2.5, and
reached the same conclusion as Smith and Strange.
Values of 1.2–1.35 and 1.45–1.6 yield slightly less
favorable results than 1.4. Beyond these values,
migration effectiveness, when measured by the on-
disk miss rate, drops markedly.

if (the_file_was_created_today)
Migration_Value = (X/Size) * 0.9;

else
if

(the_file_was_accessed_or_modified_today
)

Migration_Value =
Migration_Value + ((X/Size) * 0.9);

else
Migration_Value =

Migration_Value * 0.9;

When a file is created, its original migration value is
based solely upon the file’s size. After its creation, a
file’s migration value is based on how many times, and
how often, it has been used. The “additive” line,
Migration_Value + ((X/Size ...)) ensures that files
which are used regularly are rewarded with a
decreased likelihood of being moved to tertiary
storage. Similarly, the last line of the algorithm
punishes files that are not used regularly by gradually
decreasing the migration value towards zero. Files that
are not used several days in a row are more likely to
be migrated than files that are used intermittently,
even if the total number of days they have been used
are equivalent.

Table 2 illustrates the algorithm on five 150 KB files
with different usage patterns. One of the files is used
daily and one of them is never used—the other three
file’s activity patterns lie between these two extremes.
Shaded cells in the table indicate an inactive day.

The value of X in the algorithm can be modified so
the algorithm is prejudiced towards different file sizes.
The value used in this paper is 2,048. A wide range of
values were tested; using values between 1,024 and
2,048 worked best. This is because the average (and
median) file size on all the traced file systems is in the
1,024–2,048 byte range. More testing of the X variable
is needed, but to do so requires data from file systems
with different average file sizes. Similarly, the aging
factor, in this case 0.9, needs more experimentation.
We used different values for the aging factor ranging
from 0.5 to 2.5.; the value 0.9 worked the best with our
data sets.

Day Used Daily Used Alternate
Days

Used Later Used Initially Never Used

1 (Created) 1.20E-02 1.20E-02 1.20E-02 1.20E-02 1.20E-02
2 2.40E-02 1.08E-02 1.08E-02 2.40E-02 1.08E-02
3 3.60E-02 2.28E-02 9.72E-03 3.60E-02 9.72E-03
4 4.80E-02 2.05E-02 8.75E-03 4.80E-02 8.75E-03
5 6.00E-02 3.25E-02 7.87E-03 6.00E-02 7.87E-03
6 7.20E-02 2.93E-02 7.09E-03 7.20E-02 7.09E-03
7 8.40E-02 4.13E-02 1.91E-02 6.48E-02 6.38E-03
8 9.60E-02 3.71E-02 3.11E-02 5.83E-02 5.74E-03
9 1.08E-01 4.91E-02 4.31E-02 5.25E-02 5.17E-03
10 1.20E-01 4.42E-02 5.51E-02 4.72E-02 4.65E-03
11 (Final Value) 1.32E-01 5.62E-02 6.71E-02 4.25E-02 4.18E-03

Table 2. Effects of the File-Aging Algorithm on Five 150 KB Files with Different Activity Patterns.
Shaded cells in the table denote inactivity.

The file-aging implementation used in this paper also
gives files a one day “grace period.” Because files are
immediately assigned a migration value based solely
upon size when they are created, a large file can be
migrated off disk immediately. If a large file is created
one day, quickly migrated off because it is large, and
used the next day, a disk miss occurs. To prevent this
from happening, the file-aging algorithm does not
consider a file for migration until at least one day had
passed.

Because the file-aging algorithm considers a file’s
past activity when computing the file’s migration value,
file-aging is slightly more resource intensive than the
other migration algorithms. Specifically, the previous
migration value, a 32-bit floating point number, must
be kept for the file-aging algorithm to use the next day
while the other algorithms only require the system to
check information the file system already maintains.
Adding this field to the existing inode structure is
straightforward; similar modifications have been made
in the past [1, 4, 13, 35]. The file-aging algorithm has
the same computational complexity as the space-time
algorithm.

4 Algorithm Performance
This section provides an analysis of the old and the

new algorithms using our file system simulator, and
compares and contrasts the different algorithms’
performance using several factors. The different
algorithms’ performances are compared as the amount
of disk space available to the system decreases. This
is done by having the simulator use only a percentage
of the actual file system’s size, and having it migrate
the files which will not fit on the “smaller” disk to a
tertiary device. Using this methodology, the previously
tested algorithms have the same performance other
researchers reported, while the file-aging algorithm
performs better in every respect than the older

techniques. The most commonly used measure of
effectiveness is the number of files ‘missed’ (i.e., not
on disk) when the file is required. Additionally, the
simulator provides other performance measures, such
as the number of files and bytes moved from disk to
tape, the number of mid-day migrations forced by disk
buffer overflows, and by distinguishing whether missed
files and missed bytes were due to a file access or a
file modification. The file-aging technique provides a
large improvement over all of the other algorithms in
every category.

