
USENIX Association

Proceedings of the
2001 USENIX Annual
Technical Conference

Boston, Massachusetts, USA
June 25–30, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Design and Implementation of a Predictive File Prefetching Algorithm

Thomas M. Kroegery

Nokia Cluster IP Solutions
Santa Cruz, California

Darrell D. E. Longz

Jack Baskin School of Engineering
University of California, Santa Cruz

Abstract

We have previously shown that the patterns in which
files are accessed offer information that can accurately
predict upcoming file accesses. Most modern caches ig-
nore these patterns, thereby failing to use information
that enables significant reductions in I/O latency. While
prefetching heuristics that expect sequential accesses are
often effective methods to reduce I/O latency, they can-
not be applied across files, because the abstraction of a
file has no intrinsic concept of a successor. This limits
the ability of modern file systems to prefetch. Here we
presents our implementation of a predictive prefetching
system, that makes use of file access patterns to reduce
I/O latency.

Previously we developed a technique called Partitioned
Context Modeling (PCM) [13] that efficiently mod-
els file accesses to reliably predict upcoming requests.
We present our experiences in implementing predictive
prefetching based on file access patterns. From the
lessons learned we developed of a new technique Ex-
tended Partitioned Context Modeling (EPCM), which
has even better performance.

We have modified the Linux kernel to prefetch file data
based on Partitioned Context Modeling and Extended
Partitioned Context Modeling. With this implementa-
tion we examine how a prefetching policy, that uses such
models to predict upcoming accesses, can result in large
reductions in I/O latencies. We tested our implemen-
tation with four different application-based benchmarks
and saw I/O latency reduced by 31% to 90% and elapsed
time reduced by 11% to 16%.

ytmk@cips.nokia.com. Supported in part by the Usenix Associa-
tion and the National Science Foundation under Grant CCR-9704347.

zdarrell@cse.ucsc.edu. Supported in part by the National Science
Foundation under Grant CCR-9704347.

1 Introduction

The typical latency for accessing data on disk is in the
range of tens of milliseconds. When compared to the 2
nanosecond clock step of a typical 500 megahertz pro-
cessor, this is very slow (5,000,000 times slower). The
result is that I/O cache misses will force fast CPUs to sit
idle while waiting for I/O to complete. This difference
between processor and disk speeds is referred to as the
I/O gap [22]. Prefetching methods based on sequential
heuristics are only able to partially address the I/O gap,
leaving a need for more intelligent methods of prefetch-
ing file data.

Caching recently accessed data is helpful, but without
prefetching its benefits can be limited. By loading data
in anticipation of upcoming needs, prefetching can turn a
20 millisecond disk access into a 100 microsecond page
cache hit. This is why most I/O systems prefetch ex-
tensively based on a sequential heuristic. For example,
disk controllers frequently do read-ahead (prefetching
of the next disk block), and file systems often prefetch
the next sequential page within a file. In both of these
cases, prefetching is a heuristic guess that accesses will
be sequential and can be done because there is sequen-
tial structure to the data abstraction. However, once a file
system reaches the end of a file it typically has no notion
of “next file” and is unable to continue prefetching.

Despite this lack of sequential structure there are still
strong relationships that exist between files and cause
file accesses to be correlated. Several studies [12, 13, 6,
23, 16, 3, 18, 25] have shown that predictable reference
patterns are quite common, and offer enough informa-
tion for significant performance improvements. Previ-
ously, we used traces of file system activity to demon-
strate the extent of the relationships between files [13].
These traces covered all system calls over a one month
period on four separate machines. From these traces we
observed that a simple last successor prediction model
(which predicts that an access to file A will be fol-
lowed by the same file that followed the last access to
A) correctly predicted 72% of file access events. We



��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������

Cache Manager
Read Data

Write Data

W
O

R
K

L
O

A
D

Policies

Replacement

Prefetching

Writing

High Speed 
Cache Buffers

Read Data

Write Data

Event Stream

Model

Prefetch

D
A

T
A

 R
E

SO
U

R
C

E

Results Results

RequestsRequests

Engine

Figure 1: Cache system with predictive prefetching.

also presented a more accurate technique called Parti-
tioned Context Modeling (PCM) that efficiently handles
the large number of distinct files and adapts to changing
reference patterns.

To demonstrate the effectiveness of using file access re-
lationships to improve I/O performance we added pre-
dictive prefetching to the Linux kernel. We enhanced
the normal Linux file system cache by adding two com-
ponents, a model that tracks the file reference patterns
and a prefetch engine that uses the model’s predictions
to select and prefetch files that are likely to be requested.
Figure 1 illustrates how these components integrate into
an I/O cache (the shaded area indicates the new compo-
nents).

To evaluate our implementations we used four
application-based benchmarks, the compile phase
of the Andrew benchmark [7], the linking of the
Linux kernel, a Glimpse text search indexing [20]
of the /usr/doc directory, and a compiling, patching
and re-compiling of the SSH source code versions
1.2.18 through 1.2.31. For both last successor and
Partitioned Context Model (PCM) based prefetching,
we observed that predicting only the next event limited
the effectiveness of predictive prefetching. To address
this limitation, we modified PCM to create a variation
called Extended Partitioned Context Modeling (EPCM),
which predicts sequences of upcoming accesses, instead
of just the next access. Our tests showed that EPCM
based predictive prefetching reduced I/O latencies, from
31% to as much as 90%, and that total elapsed time was
reduced by 11% to 16%. We concluded that a predictive
prefetching system has the potential to significantly
reduce I/O latency and is effective in improving overall
performance.

2 Modeling Background

The issues of file access pattern modeling have been ex-
plored previously [12, 13, 14, 15]. We present a brief
background on the three modeling techniques used in
our implementation: last-successor, Partitioned Context
Modeling and Extended Partitioned Context Modeling.

The last-successor model was used as a simple baseline
for comparison. This model predicts that an access to
file A will be followed by an access to the same file that
followed the last access to A. This model requires only
one node per unique file so we can say that its state space
is O(n), where n is the number of unique files. We saw
that for a wide variety of file system traces this last suc-
cessor model was able to correctly predict the next ac-
cess an average of 72% of the time [13].

2.1 Context Modeling

Partitioned Context Modeling originated from Finite
Multi-Order Context Modeling (FMOCM) and the text
compression algorithm PPM [2]. A context model is one
that uses preceding events to model the next event. For
example, in the string “object” the character “t” is said
to occur within the context “objec”. The length of a
context is termed its order. In the example string, “jec”
would be considered a third order context for “t”. Tech-
niques that predict using multiple contexts of varying or-
ders (e.g.“ec”, “jec”, “bjec”) are termed Multi-Order
Context Models [2]. To prevent the model from quickly
growing beyond available resources, most implementa-
tions of a multi-order context model limit the highest
order modeled to some finite numberm, hence the term
Finite Multi-Order Context Model. In these examples
we have used letters of the alphabet to illustrate how this
modeling works in text compression. For modeling file
access patterns, each of these letters is replaced with a
unique file.

