Idleness is not sloth

Richard Golding, Peter Bosch,
Carl Staelin, Tim Sullivan, and John Wilkes
Hewlett-Packard Laboratories, Palo Alto, CA

Abstract

Many people have observed that computer systems
spend much of their time idle, and various schemes
have been proposed to use this idle time productively.
The commonest approach is to off-load activity from
busy periods to less-busy ones in order to improve
system responsiveness. In addition, speculative work
can be performed in idle periods in the hopes that it
will be needed later at times of higher utilization, or
non-renewable resource like battery power can be
conserved by disabling unused resources.

We found opportunities to exploit idle time in our
work on storage systems, and after a few attempts to
tackle specific instances of it in ad hoc ways, began to
investigate general mechanisms that could be applied
to this problem. Our results include a taxonomy of
idle-time detection algorithms, metrics for evaluating
them, and an evaluation of a number of idleness
predictors that we generated from our taxonomy.

1. Introduction

Resource usage is often bursty: periods of high
utilization alternate with periods when there is little
external load. If work can be delayed from the busy
periods to the less-busy ones, resource contention
during the busy periods can be reduced, and perceived
system performance can be improved. The low-
utilization periods can also be exploited for other
purposes—for example, power conservation in a
portable system by shutting down parts of it, or eagerly
performing work that might be needed in the future.

We call the periods of sufficiently-low system
utilization idle periods The definition of “sufficiently
low” utilization is application specific; we use the term
“idle” even if this utilization is non-zero. During these
times the system can execute idie task without
affecting time-critical work too much.

The overall structure of the idle-detection framework
is shown in Figure 1. External work requests arrive
and are executed, requiring resources. Potentially
useful idle tasks also consume the same resources. An
idleness detectomonitors the external-work arrivals
and the state of the server.

When the detector believes the system will be idle
enough for long enough, it starts up the idle task. This
executes until it completes, or until the detector signals
it to stop—typically when new foreground work
arrives. The goal of the detector is to make sufficiently
good predictions that the net effect to the system of
running the idle task is positive. The best predictions
exploit all the idle time, while making no mistaken
predictions of idle periods when the system is not, in
fact, idle.

There are two basic ways to measure how good an
idle-time processing system i&xternal measures
guantify the interference between the idle task and an
outside application, and the benefits from running the
idle tasks. These measures use units such as additional
operation latency or power consumptidnternal
measuresare based solely on how accurate the
detector’s predictions are. The external measures are
what really matter, but internal measures are useful for
guiding the choice of detection mechanism.

incoming
work

server

start

* \l ‘ * .
‘resource !

.
v. .
.
.

idleness
detector

Stop

Figure 1: the idle-time processing framework.

The rest of this paper is organized as follows. We begin
with a look at several aspects of the problem of making
good predictions, including a discussion of external
measures and a survey of existing work in this field.
We then present an architecture and taxonomy for
idleness detectors, and discuss internal measures for
evaluating their efficiency. We then use this taxonomy
as a tool to generate a suite of detectors, and evaluate
their effectiveness under realistic, measured
workloads. Some thoughts about opportunities for
future work and our conclusions wrap up the paper.

2. ldle-time processing

The purpose of idle-time processing is to improve the
system’s overall performance during non-idle times.
Measuring the improvement requires metrics for the
costs and benefits of executing each idle task. These
measures vary from one system or application to
another. Even within one system, more than one
measurement may be appropriate. Often these
measures are not directly comparable, or may be
subjective in nature. For example:

e The value of powering down a disk drive is the
power saved; the cost is that ordinary work may be
delayed, extra power consumed during the
“recovery” task of spinning up the drive, and the
disk lifetime reduced by repeated start-stop cycles.

e The value of disk shuffling (reorganizing data
layout on disk) is faster access to frequently-used
data. The costs include delaying disk accesses
behind a data-move, and buffer-cache pollution.

In addition, the detector itself may intrude on normal
system operation: some detectors require significant
computation resources to identify idle periods. The
work required to determine what to do in the idle time
is also a potential resource consumer (for example,
disk shuffling is typically based on collected access
pattern data; delayed operations are put into a queue
that itself consumes resources).

To understand the benefits and costs of idle-time
processing, we must first understand how idle tasks
can benefit the system, and the ways in which they can
create costs: both when executing in an idle period,
and if they end up still executing when the system
stops being idle. The rest of this section discusses
these issues.

2.1. Characterizing idle tasks

Useful idle-time operations fall into a few different
categories:

¢ Required work that can be delayexamples
include delayed cache writes, migrating objects in
a storage hierarchy, rebuilding a RAID array, or
cleaning a log-structured file system.

Work that will probably be requested later.
Examples include disk readahead, eager function
evaluation, collapsing chains of forwarding
addresses for mobile objects, and eagite.

« Work that is not necessary, but will improve system
behavior. Examples include rearranging disk
layout, shutting down parts of a system to conserve
power, checking system integrity, or compressing
unused data.

« Shifting work from a busy to an idle resource
Examples include choosing the least-loaded
network path, or compressing data when the
processor is idle to reduce disk traffic.

Idle tasks can also be characterized by how they react
to being stopped and started (we call ttggs@ularity
properties):

* Interruptability: some idle tasks can be interrupted
at any time, and will stop immediately. Others must
complete a fixed granule of work before they can
relinquish the system resources they are
consuming. For example, a disk write operation
must run to completion, while a powered-down
device can be restarted at any time.

« Work loss:when some idle tasks are interrupted,
they will lose or must discard some of the work that
they have performed. (For example a log-
structured file system cleaner may have to abandon
work on the current segment.) This cleanup
process itself may need resources, and some idle
tasks have to be followed by a recovery task to put
the system back to a consistent state.

« Resource usemost idle tasks block foreground
work from making progress to some degree. In the
extreme, they may completely deny foreground-
work access to a resource (e.g., a disk that has been
spun down); in other cases, foreground activity
simply slows down while the idle task is executing.

Each of these properties affects applications in
different ways. For example, high degrees of
multiprogramming will probably make a workload
more resilient to an idle task that blocks access to a
single resource, since there is probably something else
useful that can be done while the idle task has the
resource.