The results shown in this section are normally from
the most active sub-sections of the 239 day UMBC
University Computing Services (UCS) traces and the
157 day Computer Science (CS) Department traces
(see Table 1). Trends and initial findings observed in
these file system sub-sections were confirmed by
running the simulator on the entire UCS and CS file
systems. The reason for limiting the scope of the
experiments is the simulations running time. One
simulation run, on either the CS or UCS traces,
requires four hours on a single-user 400MHz Pentium
II, with 512 MB of RAM and the Linux operating
system. To fully evaluate the algorithms we ran a
battery of 340 simulations, using with different
migration algorithms, disk size restrictions, and other
factors. The different simulation variations are briefly
summarized in Table 3. Running this test battery on
the complete set of UCS file system traces would have
required approximately 55 days.

Test Parameters Migration Algorithms Tested
Basic Disk capacity reduced from 90% to 10%, by 10%

increments. Disk capacity further reduced from 10% to 2%,
by 1% increments. Low water mark (disk buffer) set to 10%,
high watermark set to 50%.

FIFO, LRU, Size-only,
Space-time, File-aging

Pre-migration Tests the effect of copying X of the most likely files to
migrate to tertiary storage at night. X set to 0, 1,024, 2,048,
and 4,096. Other parameters the same as the Basic test.

File-aging

Watermark tests Uses 20% of original disk capacity. Low watermark set to
10%, 20%, 30%, 40%, and 50%. High water mark set to
10%–90% for each low water mark in 10% increments

File-aging

File Size Restriction Uses 20% of original disk size, 10% low water mark, 50%
high water mark. Restricts file migration to file larger than 0
KB, 1 KB, 2 KB, and 4 KB.

Space-time and File-aging

Table 3. Summary of the combinations in the simulator test battery.
Note: Because of space limitations, the test results on pre-migration,

watermarks, and size restrictions are not shown in this paper.

To overcome this run-time limitation, we chose the
most active sub-sections of the UCS file system and
the CS file system, and conducted the entire test
battery on these two file system sub-sections. When
the simulations on the file system sub-section with the
test battery revealed possible trends, we ran portions

of the test battery on the entire file system trace to
corroborate the findings. The sub-sections we chose to
use were the dsk5 and faculty5 sub-sections, from the
UCS and CS file systems respectively. A summary of
the dsk5 and faculty5 characteristics is shown in Table
4.

Average Number of Files Average Daily Transactions
All UCS file systems 1,329,000 53,635
dsk5 (UCS sub-section) 148,500 (11% of total) 7,542 (13.5% of total)
All CS file systems 690,523 30,345
faculty5 (CS subsection) 130,894 (19% of total) 15,372 (51% of total)

Table 4. Summary of dsk5 and faculty5 activity.

The nine different sub-sections of the UCS file
system are closely balanced in terms of total files, and
the dsk5 portion is only slightly more active than any of
the others. In contrast, while the faculty5 sub-section
holds its proportionate share of files (there are seven
other sub-sections in the CS file system), it is very
active and has more than half the entire CS file
system’s total transactions.

The most common method of measuring the
performance of migration algorithms is to count the
number of file misses. A file miss occurs when a file
that has been moved to tertiary storage and erased
from the magnetic disk is requested. This miss causes
the migration system to copy the file back from tertiary
storage to disk. File misses can be categorized as
read misses, when the system needs to access a file
and it was on tape; or write misses, when the system
needs to both access and modify a file.

The overall miss rate on dsk5 and faculty5 is shown
in Figure 1. In all four cases, the FIFO algorithm
performs the worst. The LRU algorithm performs well,
until a certain point is reached in the usable disk
size—4% for the faculty5 trace and 10% for the dsk5

trace—below which the LRU algorithm’s performance
rapidly erodes. Space-time and size-only are
indistinguishable from one another. This is true for
nearly every measurement: file misses; byte misses;
both the number of files and bytes moved to tape; and
the number of migrations required.