A context model uses a trie [11], a data structure based
on a tree, to efficiently store sequences of symbols. Each
node in this trie contains a symbol (e.g. a letter from the
alphabet, or the name of a specific file). By listing the
symbols contained on the path from the root to any in-
dividual node, each node represents an observed pattern.
The children of every node represent all the symbols that
have been seen to follow the pattern represented by the
parent. To model access probabilities we add to each
node a count of the number of times that pattern has been
seen. By comparing the counts of the sequence just seen



with the counts of those nodes that previously followed
this pattern we can generate predictions of what file will
be accessed next.

Figure 2 extends an example from Bell et al. [2] to il-
lustrate how this trie would develop when given the se-
quence of events CACBCAABCA. In this diagram the
circled node A represents the pattern CA, which has oc-
curred three times. This pattern has been followed once
by another access to the file A and once by an access to
the file C. The third time is the last event to be seen and
we haven’t yet seen what will follow. We can use this in-
formation to predict both A and C each with a likelihood
of 0.5. The state space for this model is proportional to
the number of nodes in this tree, which is bounded by
O(nm), where m is the highest order tracked and n is
number of unique files. On a normal file system were the
number of files can range between 10 thousand and 100
million such space requirements are unreasonable. In
response, we developed the Partitioned Context Model
(PCM).

A (1)

B (1)

C (1)B (1)

C (1)B (1)

A (4)

ROOT

B (2)

C (2)

A (2)

A (3)

A (1) C (1)

B (1)

C (1)

C (4)

Figure 2: Example trie for the sequence CACBCAABCA.

2.2 Partitioned Context Modeling (PCM)

To address the space requirements of FMOCM, we de-
veloped the Partitioned Context Model. This model di-
vides the trie into partitions, where each partition con-
sists of a first order node and all of its descendants. The
number of nodes in each partition is limited to a static
number that is a parameter of the model. The effect of
these changes is to reduce the model space requirements
from O(nm) to O(n). Figure 3 shows the trie from Fig-
ure 2 with these static partitions.

A (1)

Partition C

B (1)

C (1)B (1)

C (1)B (1)

A (4)

ROOT

B (2)

C (2)

A (2)

A (3)

A (1) C (1)

B (1)

C (1)

C (4)

Partition BPartition A

Figure 3: Example partitioned trie for the access se-
quence CACBCAABCA.

When a new node is needed in a partition that is full, all

node counts in the partition are divided by two (integer
division), any nodes with a count of zero are cleared to
make space for new nodes. If no space becomes avail-
able, the access is ignored. Another benefit of restrict-
ing space in this manner is that when new access pat-
terns occur, existing node counts decay exponentially,
causing the model to adapt faster to new access patterns.
While PCM solves the space problem, our experiments
showed that it did not predict far enough into the future
to give time for the prefetch to complete, so we devel-
oped EPCM.

2.3 Extended PCM (EPCM)

Our initial test with Last Successor and PCM prefetch-
ing on the Andrew benchmark test showed that the pre-
dictions were occurring too close to the time that the
data was actually needed. Specifically the prefetch lead
time—the time between the start of a data prefetch and
the actual workload request for that data—was much
smaller than the time needed to read the data from disk.
In fact, last successor based prefetching running the An-
drew benchmark made correct predictions an average of
1.23 milliseconds before the data was needed. On the
other hand, file data reads took on the order of 10 mil-
liseconds. This lead time of 1.23 milliseconds severely
limited the potential gains from the last successor based
prefetching.

To address the need for more advance notice of what to
prefetch, we modified PCM to create a technique called
Extended Partition Context Modeling. This technique
extends the model’s maximum order to approximately
75% to 85% of the partition size and restricts how the
partition grows by only allowing one new node for each
instance of a specific pattern, similar to how Lempel-
Ziv [26] encoding builds contexts. In this technique, the
patterns modeled grow in length by one node each time
they occur. When we predict from an EPCM model,
just as with PCM, we use a given context’s children
to predict the next event. In addition, if the predicted
node has a child that has a high likelihood of access,
we can also predict that file. This process can continue
until the descendant’s likelihood of access goes below
the prefetch threshold. For our context models we set
a prefetch threshold as the minimum likelihood that a
file must have in order to be prefetched. As long as this
threshold is greater than 0.5 then each level can predict
at most one file, and EPCM will predict the sequence of
accesses that is about to occur.

Figure 4 shows an example extended partition. In this



followed by,

followed by,L (1)

Predicts:

I (40)

N (37)

F (37)

O (35)

R (34)

M(34)

I N F

O
R
M

L (3)

U (1)

R (1)

 A(1) L (1)

@35/37
@34/37
@34/37

Figure 4: An example EPCM partition.

example, the circled node is a third order context that
represents the sequence INF. From this partition, as with
PCM, we see that the sequence INF has occurred 37
times, and it has been followed by an access to the file
O 35 times. However, we can also see that 34 of those
times O was followed by R and then M. So, this model
will predict that the sequence INF will be followed by
the sequence ORM with a likelihood of 34/37. If we
then see the sequence ORM each node will have their
counts incremented and the event seen following M will
be added as a child of M.

3 Implementation

In order to gain a more complete insight into how our
prefetching methods would interact with a typical I/O
system, we implemented predictive prefetching in the
Linux kernel. Our implementation consisted of adding
two components to the VFS layer of the Linux kernel, a
model and a prefetching engine. Our models tracked file
access patterns and produced a set of predictions for up-
coming accesses. Our prefetch engine selected predicted
files and prefetched their data into the page cache. The
implementation itself consisted of less than 2000 lines
of C code.

3.1 The Linux Kernel’s VFS Layer

The Virtual File System (VFS) layer [1] provides a uni-
form interface for the kernel to deal with various I/O re-
quests and specifies a standard interface that each file
system must support. Through this layer, one kernel
can mount several different types of file systems (e.g.
EXT2FS, ISO9660FS, NFS, . . . ) into the same tree struc-
ture. We worked with version 2.2.12 of the Linux kernel

Kernel Level
User Level

Disks

Page 
Cache

(Holds
 regular
 file 
 data)

Virtual File System

Cache

Buffer Cache

Device Drivers

Inode 

User Level System Call

Coda
FS

NFS
FS

Ext2 Directory
Cache

Network

Figure 5: The Linux kernel’s I/O caches.

and confined our changes to the VFS layer. By doing
all of our changes in the VFS layer we kept our pre-
dictive prefetching totally independent of the underlying
file system.