2.2. Executing idle tasks

Once it has been determined that an idle task should be
executed, a number of operations occur, as illustrated
by the time line in Figure 2.

Processing begins when the detector signals the idle
task to start executing. (Note that there may be a delay
between the end of the last piece of ordinary work and
the detector emitting its prediction.) The initial activity

of the idle task may be to run an initialization step that
prepares the system for the main idle task that follows.
(For example, it may determine which log-structured

file system segments are to be cleaned.) This is
followed by one or more executions of the idle task

proper. Each of these might take a different amount of
time or require a different resource. (Breaking the idle
task up in this fashion reduces its granularity, which

reduces the cost of a bad prediction.)

Eventually, regular work will again enter the system. If

the detector’s prediction was accurate, the idle task
will have completed execution. If not, the detector

signals the idle task to stop, and the task interrupts its
activity if possible. It may be necessary to execute a
recovery task to bring the system back to normal

operation—for example, a powered-down disk must

be spun up, or a partially-completed update may need
to be undone.

For eager or delayed activity, one must also consider
the steps required to delay work, or to detect and use
eagerly-performed work later.

2.3. Detecting idle periods

Recall that theidleness detectomonitors external
work requests in order to find idle periods. Figure 3
illustrates the process for one kind of idleness detector.

At the beginning, the system is doing useful work, but
then the offered external load decreases below a
predetermined threshold. Some time after this
happens, the detector makes a prediction about the idle
period and signals the idle task to start. Later, as the
load increases past the threshold, it signals the task to
stop.

More precisely, the detector’s problem is to make a
series of predictions, each of which identifiesstaat
time and duration of an idle period. The detector
cannot be late with a prediction—otherwise it isn't a
prediction. A good prediction will neither start earlier

new work
detector arrives:
ngnals d_eteCZOf
start signals stop
recovery
delay
~—|
detector
delay f
ordinary initial idle regular recovery ordinary
work task idle tasks task work
time Figure 2: the typical sequence of

events in idle-time processing.

actual idle period ——»

offered
load

<« idleness >
prediction

load-===\ant o s e e e e e e e e mmmn=a. / L - -
threshold ——~wasted
idle time
time incorrect

prediction

Figure 3: the output from a sample idle
detector as the offered load changes.

than the actual start time (so there is no collision
between idle processing and ordinary work) nor start
much later (which would waste time the idle task could
spend doing work); nor will the duration last beyond
the end of the actual idle period.

It is usually good to make conservative predictions
since the actual cost of incorrectly starting an idle task
is usually higher than the opportunity cost of missing
a chance to start it successfully.

2.4. Idle task examples

The model of idle-time processing that we have
presented so far is rather abstract. To make matters
more concrete, we now introduce three examples of
idle-time processing in storage systems.

Delayed writeback

The read-write bandwidth of a disk is a scarce resource
during a burst of requests. As write buffers increase in
size, synchronous read accesses will come to dominate
performance in realistic systems because the amount
of memory needed to absorb peak write rates is (much)
smaller than the quantity needed to cache all reads
[Ruemmler93, Bosch94]. The delays seen by reads can
be reduced by delaying writes until idle periods,
possibly with the help of non-volatiie memory
[Baker91b, Carson92a].

This is an example of delayed work. When a write
operation arrives, it is saved in the cache rather than
written to disk. This consumes buffer-cache space,
which may reduce the read hit rate in the cache, or
require more memory. When the system is idle, these
accumulated writes are flushed to disk in groupN of
data sectors at a time. (The larger the valuN,dhe
better the requests can be scheduled at the disk
[Seltzer90b, Jacobson91].) This flush can potentially
delay foreground reads that arrive during the flush. In
practice, reads should be given priority over writes
[Carson92a]; however, we'll explore the effect of

scheduling the reads and writes with identical priority
here.

This idle task requires no special initialization or
recovery actions. A good delayed writeback system
minimizes read latency and cache utilization. Table 1
summarizes these characteristics.

Initial idle task
Idle task
Recovery idle task

(none)
flush dirty disk blocks
(none)

unit: fixed (N sectors)
loss: none
resources: ties up disk

Granularity

max cache space needed

Measures change in read latency

Table 1: characteristics of delayed writeback

Eager LFS segment cleaning

In a segmented log-structured file system, blocks are
appended to the end of a log as they are written
[Rosenblum92, Carson92a, Seltzer93]. The disk is
divided up into a number afegmentswhich are

linked together to form the log. As blocks are re-
written and their new values appended to the log,

earlier copies become garbage that must be reclaimed.

A cleanertask selects a segment that contains some
garbage blocks and copies the remaining valid blocks
out of the segment. The segment is then marked as
being empty so it can be written over later.

The cleaning operation causes a significant amount of
disk traffic, and consumes operating system buffer
space [Seltzer93]. The disruptiveness can be
minimized if cleaning is performed when there is little
ordinary disk traffic. However, segments must be
cleaned promptly enough that the system does not run
out of clean segments, which would force a segment-
clean in the foreground.

The cleaning task is characterized by the delay it
imposes on ordinary traffic and how often the system
runs out of clean segments. Minimizing the first is best
done with an interruptible cleaner that can discard
partially-completed operations. Table 2 summarizes
these characteristics.

Disk power-down

Several people have investigated powering down disk
drives on portable computers to conserve power (e.g.,
[Caceres93, Douglis94, Greenawalt94, Marsh93,
Wilkes92b]). Using the taxonomy we have developed,
the “idle task” is keeping the disk powered off; this is
an “optional” task, whose goal is to decrease power
consumption; the initial task is to spin the disk down;
the recovery task is to spin it back up (Table 3).