Figure 1. Performance of the different migration
algorithms on the dsk5 and faculty5 file systems
with decreasing amounts of disk space, 90%–2%.
Shown by the percentage of on-disk misses.
Note scale change in the X-axis.4

The file-aging algorithm performed uniformly better
than any of the other algorithms in all but one instance.
This exception occurred when the usable disk space
was below 2% and is more clearly shown in Figure 2.

Figure 2. Performance of the space-time and file-
aging algorithms on the dsk5 and faculty5 file
systems with disk space between 10%–2%.

An abbreviated set of simulations for the entire UCS
file system and CS user files provides results similar to
those shown in Figure 1 for the dsk5 and faculty5 sub-
set. These are shown in Figure 3.

4 All figures in this section use the following simulator
parameters: a low watermark of 10%, a highwater
mark of 50%, files less than 2 KB are not migrated,
and 1,048 files are pre-migrated nightly.

Figure 3. Performance of the different migration
algorithms on the entire UCS file system and the
CS file system’s user space. Usable disk space
decreases from, 60%–5%.
Note scale change in the X-axis.

The CS system-level files (e.g., /usr and /usr/local)
are not part of the statistics shown in Figure 3 for two
reasons. First, prudent system administrators would
not keep system-level files on tertiary storage because
these files are used too often. Furthermore, placing the
system-level files, with their higher activity level, on
tertiary storage would result in a much higher miss
rate. Simulation runs show that this is indeed the case;
the system-level file miss rate is normally three to five
times higher than the user-level file miss rate for the
same percentage of disk capacity.

An interesting observation about the space-time and
file-aging algorithms comes from comparing their
performance using the simulator’s misses and moved
statistics. The misses statistic is a count of how many
files (or bytes) an algorithm moves to tertiary storage
when it should have left the file on disk. The total files

or bytes moved statistics is the number of files (or
bytes) moved from disk to tertiary storage during the
entire simulation. Figure 4 shows these statistics for
the UCS traces (see Table 1). The number of files
moved to tertiary storage and back to disk when they
are required is quite large using either algorithm. The
file-aging algorithm clearly outperforms the space-time
algorithm because it has fewer misses, measured in
both the number of files or bytes. Moreover, the file-
aging algorithm moves significantly fewer bytes to
tertiary storage than the space-time algorithm does.
However, the file-aging algorithm occasionally moves
larger numbers of files to tertiary storage than the
space-time technique does. This is because it does a
better job of selecting small files for migration. The
combined result is more files—but fewer bytes—
moved to tertiary storage and fewer on-disk file
misses.

Figure 4. Performance of the space-time and file-
aging algorithms using total number of file (and
byte) misses and total number of files (and bytes)
moved to tertiary storage, using the UCS data set.
(15,000 user over 239 days)
Note scale change in the X-axis.

To corroborate our results with existing algorithms
we compared our results with those of earlier
researchers. The data in Figures 1, 2, and 3 for FIFO,
LRU, size-only, and space-time are in agreement with
the earlier findings of Smith [30] and Strange [32, 33].
For example, Strange [32] reported that a 5% miss
rate for user files (i.e., not system-level files) could be
expected using disk capacities of 12–22% and the
space-time algorithm.
Both Smith and Strange found that attaining a miss
rate of 1% using the space-time algorithm requires a
disk capacity of 40–60% of the true disk capacity [29,
30, 32, 33]. File-aging allows a miss rate of 1% with
only 10–20% of the true disk capacity. This is a
substantial improvement.

5 Conclusion
We believe the file-aging algorithm provides

significant improvements over any existing method for
pre-determining which files will be used in the future. It
is better than any previously implemented algorithm.
For example, it is 2–20 times more effective than the
space-time algorithm when judged using the number
of files missed. It is also more effective in terms of
reducing the number of files and bytes moved back
and forth between disk and tertiary storage. The file-
aging algorithm is no more computationally complex
than the space-time algorithm; our file system
simulator runs with nearly identical times using either
the file-aging or the space-time algorithms. As a result,
we believe it can be effectively used as a basis for
tertiary storage systems.

As high capacity, low access time, near-line tertiary
storage systems become available from companies
like TeraStor [34], having a reliable method to
accurately choose which files to place on tertiary
storage becomes more important. We believe the file-
aging algorithm can do this.

Implementing the file-aging algorithm is relatively
straightforward. Systems which already incorporate
integrated tertiary storage can substitute the file-aging
algorithm for any current algorithm [2, 4, 13, 35]. The
only additional requirement is to store the previous
migration value for future use. For example, the
AMASS system can easily use the file-aging algorithm
because AMASS already keeps an extensive
database of all the files on the system [7]. Adding a
migration value to the database is a minor change.