Arguably, the most important service the VFS layer pro-
vides is a uniform I/O data cache. Linux maintains four
caches of I/O data: page cache, i-node cache, buffer
cache and directory cache. Figure 5 shows these caches
and how they interact with the kernel, each other and
user level programs. The page cache combines virtual
memory and file data. The i-node cache keeps recently
accessed file i-nodes. The buffer cache interfaces with
block devices, and caches recently used meta-data disk
blocks. The Linux kernel reads file data through the
buffer cache, but keeps the data in the page cache for
reuse on future reads. The directory cache (d-cache)
keeps in memory a tree that represents a portion of the
file system’s directory structure. This tree maps a file’s
path name to an i-node structure and speeds up file path
name look up. The basic element of the d-cache is a
structure called the d-entry.

We implemented our methods of modeling file access
patterns by adding one field to the d-entry structure. The
various models would attach their modeling data struc-
ture to this pointer. For the last successor model this
consisted of just a device and inode number. For the
partitioned models this was a pointer to the partition that
began with the file that the d-entry identified. After each
file access the model would update its predictions. The
prefetch engine was then called and would use these pre-
dictions to prefetch file data.



4 Evaluating Predictive Prefetching

Here we present the results from our benchmark tests
on predictive prefetching and how they affected the de-
sign of our implementation. We ran our tests on a Pen-
tium based machine with a SCSI I/O subsystem and 256
megabytes of RAM. To evaluate our implementation we
selected four application based benchmarks that provide
a variety of workloads. In our test we saw predictive
prefetching reduce the time spent waiting for I/O by 31%
to 90%. While read latencies saw reductions from 33%
to 92%, the reductions in elapsed time, ranged from 11%
to 16%

Our test machine had a Pentium Pro 200 CPU, with 256
megabytes of RAM, an Adaptec AHA-2940 Ultra Wide
SCSI controller and a Seagate Barracuda (ST34371W)
disk. All kernels were compiled without symmetric
multi-processor (SMP) support. This machine had Gnu
ld version 2.9.1.0.19, gcc version 2.7.2.3 and Glimpse
version 4.1.

For these tests, we focused primarily on two measures—
the read latency and total I/O latency. We determined
read latency from instrumentation of the read system
call. Since this did not include I/O latencies from page
faults, open events, and exec calls, we also considered
the total I/O latency. We bound total I/O latency by
taking the difference between the elapsed time and the
amount of time the benchmark was computing (time in
the running state or system time plus user time). This
gives us the amount of time that the benchmark spent
in a state other than running, which served as an upper
bound on the amount of time spent waiting on I/O. Since
our test machines had only the bare minimum of daemon
processes, this measure is a close approximation of the
total I/O latency of that benchmark.

Each test consisted of 3 warm up runs that eliminated
initial transient noise and allowed the models time to
learn. Then 20 runs of the test benchmark provided
enough samples for us to generate meaningful confi-
dence intervals assuming a normal distribution and sta-
tistically significant measurements. Unless otherwise
stated, the I/O caches were cleared between each run of
the benchmark.

4.1 Measuring Predictive Prefetching

Accurately measuring the effectiveness of predictive
prefetching presented a significant problem in itself.

Most file system benchmarks such as PostMark [9] use
a randomly generated workload. Since our work is
based on the observation that file accesses patterns are
not random these benchmarks offer little potential for
measuring predictive prefecthing. In fact, many re-
searchers [6, 12, 13, 23, 16, 3, 18, 25] have shown that
this random workload incorrectly represents file system
activity.

Previously [13], we used traces of file system activity
over a one month period from four different machines to
show that PCM based predictions can predict the next
access with an accuracy of 0.82. Across the four traces
the accuracy measures ranged from 0.78–0.88. These
four traces were chosen to represent the most diverse
set of I/O characteristics from the 33 different machines
traced. Even with the widest range of I/O characteristics
possible the one characteristic that was uniform across
all traces was predictability. Unfortunately, most exist-
ing benchmarks lack any such predictability.

Replaying our traces on a live system was another
method we considered for testing predictive prefetching.
While these traces did contain a record of all system
calls, page fault data was not recorded. Unfortunately
one common source for I/O requests is page faults that
result from memory mapped executables and data files.
As a result, an application based benchmark which con-
sisted of executing specific programs (and the associated
page faults) would more accurately represent a realistic
file system workload.

For these reasons we choose to use application based
benchmarks to provide a basic but realistic measure of
how well predictive prefetching would do under some
well defined conditions. While these benchmarks don’t
represent a real world workload, they do provide a work-
load that is more realistic than that of random file access
benchmarks or replayed traces. To provide enough data
samples to obtain confidence intervals of our measures
we ran each benchmark 20 times. While such repetition
lacks the additional variety that would occur in many
real world workloads, this workload is similar to those
seen by a nightly build process or the traversal of a set
of data files (e.g. indexing of man pages).

Finally, we should note that predictive prefetching suf-
fers from the same compulsory miss problems that an
LRU cache does. Specifically, if our system hasn’t pre-
viously seen an access pattern then there is no way it
can recognize that pattern, predict a file’s access and
prefetch the file’s data. This means that any meaningful
benchmark must see the given pattern at least once be-
fore it can recognize it. As a result we must train on an



access pattern to a set of files before we can meaning-
fully test predictive prefetching over that pattern. Our
SSH benchmark addresses this concern by changing the
source code base across several versions without any re-
training. Thus measuring the performance of our predic-
tive prefetching system over a changing code base.

4.2 Andrew Benchmark

Phase five of the Andrew benchmark [7] features a ba-
sic build of a C program. Although this benchmark is
quite dated, to our knowledge it is the only existing file
system benchmark that has been widely used and accu-
rately portrays the predictive relationship between files.
For these reasons our first benchmark was the build from
phase five of the Andrew benchmark [7].

Initially predictive prefetching kernels were able to re-
duce the total I/O latency for this benchmark by 26%.
From these tests we observed that to achieve greater re-
ductions in I/O latency, our models would need to pre-
dict further ahead than merely the next event. So we
modified PCM to create Extended Partitioned Context
Modeling. Prefetching based on EPCM, was able re-
duce the total elapsed time by 12%, and remove almost
all (90%) of the I/O latency from this benchmark.