Initial idle task
Idle task

(none)

clean one segment

discard partially-cleaned

Recovery idle task segment

unit: fixed (1 segment)
loss: up to 1 segment,
resource: ties up disk

Granularity

foreground cleaning time

Measures change in read latency

Table 2: characteristics of LFS segment cleaning

Initial idle task
Idle task
Recovery idle task

spin down disk
(none): saves 1.5-1.7W
spin up disk: takes 1.5s

unit: can be aborted at
any time

loss: power cost of
spinning up disk (3.3J)

resource: excludes any
other disk accesses

Granularity

power saved
delay caused to I/O
operations

Measures

Table 3: characteristics of disk power-down

For example, during normal operation, an HP
Kittyhawk disk [HPKittyhawk92] consumes 1.5—
1.7W. When it is spun down, it enters a “sleep” mode
that consumes very little power. When a disk 1/O
request arrives, the disk must be powered up, which
uses 2.2W for 1.5s (i.e., 3.3J). Power consumption
will decrease if the savings from the powered-down
mode outweigh the power cost of spinning it up again.
For this disk, it can be achieved if the disk is spun
down for as little as 2.2s; larger disks take somewhat
longer to recoup the spin-up cost. However, spinning
the disk down too often will increase the latency of
disk requests and increase the chance of disk failure. A
good idle-time mechanism will balance these conflicts.

Other examples

There are many possible uses for idle time beyond the
three that we have mentioned. Storage, compilation,
user interfaces, and distributed systems all exhibit
highly variable workloads—a clue that a system could
benefit from idle-time processing. Here are a few
examples.

Large data structures such as database indices can
often be updated quickly at the cost of gradually-
worsening access characteristics. For example, nodes
can be inserted into or deleted from a binary tree,
unbalancing its branches. However, the initial
performance can be recovered by a reorganization step
(in this case, rebalancing the tree). Such reorganization

tasks are candidates for idle-time processing, thereby
moving the cost of rebalancing out of the critical path
for updates.

Likewise, some indexing systems in databases
segregate the index into two parts: one for “stable”
information, for which an efficient hash or tree
structure has been built; and one for “unstable”
information that has been added or modified recently
[Herrin91]. The unstable portion is periodically
merged into the stable portion, which involves
significant calculation. Doing this in an idle task can
make it appear as if it happened “for free”.

Compilation is a particularly rich source of idle-time
work. One approach that has been explored is to use an
eagermake facility [Bubenik89], which detects file
changes and rebuilds binaries as soon as possible, in
the hope that this work will reduce the latency of
performing amake when it is asked for later. Costs
here include both the processing and disk-resource
contention generated by the background compilations,
and also the complexity of hiding intermediate results
(which may fail) from the user.

Languages such as Cecil, Self, and Smalltalk involve
dynamic code generation [Chambers90a]. In many
cases this code can be optimized using information
generated at run-time, such as the probability of taking
a particular branch of a conditional or the inferred type
of an object. Modules can be re-optimized when the
processor is not busy with normal work during idle

time.

There are many instances of distributed system load-
balancing schemes that look for “idle workstations”
and attempt to use the large number of spare cycles
that can be claimed in this way. To keep the
workstation owners’ happy (and thus the workstations
eligible for being used in this fashion), good
predictions of when the users are idle are needed
[Litzkow88]. Designers of such schemes have used
process migration as a mechanism for avoiding loss of
work when an idle task is preempted [Litzkow88].

More closely-coupled systems can perform eager data
transmission in periods when the network is lightly
loaded. For example, release consistency [Carter91]
mechanisms can pre-transmit updates to reduce the
time to complete a release, which is often on the
critical performance path.

The choice of whether to compress data for network
transmission can depend on the utilization of both the
network and the processor: if the processor is busy, but
the network is not, it may make sense to transmit data
uncompressed. Likewise, the rate or quality at which

multimedia data are played can be varied to take
advantage of extra network or processor resource

beyond a guaranteed minimum. These are examples of
policy changes as a result of idleness detection.

Forwarding-address chains in a distributed system
allow clients to find the current location of a moving
object [Shapiro92]. When the object moves, it leaves a
pointer to its new location at its old one. Locating the
object is done by starting at a place that the object has
visited, and following the chain of pointers.
Forwarding address chains can be compressed when
the system is idle, thereby reducing the time to do
future locations.

Disk and file readahead is a common example of eager
activity in a storage system [McVoy91, Ruemmler94].
Transparent file compression can improve effective
storage capacity, and compressing during idle periods
ensures that it does not interfere with ordinary
operations. Disk shuffling [McDonald89,
Vongsathorn90, Ruemmler91, Akylrek93] involves
rearranging the blocks or cylinders on a disk so that
frequently-accessed information is located near the
middle of the disk with related data close together.
Shuffling has non-trivial initial and recovery tasks.

An anonymous reviewer of this paper suggested using
idle cycles to perform graphical window-system
operations eagerly. For example, hidden or obscured
portions of windows could be rendered in idle periods
so that exposing them would be quick.

In summary, the existence of burstiness and under-
utilized resources in a system is an indication that
some form of idle-time processing could be exploited.
The opportunities are limited mostly by the
complexity of deciding what to do when, and by the
potential downside of resource contention with
foreground activities. Dealing with both of these
requires efficient, accurate idleness detectors, whose
construction is the subject of the next section.

3. An idle-detector architecture

Having presented an overall framework for idle-time
processing, we now turn our attention to how to build
idleness detectors. We have found it useful to
decompose the problem into a number of separate
components, each implementing just one part of the
detection algorithm. By combining the parts in
different ways we can build detectors on a mix-and-
match basis to explore a much wider range of design
alternatives than would otherwise be the case.

Figure 4 shows the overall scheme. An idleness
detector is composed of a number of predictors and
skeptics, along with an actuator:

< A predictor monitors its environment—the arrival
process, the server, and possibly other variables
such as the time of day—and issues a stream of

predictions. Each prediction is a tuifteart time,
duration)

* A skeptic[Rodeheffer91] filters and smooths these
predictions, possibly combining the results from
several predictors.

« Theactuatorobeys the sequence of predictions it

gets as input to start and stop the idle task; its

purpose is to isolate the interactions with the idle
task from the predictors.

The predictors and skeptics form a directed acyclic
graph oDAG with predictors as the leaves and skeptics
as the internal nodes. Streams of predictions flow
toward the root node, which emits predictions to the

actuator.