We are currently researching migration algorithms
based upon both file activity patterns and file owner
activity patterns. We hope to increase our prediction
accuracy by examining user behavior and studying the
effects of migrating directories to tertiary storage. We
are also studying existing real-time trace data from
University of California, Berkeley and Carnegie-Mellon
to study how our system performs with real-time
instead of periodic trace data.

References
[1] C. J. Antonelli and P. Honeyman, “Integrating
Mass Storage and File Systems,” Twelfth IEEE
Symposium on Mass Storage Systems, Monterey, CA,
1993, pages 133–138.
[2] Edward R. Arnold and Marc E. Nelson, “Automatic
Unix backup in a Mass-Storage Environment,”
USENIX–Winter 1988, February 1988, pages 131–
136.
[3] Mary G. Baker, John H. Hartmon, Michael Kupfer,
Ken W. Shirriff, and John K. Ousterhout,
“Measurement of a Distributed File System,” Operating
System Review 25(5), Proceedings of the 13th ACM
Symposium on Operating Systems Principles, 1991,
pages 198–212.
[4] Ronald D. Christman, Danny P. Cook, and
Christian W. Mercier, “Re-engineering the Los Alamos
Common File system,” Proceedings of the Tenth IEEE
Symposium on Mass Storage Systems, May 1990,
pages 122–125.
[5] Michael D. Dahlin, Clifford J. Mather, Randolph Y.
Wang, Thomas E. Anderson, and David A. Patterson,
“A quantitative analysis of cache policies for scalable
network file systems,” Proceedings of the
SIGMETRICS ‘94 Annual Conference on
Measurement and Modeling of Computer Systems,
Nashville, Tennessee, May 1994.
[6] Bob Devine, Sunita Sarawagi, and Kannan
Muthukkaruppan, “Caching for Tertiary Storage,”
Unpublished paper, University of California, Berkeley,
CA, 9 December 1992.
[7] The E-Mass Corporation maintains a full listing of
their software, tape-robot, optical disk, and magnetic
tape technical specifications at http://www.emass.com,
6 February 1999.
[8] Timothy J. Gibson, Ethan L. Miller, and Darrell D.
E. Long, “Long-term File Activity and Inter-Reference
Patterns,” CMG98 Proceedings, 24th International
Conference on Technology Management and
Performance Evaluation of Enterprise-Wide
Information Systems, Computer Measurement Group,
Anaheim, CA, December 1998, pages 976–987.
[9] Timothy J. Gibson, Long-term File System Activity
and the Efficacy of Automatic File Migration, Doctoral
Dissertation, University of Maryland, Baltimore County,
May 1998.
[10] Timothy J. Gibson and Ethan L. Miller, “Long-Term
File Activity Patterns in a UNIX Workstation
Environment,” Fifteenth IEEE Symposium on Mass
Storage Systems, Greenbelt, MD, March 1998, pages
355–371.
[11] John J. Gniewek, “Towards Improved Tape
Storage and Retrieval Response time,” Fifteenth IEEE
Symposium on Mass Storage Systems, Greenbelt,
MD, March 1998, pages 81–94.
[12] Steven D. Gribble, Gurmeet Singh Manku, Eric A.
Brewer, Timothy J. Gibson and Ethan L. Miller, “Self-
Similarity in File-System Traffic,” SIGMETRICS
‘98/PERFORMANCE '98, Joint International