4.2.1 Characterizing the Workload

The Andrew benchmark consists of five phases, how-
ever, the only phase that contained testing relevant to
predictive prefetching is phase five, the compile phase.
So when we refer to the Andrew benchmark we are refer-
ring to phase five of this benchmark. This test consists of
compiling 17 C files and linking the created object files
into two libraries and one executable program. The total
source code consists of 431 kilobytes in 11,215 lines of
code.

Tables 1 and 2 show summaries of time and event count
statistics for the Andrew benchmark on the test machine
under the unmodified Linux 2.2.12 kernel. The rows
marked Cold represent tests where the I/O caches were
cleared out prior to each run of the benchmark, while the
rows marked Hot represent tests where the I/O caches
were not cleared out. Note that the hot cache test re-
quired no disk accesses because all of the data for the
Andrew benchmark was kept within the I/O caches on
the test machine.

Table 1: Workload time summary for phase five of the
Andrew benchmark. Elapsed and compute times are in
seconds; read times are in microseconds. Numbers in
italics represent 90% confidence intervals.

Test Elapsed 90% Compute 90% Read 90%

Cold 9.15 0.05 7.94 0.01 646 31.06

Hot 7.95 0.02 7.93 0.00 139 0.31

Table 2: Read event count summary for the Andrew
benchmark. Counts are the number of events that fell
in that category averaged across the last 20 runs of the
each test.

Test Calls Hits Partial Misses

Cold 919 334 537 47
Hot 919 382 537 0

Table 1 shows latency statistics. The column marked
Elapsed represents the mean elapsed time for that test.
The column marked Compute represents the amount of
time the benchmark process was computing: the sum of
the user time and system time for that test. This time
represents a lower bound on how fast we can make our
benchmark run. The column marked Read shows the
average duration of read system calls. A 90% confidence
interval follows each of these measures.

Table 2 shows read event count statistics. We divided
read calls into three categories, hits, partial hits and
misses. Hits required no disk access: data was already
available in the page or buffer cache. Partial hits repre-
sent cases where the necessary data was already in the
process of being read, but wasn’t yet available. Misses
represent events where the data request required new
disk activity.

The Andrew benchmark workload is I/O intensive.
However, many of the events are satisfied from the I/O
caches. On our test machine this workload consisted of
919 read events, of which 47 required disk access with
a cold cache, a miss ratio of 0.05. From the cold cache
test we can see that it spent 7.94 seconds in the running
state and it had a total elapsed time of 9.15 seconds. So
we can bound its total I/O latency to at most the differ-
ence of these two numbers, which is 1.21 seconds for
this case.



4.2.2 Initial Results

We ran the Andrew benchmark under kernels modified
to prefetch based on PCM and last successor modeling.
Figure 6 shows the elapsed time and read latency re-
ductions for several tests. From these tests we saw re-
ductions of up to 26% in total I/O latency and 15% in
read latency. The simple last successor based prefetch-
ing did better than some settings of the more complex
PCM based prefetching. PCM based prefetching im-
proved as the partition size increases from 16 to 32, but
the increase to 64 offered no further improvements.

However, the compute times for our benchmark tests in-
creased 0.05 seconds, apparently due to modeling and
prefetching overhead. Compute time for the last succes-
sor test increased by as much as, and in some cases more
than, those for PCM based prefetching, even though last
successor is a much simpler model. This indicates that
the prefetching engine is most likely the dominant factor
in the increased computational overhead. Latencies for
both open and exec events also increased. Despite these
increases, predictive prefetching reduced both the total
I/O latency and read latency.

4.2.3 EPCM Results

To address the need for a greater prefetch-lead time we
modified our PCM kernel to implement EPCM based
prefetching. Figure 7(a) shows the results from EPCM
base prefetching compared with those from the previ-
ous section. From this graph we see that EPCM based
prefetching reduced our elapsed times by 1.11 seconds
or 12%. While this is a modest gain in total elapsed time
for the benchmark, it is a significant reduction when one
recalls that the best reduction possible is 1.21 seconds
of I/O latency. Thus with EPCM based prefetching we
reduced the time this benchmark spent waiting on I/O by
90%.

Figure 7(b) shows the results for the read latency reduc-
tion from EPCM based prefetching. The latencies for
read system calls with EPCM based prefetching are as
low as 127 microseconds, a reduction in read latency of
80%. This latency is less than the 139 microsecond la-
tencies for the hot cache test. The EPCM based prefetch-
ing does better than the hot cache test because of how
Linux 2.2.12 does not write data directly from the page
cache, and must transfers data to the buffer for writing.
The first part of the Andrew benchmark creates object
files. As these files are written, they are moved from
the page cache to the buffer cache. During the linking

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Last P 16/3 P 32/3 P 64/5 Hot

T
im

e 
R

ed
uc

tio
n 

(s
ec

on
ds

)

Models

0.18
0.31 0.28

1.20

0.24

(a) Elapsed Time Reduction

0

100

200

300

400

500

600

Last P 16/3 P 32/3 P 64/5 Hot

T
im

e 
R

ed
uc

tio
n 

(m
ic

ro
-s

ec
on

ds
)

Models

68 53
98 86

507

646

(b) Read Latency Reduction

Figure 6: Reductions in elapsed times and read laten-
cies for the Andrew benchmark with the last successor,
PCM and hot cache tests. Bars marked with P represent
PCM tests. Partition sizes (ps) and model order (mo) are
labeled as ps/mo.

phase, we read all of this object file data. In the hot
cache case, each read system call must copy the data
from buffers in the buffer cache to a new page in the page
cache. This buffer copy is time consuming. For files that
are prefetched, this copy is done during the prefetch en-
gine’s execution and not during the read system call.

Figure 8 shows the distribution of read events for a typi-
cal hot cache test and a typical EPCM based prefetching
test. The hot cache test has significantly more events
that occur in the 129–256 microsecond bucket, while
the EPCM test appears to account for that difference in
17–32 and 33–64 microsecond buckets. In other words,
it appears many of the read system calls have become
about 100 to 200 microseconds shorter as a result of the
prefetching. In fact, during the selected hot cache run of
the Andrew benchmark, we observed 1993 copies from
the buffer cache to the page cache during read system
calls. Since the predictive prefetching tests would do
these buffer copies during their open and exec events the
read system calls for those tests would not need to do



0

0.2

0.4

0.6

0.8

1

1.2

1.4

L
as

t

P 
16

/3

P 
32

/3

P 
64

/5

E
 1

6/
12

E
 3

2/
25

E
 4

8/
40

E
 6

4/
45 H
ot

T
im

e 
R

ed
uc

tio
n 

(s
ec

on
ds

)

Models

0.24
0.18

0.31 0.28
0.40

0.87

1.08 1.11
1.20

(a) Elapsed Time Reduction

0

100

200

300

400

500

600

L
as

t

P 
16

/3

P 
32

/3

P 
64

/5

E
 1

6/
12

E
 3

2/
25

E
 4

8/
40

E
 6

4/
45 H
otT

im
e 

R
ed

uc
tio

n 
(m

ic
ro

-s
ec

on
ds

)

Models

68 53
98 86

207

417

519 519 507

646

(b) Read Latency Reduction

Figure 7: Reductions in elapsed times and read latencies
for the Andrew benchmark with the last successor, PCM,
EPCM and hot cache tests. Bars marked with P and E
represent PCM and EPCM tests respectively. Partition
sizes (ps) and model order (mo) are labeled as ps/mo.

these buffer copies. The result is that for this test on this
kernel our predictive prefetching test has a lower read la-
tency than that of the hot cache test where all the data is
already in memory. This buffer copy problem has been
fixed in version 2.4 of the Linux kernel.