3.1. Predictors
As with so many problems of this type, optimal

idleness detection requires off-line analysis. This is not
as useless as it might seem: if usage patterns are stable
enough, then a one-time off-line analysis may provide
an excellent prediction. For example, “weekends from

1-6a.m.” is a common time to perform system
maintenance.

In practice, on-line detectors are of more interest. They
can be classified according to the approach used to

predict the idle period start time and its duration.

3.1.1. Idle period start time
Simple predictors use little information to make their

predictions; more sophisticated ones take advantage of
knowledge about the arrival process to make better
decisions. We present them here in roughly increasing-

complexity order.

e Timer-based:whenever the system runs out of
work, the predictor begins a timer. If no work

comes in before the timer expires, the predictor
declares that an idle period has begun. The timer

period can bdixed, variablepr adaptive A fixed

. — start

= idle
g —t detector L stop
IS Tl
Q T
= R
>
9 -
+ predictions
‘q«:‘J start
= 8
5 predictor skeptic §
S 5]
c
)

/ f stop

Figure 4: construction of a simple idle detector

period does not change. A variable period is
computed as a function of some values in the
environment, such as time of day. An adaptive
timeout period is increased if predictions are too
eager, and decreased if they are too conservative.

Rate-basedthe predictor maintains an estimate of
the rate at which work is arriving, and declares an
idle period when its rate estimate falls below a
threshold. Different threshold rates can be used for
“start of idle period” and “end of idle period”,
thereby providing some hysteresis. Methods for
maintaining the estimate include:

— moving average.The rate is periodically
sampled, and the predictor computes a moving
average of the samples.

— event window.The predictor maintains the
times of the lash arrivals, and estimates the
rate as divided by the age of the oldest arrival.
This is similar to leaky bucket rate-control
schemes for high-speed networks [Cruz92].

— time window.The predictor maintains a list of
arrival times more recent tharseconds, and
estimates the rate as the length of the list
divided byt. This is a variation on the event
window method.

Adaptive rate-basedike rate-based, but with an
arrival-rate load threshold that is adapted
according to the quality of the predictions.

« Rate-change-basedhese predictors maintain an
estimate of the first derivative of the arrival rate to
predict in advance when the arrival rate will fall
below a threshold.

« Periodic: if the workload contains periodic work, a
digital phase locked loop arPLL [Massalin89a,
Lindsey81] can be used to synchronize predictions
to periodic events in the workload, such as the
UNIX syncer daemon. By knowing when work will
arrive, it is also known when the system is idle.

3.1.2. Idle period duration

Duration predictors can use a wide range of techniques
to adapt to a changing workload. We list them here

according to the amount of information they use about

the arrival process.

* No duration:no prediction is made (alternately, the
prediction is “forever”). Variants on this include
schemes that try to predict the end of an idle period
as this happens, rather than at its beginning. These
are most useful when the definition of “idle”
allows some residual foreground work. For
example: rate-based; adaptive rate-based; or rate-
change-based.

» Fixed duration:a fixed duration is predicted. The
simplest form of this is “enough time to run the idle
task once.”

« Moving average:the predictor keeps a moving
(possibly weighted) average of the actual
durations. The usual average is the mean, but a
geometric average or median can also be used.

Filtered moving averageas for moving average,
but only idle periods greater than some lower-
bound are considered during the averaging
process.

Backoff:after each prediction is used, the predictor
uses the feedback to determine whether the actual
duration was longer or shorter than predicted. If it
was longer, the next prediction is increased; if it
was shorter, the next prediction is decreased. The
increases can be arithmetic, increasing by a
constant each time, or geometric, increasing by a
constant factor. The skeptic in Autonet
[Rodeheffer91] and round-trip timers in TCP
[Postel80a, Comer9l, Karn9l] used geometric
increase and arithmetic decrease to maintain a
prediction slightlylongerthan the actual, while an
idleness predictor works to keep its predictions
slightly shortert

The backoff algorithm can be applied either at the
end of the prediction period, or at the end of the
idle period. The first gives a chance for the

algorithm to be much more aggressive in extending
its estimates, the latter provides more information,
but potentially causes the period to be adjusted
much less often.

» Filtered backoff: backoff schemes that only
consider actual idle periods longer than a given
lower-bound during their backoff calculations.

» Autocorrelation: the autocorrelation on the work
arrival process gives the probability of an event
arriving or the rate of arrival as a function of time
into the future. The predicted duration is the period
during which the probability of arrival is below
some threshold. The autocorrelation is somewhat
expensive to compute, so it might be recomputed
periodically rather than continuously. It might also
be used to predict the beginning of multiple idle
periods.

« Conditional autocorrelation: like a simple
autocorrelation, except that multiple
autocorrelation functions are computed based on
some property of arriving events. For example, the
expected future might be different following read
requests or write requests.

1 We describe backoff algorithms with shorthand of the form
Arith+/Geom-: this indicates a predictor with arithmetic
increases and a geometric decrease policy.

¢ Ad-hoc rules: finally, as with predicting the
beginning of an idle period, many systems can take
advantage of other specific features of the arrival
process, such as periodicity.

3.2. Skeptics

A skeptic takes in one or more prediction streams, and
emits a new one. They are used to filter out bad
predictions and to combine the results from several
predictors into a single prediction stream.

Single-stream (filtering) skeptics include:

« low-pass: discards predicted periods that are
shorter than some threshold (e.g., the duration of
the idle task).

« quality: discards predictions from a predictor that
is consistently wrong. The skeptic can compute a
measure of the predictor’s accuracy, perhaps using
a moving average of the measures we propose in
Section 4, and only pass along predictions when
the accuracy is above some threshold.

« environmental:discards or modifies predictions
according to some external event (e.g., time of
day). This can allow idleness predictions to be
restricted to times when nobody is around, for
example. The time-of-day input can be derived
from moving averages of workloads over long
periods of time, so this skeptic can be made
adaptive.

Perhaps the most important use for skeptics is to
combine several prediction streams. For example, a
periodic-work detector will not handle non-periodic
bursts, while another predictor might. A skeptic could
combine the two, only reporting a prediction when
both agree.