Conference on Measurement and Modeling of
Computer Systems, Madison, WI, June 1998, pages
141–150.
[13] Robert L. Henderson and Alan Poston, “MSS-II
and RASH: a mainframe UNIX-based mass storage
system with a rapid access storage hierarchy file
management system,” USENIX Winter 1989
Conference, San Diego, CA, January 1989, pages 65–
84.
[14] Bruce K. Hillyer and Avi Silberschatz, “Scheduling
Non-Contiguous Tape Retrievals,” Fifteenth IEEE
Symposium on Mass Storage Systems, Greenbelt,
MD, March 1998, pages 113–123.
[15] Bruce K. Hillyer and Avi Silberschatz, “On the
Modeling of the Characteristics of a Serpentine Tape
Drive,” Proceedings of the 1996 ACM SIGMETRICS
Conference on Measurement and Modeling of
Computing Systems, Philadelphia, PA, May 1996,
pages 170–179.
[16] Theodore Johnson and Ethan L. Miller,
“Benchmarking Tape System Performance,” Fifteenth
IEEE Symposium on Mass Storage Systems,
Greenbelt, MD, March 1998, pages 355–372.
[17] David W. Jensen and Daniel A. Reed, “File
Archive Activity in a Supercomputer Environment.”
Technical Report UIUCDCS-R-91-1672, Department
of Computer Science, University of Illinois, Urbana, IL,
1991.
[18] D. H. Lawrie, J. M. Randal, and R. R. Barton,
“Experiments with Automatic File Migration,” IEEE
Computer, July 1982, pages 45–55.
[19] Daniel Menascé, Odysseas I. Pentakalos, and
Yelena Yesha, “An Analytic Model of Hierarchical
Mass Storage Systems with Network-Attached
Storage Devices,” Proceedings of the 1996 ACM
SIGMETRICS Conference on Measurement and
Modeling of Computing Systems, Philadelphia, PA,
May 1996, pages 180–189.
[20] Ethan L. Miller and Theodore Johnson,
“Performance Measurements and Models of Tertiary
Storage Devices,” Proceedings of the 1998
Conference on Very Large Databases (VLDB’98), New
York, NY, August 1998.
[21] Ethan L. Miller and Randy H. Katz, “An Analysis of
File Migration in a UNIX Supercomputing
Environment,” USENIX Winter 1993 Conference, San
Diego, CA, January 1993, pages 421–434.
[22] Ethan L. Miller and Randy H. Katz, “Analyzing the
I/O Behavior of Supercomputer Applications,” Eleventh
IEEE Symposium on Mass Storage Systems,
Monterey, CA, 1991, pages 51–55.
[23] Ethan L. Miller and Randy H. Katz, “Input/Output
Behavior of Supercomputing Applications,”
Proceedings of Supercomputing ‘91, Albuquerque,
NM, 1991, pages 567–577.
[24] L. Mummert and M. Satyanarayanan, “Long-term
Distributed File Reference Tracing: Implementation
and Experience,” Software—Practice and Experience,
Volume 26(6), June 1996, pages 705–736.

[25] John K. Ousterhout, Herve Da Costa, David
Harrison, John Kunze, Mike Kupfer, and James
Thompson, “A Trace-Driven Analysis of the UNIX 4.2
BSD File System,” Operating System Review 19(5),
Proceedings of the 10th ACM Symposium on
Operating Systems Principles, 1985, pages 15–24.
[26] R. Hugo Patterson, Garth A. Gibson, Eka Ginting,
Daniel Stodolsky, and Jim Zelenka, “Informed
Prefetching and Caching,” Operating System Review
29(5), Proceedings of the 15th ACM Symposium on
Operating Systems Principles, 1995, pages 79–95.
[27] M. Satyanarayanan, “A Study of File Sizes and
Functional Lifetimes,” Proceedings of the 8th
Symposium on Operating systems Principles,
Association of Computing Machinery, 1981, pages 96–
108.
[28] Ken W. Shirriff and John K. Ousterhout, “A Trace-
Driven Analysis of Name and Attribute Caching in a
Distributed System,” USENIX Winter 1992
Conference, San Francisco, CA, January 1993, pages
315–332.
[29] Alan Jay Smith, “Analysis of long term file
reference patterns for application to file migration
algorithms,” IEEE Transactions on Software
Engineering SE-7(4), 1981, pages 403–417.
[30] Alan Jay Smith, “Long term file migration:
development and evaluation of algorithms,”
Communications of the ACM 24(8), 1981, pages 521–
532.
[31] Keith A. Smith and Margo I. Seltzer, “File System
Aging—Increasing Relevance of File System
Benchmarks,” Proceedings of the 1997 SIGMETRICS
Conference, June 1997, Seattle, WA, pages 203–213.
[32] Stephen Strange, “Analysis of Long-Term Unix
File Access Patterns for Application to Automatic File
Migration Strategies,” Technical Report UCB/CSD-92-
700, Computer Science Division (EECS), University of
California, Berkeley, California, 1992.
[33] Stephen Strange, A Survey of Storage System
Design Employing Automatic File Migration,
submission for CS266, University of California,
Berkeley, CA, 11 May 1991.
[34] The TeraStor Corporation provides a full listing of
their new products at http://www.terastor.com, 16
January 1998.
[35] David Tweten, “Hiding Mass Storage Under Unix:
NASA’s MSS-II Architecture,” Tenth IEEE Symposium
on Mass Storage Systems, Monterey, CA, May 1991,
pages 140–145.