4.3 Linking the Linux Kernel

Our next benchmark of file system activity adapts a test
used by Chang et al. [5] that focuses on the Gnu linker.
A significantly larger workload than the Andrew bench-
mark, this workload consists of primarily non-sequential
file accesses to temporary files. Our predictive prefetch-
ing was able to reduce the total I/O latency of this bench-
mark by as much as 34%, and again reduced the total
runtime by 11%.

This test used the Linux kernel source and linked to-
gether all of the top level modules (e.g. fs.o, mm.o,

0
50

100
150
200
250
300
350
400
450
500

16 32 64 128 256 512

E
ve

nt
 C

ou
nt

s

Read System Call Duration (usec)

49

163

221

153

294

27

(a) EPCM ps 64 or 45 Test

0
50

100
150
200
250
300
350
400
450
500

16 32 64 128 256 512

E
ve

nt
 C

ou
nt

s

Read System Call Duration (usec)

40

152

98

167

435

17

(b) Hot Cache Test

Figure 8: Read system call latency distributions for se-
lected runs of the Andrew benchmark (times in microsec-
onds).

net.o, kernel.o . . . ) which were then linked into a final
kernel image. It linked a total of 180 object files through
51 commands to create a kernel image of approximately
twelve megabytes. Tables 3 and 4 show the summary
statistics for our Gnu ld benchmark’s workload. The
cold cache test of our Gnu ld benchmark took approx-
imately 36 seconds, with about 24 seconds of compute
time for a 65% CPU utilization. We observed a miss ra-
tio of 0.12. The latency for read events is significantly
higher than those of the Andrew benchmark. The Gnu
linker does not access individual files sequentially. This
foils Linux’s sequential read-ahead within each file and
explains the high average read latencies, despite the low
cache miss ratio. Additionally, the files being read in
this benchmark are object files which are typically tem-
porary in nature. As a result it is quite possible that the
disk placement of these object files is not contiguous.

Figure 9 shows the results for our Gnu ld benchmark.
These results are consistent with those seen from the
Andrew benchmark. Although not as dramatic, we still
saw significant reductions in total I/O latency and read
latencies. Again, these reductions increase as model or-



Table 3: Workload time summary for the Gnu ld bench-
mark. Elapsed times are in seconds, read times are in
microseconds. Numbers in italics represent 90% confi-
dence intervals.

Test Elap. 90% Compute 90% Read 90%

Cold 36.12 0.13 23.96 0.03 2866 18.84

Hot 23.98 0.01 23.95 0.01 596 3.12

Table 4: Read event count summary for the Gnu ld
benchmark. Counts are the number of events that fell
in that category averaged across the last 20 runs of the
each test.

Test calls hits partial misses

Cold 6362 4794 767 799
Hot 6362 5694 668 0

der and partition size increase. PCM and last successor
based prefetching do better than the normal Linux kernel
with as much as a 8% reduction in the total I/O latency.
The advanced predictions of EPCM seem to again offer
a more substantial reduction of 34%. The reductions for
read system calls are also not as astounding as those of
the Andrew benchmark. Nevertheless, 33% reductions
in read latencies are still a welcome improvement.

4.4 Glimpse Indexing

For our third benchmark we used a glimpse [20] index
of /usr/doc to represent a traversal of all the files under
a given directory. This workload is significantly larger
than either of the two previously studied. For this bench-
mark we saw similar result to those from the Gnu ld
benchmark. Specifically, the total benchmark runtime
was reduced by 16%, the total I/O latency was reduced
by 31% and read latencies were reduced by 92%.

The workload created by the glimpseindex program is a
linear traversal of all the files in a large directory struc-
ture. We used version 4.1 of Glimpse and performed an
index of /usr/doc. The order of files in their directory
determines the order in which files are accessed. The
large majority of files see only one access and are typ-
ically static files created when Linux was installed and
have not been modified since. By comparison, access
order in the Andrew benchmark’s workload was depen-
dent on the Makefile and the order in which header files
were listed. Additionally, files such as header files and
object files were accessed multiple times.

0

2

4

6

8

10

12

L
as

t

P 
16

/3

P 
32

/3

P 
64

/5

E
 1

6/
12

E
 3

2/
25

E
 4

8/
40

E
 6

4/
45 H
ot

T
im

e 
R

ed
uc

tio
n 

(s
ec

on
ds

)

Models

0.9 0.9 0.7 1.0
2.2 2.5

3.6 4.1

12.1

(a) Elapsed Time Reduction

0

500

1000

1500

2000

2500

L
as

t

P 
16

/3

P 
32

/3

P 
64

/5

E
 1

6/
12

E
 3

2/
25

E
 4

8/
40

E
 6

4/
45 H
otT

im
e 

R
ed

uc
tio

n 
(m

ic
ro

-s
ec

on
ds

)

Models

208 216 194 226
420

602

894 954

2270

2866

(b) Read Latency Reduction

Figure 9: Reductions in elapsed times and read latencies
for the Gnu ld benchmark with the last successor, PCM,
EPCM and hot cache tests. Bars marked with P and E
represent PCM and EPCM tests respectively. Partition
sizes (ps) and model order (mo) are labeled as ps/mo.

Tables 5 and 6 show the workload characteristics for the
glimpse benchmark on our test machine. This work-
load contains significantly more disk accesses, a total
of 24,901 reads. A much higher fraction of these reads
are cache misses, 11,812 misses for a miss ratio of 0.47.
The hot cache test has cache misses, indicating that this
test accesses more data than the I/O caches can hold.