More generally, a skeptic can combine a number of

input streams by weighted voting. Each stream is

given a weight, and the skeptic produces a prediction
only when the combined weights are greater than some
threshold. When the weights are equal and fixed, this
becomes simple voting. Alternately, the weights can

be varied according to the accuracy of each predictor
[CesaBianchi94]. This approach has been shown to
yield near-optimal prediction in many cases.

4. Evaluating idleness detectors

A good idleness detector produces a stream of
predictions that waste little time at either the beginning
or end of an idle period, while rarely making a

prediction that starts too early, ends too late, or
overlaps much real work. We now describe several
measures used to quantify how well a particular
detector meets these goals. Remember that their

interpretation depends on an application-specified
level of acceptable idleness.

We start with several primitive measures:

* The predictedtime is the total amount of time a
detector declared idle.

e Theactualtime is the total time the best possible
off-line detector could produce.

* The overflowtime measures the amount of time
that the detector declared idle when the system was
not idle.

e Theviolationscount the number of operations that
overlapped the declared idle periods.

e The delay is the sum of the delay imposed on
operations, assuming that any operation that starts
during a period declared idle must be delayed until
the end of the period.

* Theintrusivenes®f an idleness detector measures
how much extra load the detector itself imposes on
a non-idle system.

From these basic measures we compute two derived
measures:

« The efficiencyof a detector: this is a measure of
how good the detector is at finding idle periods in
the workload. It is defined as

efficiency = predicted / actual

¢ A detector'sncompetencevaluates how much of
the predicted idle time is not idle, penalizing over-
eager detectors. It is defined as

incompetence = overflow / actual

A good idleness detector will have a high efficiency

and a low incompetence. Ideally, we'd like to have a

single value that give the overall goodness of a
detector. However, this is impossible, because the
weighting of the value of idle task processing and the
costs of incorrect idleness predictions is highly

application-specific, and sometimes even subjective at
a personal level. Nonetheless, we found it useful to
consider three main candiddigures of merit:

1. merit = efficiencyx (1 — incompetence)

This merit figure considers only efficiency and
incompetence, penalizing efficient detectors that
are also incompetent.

2. merit = efficiency / violations

This merit figure penalizes a detector heavily for
each operation that occurs during a predicted idle
period.

3. merit = efficiency —a x delay

This merit figure penalizes a detector for the total
time that operations are delayed. The relative

importance of delay and efficiency can be scaled
by the factom.

The choice is a function of the application. When
spinning down a disk, for example, the power saved is
related to detector efficiency, while the cost is the
delay to operations. The high subjective impact of the
cost suggests a metric that penalizes delays more, such
as meritz. Delayed writes, on the other hand, have a
less dramatic cost of violations, seerit; is probably
more appropriate.

5. Performance results

To get quantitative measures of the effectiveness of
idle-time processing, we used the taxonomy presented
in section 3 to design a large number of possible
idleness predictor networks. We then implemented the
component parts and evaluated how well the networks
did in practice. This section reports on what we
learned.

5.1. Implementation

We implemented the detectors and idle tasks in the
TickerTAIP simulation system [Ruemmler94,
Golding94]. In particular, we simulated a host system
issuing read and write requests to a set of disks. We
used calibrated disk models [Ruemmler94], and
exercised our detectors using I/O access traces taken
from real systems [Ruemmler93] to avoid making
simplifying assumptions about access rates. We used
1week subsets of these traces.

We added a few new component classes to the
TickerTAIP system. These included an overall
framework; multiplexers to distribute events to
multiple predictors; the predictors themselves;
skeptics; and actuators. Our disk and device driver
models were changed to accept detectors. The idleness
detectors were connected to the disk devices for taking
internal measurements, and to the disk device drivers
for external measures.

To perform the evaluations, we introduced the notion
of abusyness detectdo determine when the system
should be considered busy (i.e., not idle). This was
used to evaluate the idle detectors. Busyness detectors
can be application-specific. In practice, the simplest
busyness detector was the one used for the results we
report here: it declared the system busy if there was at
least one request anywhere in it.

We looked at several hundred idle detector networks
derived from our taxonomy, evaluating them against
our internal measures. We also implemented three
skeptics: one that filters out predictions during the
busiest six hours of the day (the TODSkeptic); one that
filters out predictions from a predictor that has a high
rate of violations (MeritSkeptic); and one that

combines predictions from several predictors,
outputting only predictions on which a quorum agree
(QuorumsSkeptic).

5.2. Start-time predictors

To make the presentation of the results less intractable,
we picked a fixed duration prediction of 25s and
combined this with different start-time prediction
algorithms? The most efficient detectors under this
test are:

« Event window, when busy 10% or less over last 5
operations (efficiency = 1.01)

e A 1sfixed timer (1.01)

* Event window with rate <10 10/s over last 5-25
operations (1.00—0.998)

« Moving average rate of 10 IOs/s or less (0.993)

* Adaptive timer with Geom+/Arith- or vice versa
with 100ms increments (0.990)

e Event window, busy 1% or less over last 5
operations (0.985)

The lowest violation rates (violations per second of
predicted idle period) come from:

« Event window, rate <0.1 10/s over 25 operations
e Same, over last 5 operations

« Moving average, 0.1 10/s or less

< Adaptive timer Arith+/Arith-, 10s increment

« Adaptive timer Arith+/Geom-, 10s increment

» 10 second fixed timer

5.3. Duration prediction

The next step is to fix the start-time predictor (we used
a moving-average rate-based start-time predictor with
a threshold rate of 10 10/s because that gave pretty
high efficiencies). The most efficient predictors under

this test are:

» Fixed 25s period (efficiency = 0.993)

e Backoff using Arith+/Arith- in 10ms, 100ms and
1s increments (0.992, 0.990 and 0.988
respectively)

» Backoff using Arith+/Geom- and a 1s increment
(0.975)

* A moving average over the most recent durations
(0.971)

* Backoff Arith+/Geom- with 100ms increments
(0.959), or 10ms increments (0.945)

< Moving average + TOD skeptic (0.759)

2 Because 25s is a little shorter than the 30s sync daemon
interval on the systems from which the traces were taken.

From the point of view of violation rates, the following
were the best ones:

* Moving average + violation rate skeptic (violation
rate = 0.358s)

* Moving average + TOD skeptic (0.722)
* Moving average (0.821)

* Backoff Arith+/Geom- with increments of 10ms
(1.02); 100ms (3.61); or 1s (14.6)

e Fixed 25s timer (35.1)

* Backoff Arith+/Arith- with increments of 10ms
(36.9), 100ms (44.6), or 1s (48.0).

In some circumstances (such as log-structured file
system cleaning), it's useful to have idleness detectors
that can reliably predict idle periods of long duration.
Under this metric (the mean duration of the idle period
predicted), we find the following are best:

« Backoff Arith+/Arith- with increments of 1s (mean
duration = 44.8s), 100ms (40.4), or 10ms (34.4)

* Fixed 25s timer

* Backoff Arith+/Geom- with increments of 1s
(17.9); 100ms (5.82); or 10ms (2.19)

< Average duration + the merit skeptic (0.982)
* Average duration alone (0.952)
e Average duration + the TOD skeptic (0.944)

5.4. Other combinations

Needless to say, picking the best stand-alone start-time
and duration prediction algorithms and combining
them doesn't produce the best overall result. Instead,
we found (by exhaustive combinatorial analysis!) that
the following are among the best pair-wise
combinations for efficiency:

« EventWindow, busy 10% or less over 25 events +
fixed 25s duration (efficiency = 1.0098)

e The same algorithm over the last 5 events (1.0095)

e Busy 10% or less over 25 events + fixed 25s timer
(1.0087)

e Busy 10% or less over 5 events + Backoff
Arith+/Arith- with 10ms increment (1.0087)

* Busy 10% or less over 25 events + Backoff
Arith+/Arith- with 10ms increment (1.0087)

* Fixed 1s timer, + fixed 25s duration

 Busy 10% or less over 25 events + Backoff
Arith+/Arith- with 100 ms increments

Generally, the results were dominated by Event
Window predictors with a threshold of busy 10% or
less, or 5 I0/s or less, combined with arithmetic
backoff. For durations, the best result came from
combining these with adaptive timers with 100ms

arithmetic increase and geometric decrease (or vice
versa), or by backoff predictors with 10-100ms
increment arithmetic increases and geometric
decrease.

The best violation rates results came from:

« Adaptive timer Geom+/Geom- + Average duration
(violation rate = 0.214/s)

* Moving average 10 10/s + Average duration + a
violation rate skeptic (0.358)

* Event window over 25 events with rate < 0.1 I0/s
+ Average duration (0.362)

* Event window with rate < 10 IO/s and a moving
average, fed into a Quorum skeptic (0.373)

« Event window over last 5 events with a rate < 10
I0/s, + Average duration, fed into a violation rate
skeptic (0.431)

Generally, rate-based or adaptive Arith+/Arith- timers
with 10s increments combined with Average duration
predictors or Backoff Arith+/Geom- and 10 ms

increments dominate.

Looking at mean duration predictions, we find the
longest values come from:

« Adaptive timers, Arith+/Geom- or vice versa, with
Backoff Arith+/Arith- (1s increment) duration
(mean duration = 340s).

* Adaptive timer Arith+/Arith- and increments of 1s
(306s), 10s (288s) or 100ms (256s) + Backoff
Arith+/Arith- with 1s increments.

We learned that there can sometimes be unfortunate
interactions between adaptive start-time predictors and
their duration counterparts. These feedback loops are
best minimized by running the start-time prediction
algorithm once per actual idle period, and the duration
prediction once per predicted idle period, if this is
shorter than the actual idle period, but longer than
some minimum threshold. (The first prevents inter-
policy conflicts; the second allows duration-predictors
to respond gracefully to alternating bursts of high
activity and long quiet periods.)

5.5. Skeptics

Skeptics proved more important for busy disks, where
the workload is more variable than on quiet disks.
They are also best at reducing the mean violation rate.

On a busy disk, the TOD skeptic reduces violation
rate; in the samples, usually to about half what the
same predictor yielded without the skeptic, except
when the rate was already low. This generally causes a
loss of about 20-30% efficiency, indicating that much
of the time that could successfully be declared idle was
not in the busy hours of the day anyway.

The Merit skeptic likewise reduces the violation rate.
For predictors with a high violation rate, the Merit
skeptic reduces violations to less than half of the rate
of using the TOD skeptic, but generally at the cost of
about half the efficiency. When the violation rate is
already low, the Merit skeptic does not give
appreciable advantage over the TOD skeptic, and in
one case (MovingAverage 10/s, Average duration)
increased the violation rate by about 20%

For the Quorum Skeptic, we combined EventWindow
and MovingAverage predictors (both at rates < 10/s);
the EventWindow and a PLL; and the Moving Average
and a PLL. For these combinations, both predictors
had to agree on idleness. Using quorums like this leads
to short predictions because they all have to agree. We
also combined four predictors using a quorum size of
two for agreement: two EventWindows with different
gueue sizes, the EventWindow, and a PLL.

The combination of an event window and a moving
average predictor them agree gives a low violation rate
(0.23 on a busy disk). The combination of all four
gives 99% efficiency and one of the lowest violation
rates.

Overall, our top three picks for workloads such as
delayed writeback and segment cleaning are:

e EventWindow 10 I0/s + MovingAverage 10 IO/s +
Quorum skeptic (both agreeing); gives 0.98
efficiency, 0.23 violations, 0.52s mean duration.

e Four predictors + Quorum skeptic; gives 0.99
efficiency, 0.48 violations, 0.52s mean duration.

« Moving average start-rate 10/s + average duration;
gives 0.98 efficiency, 0.49 violations, 1.05s mean
duration.

6. Conclusions

The high degree of burstiness observed in many real
computer systems gives many opportunities for doing
useful work at low apparent cost during idle periods.
Many people have observed this, and applied this idea
to several specialized domains.

The major contribution of this work is to put the
previous approaches into a common framework. In
turn, the framework suggested opportunities for
combining analysis techniques to improve the quality
of idle-time prediction. It also allowed us to propose
some figures-of-merit for evaluating idle-time
detection algorithms, which we then used to evaluate
many different idle-time detectors.