Figure 10 shows the results for the glimpse benchmark.
We saw the best results from the smallest EPCM test,
reducing total runtime by 16%, read latencies reduced
by as much as 92% and I/O latency by 31%. Our PCM
test had a 22% reduction for this workload. The test
of last successor based prefetching did the worst with
an average total I/O latency reduction of 16%. Again
we see the predictive prefetching has the potential for
significant reductions in I/O latency and is effective at
improving overall system performance.



Table 5: Workload time summary for the glimpse bench-
mark. Elapsed times are in seconds, all other times are
in microseconds. Numbers in italics represent 90% con-
fidence intervals.

Test Elap. 90% Compute 90% Read 90%

Cold 172.0 0.84 82.7 0.12 1890 19.92

Hot 131.5 0.12 81.4 0.06 782 2.91

Table 6: Read event count summary for the glimpse
benchmark. Counts are the number of events that fell
in that category averaged across the last 20 runs of the
each test.

Test calls hits partial misses

Cold 24901 258 12828 11813
Hot 24901 5943 12819 6138

4.5 Patching and Building SSH

For our last benchmark we used the package SSH, ver-
sions 1.2.18 through version 1.2.31 to represent the com-
pile and edit cycle. Thus the system is able to train on
the initial version but needs to perform on subsequently
modified versions of the source code. This benchmark
represents our largest workload in that it consists of over
44,000 read events. However, a good percentage of these
requests are already satisfied from the I/O caches. Here
again we see results similar to those of the Gnu ld and
Glimpse benchmarks. Total elapsed time was reduced
by 11%, total I/O latency was reduced by 84% and read
latencies were reduced by 70%.

We created the SSH benchmark to represent a typical
compile and edit process. It addresses the concern that
our other three benchmarks were being tested on a re-
peating sequence of the same patterns that it was trained
on. This benchmark consists of compiling version 1.2.18
of the SSH package. Then the code base is patched to
become 1.2.19 and recompiled. This process is iterated
until version 1.2.31 is built. The result is a benchmark
that provides a set of access patterns that change in a
manner typical of a common software package.

Our models are trained on three compiles of version
1.2.18. We test predictive prefetching on a workload
that patches the source to the next version and then com-
piles the new source code. This patching and build is
repeated through the building of version 1.2.31. Be-
cause we are changing the source code with the var-

0
5

10
15
20
25
30
35
40

L
as

t

P 
16

/3

P 
32

/3

P 
64

/5

E
 1

6/
12

E
 3

2/
25

E
 4

8/
40

E
 6

4/
45 H
ot

T
im

e 
R

ed
uc

tio
n 

(s
ec

on
ds

)

Models

14.0

19.4 18.0
16.2

27.4
25.5

21.6 21.1

40.5

(a) Elapsed Time Reduction

0
200
400
600
800

1000
1200
1400
1600
1800

L
as

t

P 
16

/3

P 
32

/3

P 
64

/5

E
 1

6/
12

E
 3

2/
25

E
 4

8/
40

E
 6

4/
45 H
otT

im
e 

R
ed

uc
tio

n 
(m

ic
ro

-s
ec

on
ds

)

Models

1152 1128 1140 1136

1543
1691 1760 1765

1139

1921

(b) Read Latency Reduction

Figure 10: Reductions in elapsed times and read laten-
cies for the Glimpse benchmark with the last successor,
PCM, EPCM and hot cache tests. Bars marked with
P and E represent PCM and EPCM tests respectively.
Partition sizes (ps) and model order (mo) are labeled as
ps/mo.

ious patches the patterns that result from the building
represent a more realistic sequence of changing access
patterns. This benchmark represents a case where our
model may learn from the first build but will have to ap-
ply its predictions to a changing workload.

Tables 7 and 8 show the summary statistics for our SSH
benchmark’s workload. This workload has a CPU uti-
lization of 89%. We observed a miss ratio of 0.12. The
workload here represents that of a compile, edit and re-
compile process.

Figure 11 shows the results for our SSH benchmark.
These results are consistent with those for our three pre-
vious benchmarks. Total elapsed time is reduced by
11%, while the I/O latency has been reduced by 84%
and read latency has been reduced by 70%.



Table 7: Workload time summary for the SSH bench-
mark. Elapsed times are in seconds, all other times are
in microseconds. Numbers in italics represent 90% con-
fidence intervals.

Test Elap. 90% Compute 90% Read 90%

Cold 302.0 1.13 263.6 .82 2813 19.92

Hot 268.4 1.03 262.8 0.04 861 2.19

Table 8: Read event count summary for the SSH bench-
mark. Counts are the number of events that fell in that
category averaged across the last 20 runs of the each
test.

Test calls hits partial misses

Cold 44805 29552 13971 11282
Hot 44805 40839 13966 0

4.6 Training with Multiple Patterns

To briefly examine how predictive prefetching would
work in an environment with multiple processes pre-
senting different patterns, we ran two additional tests.
The first tests trained on all four benchmarks, and then
measured runs of the glimpse benchmark. The sec-
ond test modified the Gnu ld benchmark to interject a
string search over the source code in between runs of the
benchmark. For these test we had a partition size of 64
and a maximum order of 45. These tests showed that the
addition of other active patterns would have a modest
effect on the performance of predictive prefetching.

For our first test we trained the system on 10 runs of all
four benchmarks. Then we measured the performance
of 20 runs of the glimpse benchmark. This test reduced
elapsed time by 20.1 seconds while in x4.4 tests with
same parameters reduced elapsed time by 21.1 seconds.
We observed a read latency reduction of 1501 microsec-
onds for this test, which is 69 microseconds less than
that in x4.4.

While the above test examines multiple patterns there is
little overlap in the files being accessed. For our sec-
ond test we modified the Gnu ld benchmark to interject
a second pattern of accesses in between each run of the
benchmark. This second pattern is a recursive search of
the files in the source code looking for the string ELVIS.
For this test we saw the average elapsed time reduced by
3.0 seconds, which is 0.9 seconds less than we observed
in x4.3. The read latencies were reduced 901 microsec-
onds, 53 microseconds less than in x4.3.

0
5

10
15
20
25
30
35
40

L
as

t

P 
16

/3

P 
32

/3

P 
64

/5

E
 1

6/
12

E
 3

2/
25

E
 4

8/
40

E
 6

4/
45 H
ot

T
im

e 
R

ed
uc

tio
n 

(s
ec

on
ds

)

Models

7.9 7.7
9.5

6.4

30.4 29.9 30.4 31.9

37.6

(a) Elapsed Time Reduction

0

500

1000

1500

2000

2500

L
as

t

P 
16

/3

P 
32

/3

P 
64

/5

E
 1

6/
12

E
 3

2/
25

E
 4

8/
40

E
 6

4/
45 H
otT

im
e 

R
ed

uc
tio

n 
(m

ic
ro

-s
ec

on
ds

)

Models

840 887 983
870

1478 1530 1539
1675

1961

2813

(b) Read Latency Reduction

Figure 11: Reductions in elapsed times and read la-
tencies for the SSH benchmark with the last successor,
PCM, EPCM and hot cache tests. Bars marked with
P and E represent PCM and EPCM tests respectively.
Partition sizes (ps) and model order (mo) are labeled as
ps/mo.