Our framework should be helpful to those looking to
exploit low-utilization periods in computer systems,
regardless of the precise details of the problem, since
the framework itself is independent of the particular
domain.

Developing the taxonomy was helpful to us in two
ways: it improved our understanding of the problem,
and it helped us systematize the generation of a large
number of potentially interesting detection and
prediction algorithms. Without it, we would have had
a much harder time exploring the design space.

We were gratified to learn that simple predictors work
remarkably well. This is good news: it means that
these techniques can be applied successfully in the real
world with only moderate effort. Nonetheless, we
found that you can't have all three of high efficiency,
low violation and long durations, but you can
generally get any two.

Acknowledgments

George Neville-Neil suggested predictors based on the
first derivative of arrival rate. Fred Douglis’s interest
in disk power conservation spurred much of our early
thinking.

Availability

An extended version of this paper, with more detailed
results than we had space for here, is available by
anonymoustp from the directorypub/wilkes on the
systemftp.hpl.hp.com.

References

[Akylrek93] Sedat Akyirek and Kenneth Salehdaptive
block rearrangement Technical report CS-TR-2854.1.
University of Maryland, November 1993.

[Baker91b] Mary Baker, Satoshi Asami, Etienne Deprit,
John Ousterhout, and Margo Seltzer. Non-volatile memory
for fast, reliable file systemsProceedings of 5th
International Conference on Architectural Support for
Programming Languages and Operating SystéBuston,
MA, 12-15 October 1992). Published &Somputer
Architecture New20(special issue):10-22, October 1992.

[Bosch94] Peter BoschA cache odysseyM.Sc. thesis,
published as Technical Report SPA-94-10. Faculty of
Computer Science/SPA, Universiteit Twente, Netherlands,
23 June 1994.

[Bubenik89] Rick Bubenik and Willy Zwaenepoel.
Performance of optimistic makBroceedings of 1989 ACM
SIGMETRICS and Performance '89 International
Conference on Measurement and Modeling of Computer
Systems (Berkeley, CA). Published asPerformance
Evaluation Revieyd 7(1):39-48, May 1989.

[Caceres93] Ramon Caceres, Fred Douglis, Kai Li, and
Brian Marsh.Operating system implications of solid-state
mobile computers Technical report MITL-TR-56-93.
Matsushita Information Technology Laboratory, Princeton,
NJ, May 1993.

[Carson92a] Scott Carson and Sanjeev Setia. Optimal write
batch size in log-structured file systetdSENIX Workshop
on File System@Ann Arbor, Ml), pages 79-91, May 1992.

[Carter91] John B. Carter, John K. Bennett, and Willy
Zwaenepoel. Implementation and performance of Munin.
Proceedings of 13th ACM Symposium on Operating Systems

Principles(Asilomar, CA). Published &perating Systems
Review25(5):152—64, 13—-16 October 1991.

[CesaBianchi94] N. Cesa-Bianchi, Y. Freund, D.P.
Helmbold, and M. Warmuth.On-line prediction and
conversion strategieJechnical report UCSC-CRL-94-28.
Computer and Information Sciences Board, University of
California at Santa Cruz, August 1994.

[Chambers90a] Craig Chambers, David Ungar, and Elgin
Lee. An efficient implementation of Self, a dynamically-
typed object-oriented language based on prototypes. In Urs
Hoelzle, editor,The Self PapersThe Self Group, CIS 209,
Stanford University, Stanford CA 94305, 1990.

[Comer91] Douglas E. Comer and DavidL. Stevens.
Internetworking with TCP/IP: design, implementation, and
internals volume Il. Prentice-Hall, 1991.

[Cruz92] Rene L. Cruz. Service burstiness and dynamic
burstiness measures: a framewalturnal of High Speed
Networks 2:105-27. IOS press, Amsterdam, 1992.

[Douglis87] Fred Douglis and John Ousterhout. Process
migration in the Sprite operating systdPnoceedings of 7th
International Conference on Distributed Computing Systems
(Berlin, 21-25 September, 1987), pages 18-25, R. Popescu-
Zeletin, G.Lelann, and K.H. Kim, editors. IEEE
Computer Society Press, 1987.

[Douglis94] Fred Douglis, P. Krishnan, and Brian Marsh.
Thwarting the power-hungry disRroceedings of USENIX
Winter 1994 Technical Conferen¢®an Francisco, CA),
pages 292-306. USENIX Association, Berkeley, CA, 17-21
January 1994.

[Golding94] Richard Golding, Carl Staelin, Tim Sullivan,
and John Wilkes. “Tcl cures 98.3%of all known simulation
configuration problems” claims astonished researcher!
Proceedings of Tcl/Tk Workshop, New Orleans, léne
1994. Available as Technical report HPL-CCD-94-11,
Concurrent Computing Department, Hewlett-Packard
Laboratories, Palo Alto, CA.

[Greenawalt94] Paul M. Greenawalt. Modeling power
management for hard disk&nd International Workshop on
Modeling, Analysis and Simulation of Computer and
Telecommunications Systems (MASCOTS '@Wrham,
NC), pages 62-66. IEEE Computer Society Press, 31
January-2 February 1994.

[Herrin91] Eric H. Herrin Il and Raphael A. FinkeAn
implementation of service rebalancindechnical report
191-91. University of Kentucky, Department of Math
Sciences, July 199Proc. of the XI Intl. Conf. of the Chilean
Computer Science Sociehp91l.

[HPKittyhawk92] Hewlett-Packard Company, Boise, Idaho.
HP Kittyhawk Personal Storage Module: product briedrt
number 5091-4760E, 1992.

[Jacobson91] David M. Jacobson and John Wilkisk
scheduling algorithms based on rotational position
Technical report HPL-CSP-91-7. Hewlett-Packard
Laboratories, 24 February 1991.

[Karn91] Phil Karn and Craig Partridge. Improving round-
trip time estimates in reliable transport protocddCM
Transactions on Computer Systef{d):364—73, November
1991.

[Lindsey81] William C. Lindsey and Chak Ming Chie. A
survey of digital phase-locked loops. In William C. Lindsey,

editor, Phase Locked Loopgages 296-317. Institute of
Electrical and Electronics Engineers, April 1981.

[Litzkow88] Michael J. Litzkow, Miron Livny, and Matt W.
Mutka. Condor—a hunter of idle workstatioRsoceedings

of 8th International Conference on Distributed Computing
SystemgSan Jose, CA), pages 104-11. IEEE Computer
Society Press, 13-17 June 1988.

[Marsh93] Brian Marsh, Fred Douglis, and P. Krishnan.
Flash memory file caching for mobile computdrschnical
report MITL-TR-59-93. Matsushita Information
Technology Laboratory, Princeton, NJ, 18 June 1993.

[Massalin89a] Henry Massalin and Calton Pu. Fine-grain
scheduling. Proceedings of Workshop on Experience in
Building Distributed and Multiprocessor Systen{bt.
Lauderdale, FL), pages 91-104. USENIX Association,
October 1989.

[McDonald89] M. Shane McDonald and Richard B. Bunt.
Improving file system performance by dynamically
restructuring disk spacBroceedings of Phoenix Conference
on Computer and Cmm(Scottsdale, AZ), pages 264-9.
IEEE, 22—24 March 1989.

[McVoy91] L. W. McVoy and S. R. Kleiman. Extent-like
performance from a UNIX file systenProceedings of

Winter 1991 USENIXDallas, TX), pages 33-43, 21-25
January 1991.

[Postel80a] J. Postel.Transmission Control Protocol
Technical report RFC-761. USC Information Sciences
Institute, January 1980.

[Rodeheffer91] Thomas L. Rodeheffer and Michael D.
Schroeder. Automatic reconfiguration in Autonet.
Proceedings of 13th ACM Symposium on Operating Systems
Principles(Asilomar, CA). Published &@3perating Systems
Review25(5):183—-97, 13—-16 October 1991.

[Rosenblum92] Mendel Rosenblum and JohnK.
Ousterhout. The design and implementation of a log-
structured file systemACM Transactions on Computer
Systemgsl0(1):26-52, February 1992.

[Ruemmler91] Chris Ruemmler and John Wilk&isk
shuffling Technical report HPL-91-156. Hewlett-Packard
Laboratories, October 1991.

[Ruemmler93] Chris Ruemmler and John Wilkes. UNIX
disk access patternBroceedings of Winter 1993 USENIX
(San Diego, CA), pages 405-20, 25-29 January 1993.

[Ruemmler94] Chris Ruemmler and John Wilkes. An
introduction to disk drive modelinglEEE Computer
27(3):17-28, March 1994.

[Seltzer90b] Margo Seltzer, Peter Chen, and John
Ousterhout. Disk scheduling revisitedProceedings of
Winter 1990 USENIX Conferenf@ashington, D.C.), pages
313-23, 22-26 January 1990.

[Seltzer93] Margo Seltzer, Keith Bostic, Marshall Kirk
McKusick, and Carl Staelin. An implementation of a log-
structured file system for UNDRroceedings of Winter 1993
USENIX(San Diego, CA), pages 307-26, January 1993.

[Shapiro92] Marc Shapiro, Peter Dickman, and David
Plainfossé. SSP chains: robust, distributed references
supporting acyclic garbage collectionfechnical report
1799. INRIA, France, November 1992.

[Vongsathorn90] Paul Vongsathorn and Scott D. Carson. A
system for adaptive disk rearrangem&uftware—Practice
and Experience2((3):225-42, March 1990.

[Wilkes92b] John WilkesPredictive power conservation
Technical report HPL-CSP-92-5. Concurrent Systems
Project, Hewlett-Packard Laboratories, 14 February 1992.

Author information

Richard Golding received his M.S. degree in 1991 and his
Ph.D. degree in 1992, both in Computer and Information
Sciences from the University of California, Santa Cruz.
Following a stint at the Vrije Universiteit Amsterdam, he
joined Hewlett-Packard Laboratories as a researcher. His
research interests include distributed operating systems,
wide-area networking, and storage systems.

Peter Bosch graduated with degrees in Electrical
Engineering (1988), and Computer Science (M.Sc., 1994)
from the University of Twente, Netherlands. He has worked
since 1991 for the University of Twente as an research
assistant. His current work involves research into file
systems and implementation of a high performance file
system for the ESPRIT Pegasus project. His hobbies are
traveling and spending evenings in nice restaurants.

Carl Staelin received his Ph.D. in Computer Science from
Princeton University in 1992. He has worked since 1992 as
a researcher for Hewlett-Packard Laboratories. As part HP’s
Berkeley Science Center he is currently working on the
NOW and Mariposa projects at U.C. Berkeley. His current
research interests include {high-performance, tertiary,
distributed, reliable} storage systems, distributed systems,
and electronic libraries. For fun he is also working to provide
a library of binary packages of public domain software for
HP workstations.

Tim Sullivan has been a member of the technical staff at
Hewlett-Packard Laboratories since 1984, when he was an
undergraduate at Stanford University. He worked on
software, workload characterization, and performance
modeling tools for experimental I/0 devices while obtaining
his BS (1985) and MS (1988) degrees in Electrical
Engineering. He spent two years at the Hewlett-Packard
Laboratories Pisa Science Center in Pisa, Italy designing
parallel languages with researchers at the University of Pisa.
He has also done research on operating systems and
databases for distributed and parallel systems and on high-
performance, high-availability storage systems.

John Wilkes graduated with degrees in Physics (BA 1978,
MA 1980), and a Diploma (1979) and Ph.D. (1984) in
Computer Science from the University of Cambridge. He
has worked since 1982 as a project manager and researcher
at Hewlett-Packard Laboratories in Palo Alto, CA. His
current research area is high-performance, high-availability
storage systems, and he has interests in multicomputer
interconnects, operating system design, and performance
modelling. He also enjoys learning about Renaissance art
and architecture and interacting with the academic research
community.

The authors can be contacted through Richard Golding:
golding@hpl.hp.com, Hewlett-Packard Laboratories,
mailstop 1U13, PO Box 10490, Palo Alto, CA 94303—-0969.