From these modified tests we observe that the addition
of other patterns into the training will have some modest
effect on the performance of predictive prefetching.

4.7 Analysis of Results

Across the four different benchmarks we see somewhat
similar results, significant reductions in total I/O latency
and read latency with modest reductions in total elapsed
time. From x4.2.2 we see that the computational over-
head from our model and prefetch engine is negligi-
ble. A more detailed analysis of the overhead in pre-
dictive prefetching is available in previous work [15]. In
comparing the predictive modeling techniques, EPCM
seems to consistently outperform PCM and last succes-
sor. In comparing the different parameters for EPCM
there doesn’t seem to be a clear case for any specific set-
tings.



To understand these results one should remember that
the benchmarks presented here are—just as most other
benchmarks—clean room simulations that attempt to
recreate what occurs on a typical computer system. They
should be considered in conjunction with our previous
analysis of actual file system traces [13]. This work used
long term traces from four different machines to show
that the one trait that was consistent across all traces was
predictable repeating patterns; specifically we saw that
PCM could predict the next file access with an accuracy
of 82%. This previous work indicates that the repetitive
nature of our benchmarks is similar to the patterns that
would be seen in a realistic workload. From these bench-
marks we can see that predictive prefetching has the po-
tential to significantly reduce total I/O latencies and read
latencies, while providing modest improvements in total
execution time. In real life the reduction one sees will be
highly dependent on the specific characteristics of a their
workload, such as how much I/O latency can be masked
by prefetching.

5 Related Work

The use of compression modeling techniques to track
access patterns and prefetch data was first examined by
Vitter, Krishnan and Curewitz [25]. They proved that
for a Markov source such techniques converge to an op-
timal on-line algorithm, and then tested this work for
memory access patterns in an object-oriented database
and a CAD System. Chen et al. [8] examine the use
of FMOCM type models for use in branch prediction.
Griffioen and Appleton [6] were the first to propose a
graph-based model that has seen use across several other
applications [23, 21]. Lei and Duchamp [18] have pur-
sued modifying a UNIX file system to monitor a process’
use of fork and exec to build a tree that represents the
processes execution and access patterns. Kuenning et
al. [17] have developed the concept of a semantic dis-
tance and used this to drive an automated hoarding sys-
tem to keep files on the local disks of mobile computers.
Madhyastha et al. [19] used hidden Markov models and
neural networks to classify I/O access patterns within a
file.

Several researchers are exploring methods for cache re-
source management given application-provided hints.
Patterson et al. [24] present an informed prefetching
model that applies cost-benefit analysis to allocate re-
sources. Cao et al. [4] examine caching and prefetch-
ing in combination and present four rules for success-
fully combining the two techniques and evaluate several

prefetching algorithms including an aggressive prefetch
algorithm. Kimbrel et al. [10] present an algorithm that
has the advantages of both informed prefetching and ag-
gressive prefetch while avoiding their limitations.

6 Future Work

While this work has shown that file reference patterns
provide valuable information for caching, and use of
such information can greatly reduce I/O latency, we have
also found certain areas that require further study. We
hope to examine the following issues.

The paging of predictive data to and from disk is critical
to the success of predictive prefetching. While our im-
plementation was done in a manner that facilitates such
functionality, we have not directly addressed this issue.

The idea of partition jumping would use multiple parti-
tions to continue in a sequence past the end of one par-
tition and into another partition that begins with the last
n symbols of the sequences. This would allow EPCM
to make predictions deeper than the partition size. This
new method would generate predictions with EPCM as
before, but when a descendent with no children was
found, the last n symbols in the pattern would be used
as an n-order context into a new partition from which
predictions would continue. This would enable EPCM
to look into other partitions once it has reached the end
of the current partition, and enable smaller partitions to
predict further ahead than their partition size would nor-
mally allow.

In our test environment, we ran the same benchmark test
consistently, so our models saw no variation. As a result,
they generated no erroneous prefetching. It would be
instructive to use trace-based simulations to investigate
how often our models would incorrectly prefetch. If we
then forced an implementation to make this percentage
of incorrect prefetches, we could gauge the impact of
incorrect prefetching on the system as a whole.

7 Conclusions

Comparing the predictive models, the last successor and
PCM models saw reasonable improvements, but the in-
creased lead time of EPCM’s prefetching enables sig-
nificantly greater improvements in read latencies and



in total elapsed times. Although last successor based
prefetching can be effective in reducing I/O latencies, its
limitations are that it cannot predict more than the next
event and it provides no confidence estimates for the pre-
dictions. While PCM based prefetching provides a mea-
sure of likelihood with each prediction, this method can-
not predict more than the next event, limiting its ability
to reduce I/O latencies. We have seen that EPCM based
prefetching can greatly reduce I/O latencies by predict-
ing further ahead than PCM based prefetching.

While these tests have clearly shown that predictive
prefetching can greatly reduce I/O latencies, we note
that these tests are limited representations of any com-
mon computer workload, and that several key issues
still need to be addressed to implement a system that
could be widely used. These tests run the same bench-
mark repeating the same patterns. While our simulations
with file system traces clearly show a strong degree of
correlation between file access events, our repetition of
the same benchmark numerous times has artificially in-
creased this correlation. Additionally this experimen-
tal implementation does not store any of the predictive
data to disk. We envision that this would affect our sys-
tem by slightly increasing the I/O activity and signifi-
cantly decreasing memory overhead. How this would
affect performance is unclear; we have not studied the
effects such changes would have on performance, and
can only speculate based on experiences with this im-
plementation. Any practical implementation of predic-
tive prefetching would need to handle these issues.

These results show that predictive prefetching can sig-
nificantly reduce I/O latencies and shows useful reduc-
tions in total runtime of our benchmarks. Our prototype
focused on using predictive prefetching to reduce the la-
tencies of read system calls, and this is exactly what we
have seen. From the reductions in elapsed time, we have
shown that a predictive prefetching system as a whole
offers potential for valuable performance improvements.
In the best case, such a system performs almost as well
as when all of the data is already available in RAM.
However, care must be taken in the design of a predictive
prefetching system to ensure that the prefetching uses
resources wisely and does not hinder demand driven re-
quests. Nevertheless these test have shown that, for the
workloads studied, predictive prefetching has the poten-
tial to remove significant portions of I/O latencies.

8 Acknowledgments

The authors are grateful to the many people that have
helped our work. Ahmed Amer, Randal Burns, Scott
Brandt and the other members of the Computer Systems
Lab provided useful comments and support. The Usenix
Association, National Science Foundation and the Office
of Naval Research have provided funding that supported
this work. The Linux community was helpful in work-
ing with the Linux kernel. Rod Van Meter and Melanie
Fulgham provided helpful comments on early drafts of
this work. Nokia’s Clustered IP Solutions supported Dr.
Kroeger’s efforts in bringing this work to publication.

References

[1] M. Beck, H. Bohme, M. Dziadzka, U. Kunitz,
R. Magnus, and H. Bohme, Linux Kernel Internals.
Addison-Wesley Publishing Company, 1997.

[2] T. C. Bell, J. G. Cleary, and I. H. Witten, Text Com-
pression. Englewood Cliffs, New Jersey: Prentice
Hall, 1990.

[3] A. Bestavros, “Speculative Data Dissemination
and Service to Reduce Server Load, Network Traf-
fic and Service Time for Distributed Information
Systems,” in Proceedings of the 1996 International
Conference on Data Engineering, (New Orleans,
Louisiana), Mar 1996.

[4] P. Cao, E. W. Felten, A. R. Karlin, and K. Li, “A
study of integrated prefetching and caching strate-
gies,” in Proceedings of the 1995 SIGMETRICS
Conference, pp. 188–197, ACM, May 1995.

[5] F. Chang and G. A. Gibson, “Automatic I/O hint
generation through speculative execution,” in Pro-
ceedings of the Third USENIX Symposium on
Operating Systems Design and Implementation,
pp. 1–14, 1999.

[6] J. Griffioen and R. Appleton, “Performance mea-
surements of automatic prefetching,” in Proceed-
ings of the 1995 Parallel and Distributed Com-
puting Systems Conference, pp. 165–170, IEEE,
September 1995.

[7] J. H. Howard, M. L. Kazar, S. G. Menees, D. A.
Nichols, M. Satyanarayanan, R. N. Sidebotham,
and M. J. West, “Scale and performance in a dis-
tributed file system,” Transactions on Computer
Systems, vol. 6, pp. 51–81, February 1988.



[8] T. N. M. I-Cheng K. Chen, John T. Coffey, “Anal-
ysis of branch prediction via data compression,”
in Proceedings of the Seventh International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, pp. 128–13,
SIGOPS, ACM, October 1996.

[9] J. Katcher, “Postmark: A new file system bench-
mark,” tech. rep., Network Appliance Inc., 2000.

[10] T. Kimbrel, A. Tomkins, R. H. Patterson, B. Ber-
shad, P. Cao, E. W. Felton, G. A. Gibson, A. Kar-
lin, and K. Li, “A trace-driven comparison of al-
gorithms for parallel prefetching and caching,” in
Proceedings of the Second USENIX Symposium
on Operating Systems Design and Implementation,
pp. 19–34, USENIX, October 1996.

[11] D. E. Knuth, Sorting and Searching, vol. 3 of The
Art of Computer Programming. Addison-Wesley,
Reading, MA, 1973.

[12] T. M. Kroeger and D. D. E. Long, “Predicting file-
system actions from prior events,” in Proceedings
of the USENIX 1996 Annual Technical Conference,
pp. 319–328, USENIX, January 1996.

[13] T. M. Kroeger and D. D. E. Long, “The case for
efficient file access pattern modeling,” in Proceed-
ings of the Seventh Workshop on Hot Topics in Op-
erating Systems (HotOS-VII), IEEE, March 1999.

[14] T. M. Kroeger, “Predicting file system actions from
reference patterns,” Master’s thesis, University of
California Santa Cruz, March 1997.

[15] T. M. Kroeger, Modeling File Access Patterns to
Improve Caching Performance. PhD thesis, Uni-
versity of California Santa Cruz, March 2000.

[16] G. Kuenning, G. J. Popek, and P. Reiher, “An
analysis of trace data for predictive file caching
in mobile computing,” in Proceedings of the
USENIX Summer Technical Conference, pp. 291–
303, USENIX, 1994.

[17] G. H. Kuenning and G. J. Popek, “Automated
hoarding for mobile computers,” in Proceedings
of the Sixteenth Symposium on Operating Sys-
tems Principles (SOSP-97), vol. 31,5, (New York),
pp. 264–275, ACM Press, Oct. 5–8 1997.

[18] H. Lei and D. Duchamp, “An analytical approach
to file prefetching,” in Proceedings of the USENIX
1997 Annual Technical Conference, pp. 275–288,
USENIX, January 1997.

[19] T. Madhyastha and D. A. Reed, “Input/output ac-
cess pattern classification using hidden Markov
models,” in Proceedings of the Fifth Workshop on
Input/Output in Parallel and Distributed Systems,
pp. 57–67, ACM, Nov 1997.

[20] U. Manber and S. Wu, “GLIMPSE: A tool to
search through entire file systems,” in Proceed-
ings of the USENIX Winter Technical Conference,
(Berkeley, CA, USA), pp. 23–32, USENIX, Winter
1994.

[21] J. N. Matthews, D. Roselli, A. M. Costello, R. Y.
Wang, and T. E. Anderson, “Improving the per-
formance of log-structured file systems with adap-
tive methods,” in Proceedings of the Sixteenth Sym-
posium on Operating Systems Principles (SOSP-
97), vol. 31,5 of Operating Systems Review, (New
York), pp. 238–251, ACM, Oct.5–8 1997.

[22] J. Ousterhout, “Why aren’t operating systems get-
ting faster as fast as hardware?,” in Proceedings
of the USENIX Summer Technical Conference,
pp. 247–56, USENIX, June 1990.

[23] V. N. Padmanabhan and J. C. Mogul, “Using pre-
dictive prefetching to improve world wide web
latency,” in Proceedings of the 1996 SIGCOMM
Conference, pp. 25–35, ACM, July 1996.

[24] H. Patterson, G. Gibson, E. Ginting, D. Stodolsky,
and J. Zelenka, “Transparent informed prefetch-
ing.,” in Proceedings of the Fifteenth Sympo-
sium on Operating Systems Principles (SOSP-95),
pp. 21–34, ACM, December 1995.

[25] J. S. Vitter and P. Krishnan, “Optimal prefetch-
ing via data compression,” Journal of the ACM,
vol. 43, pp. 771–793, September 1996.

[26] J. Ziv and A. Lempel, “Compression of indi-
vidual sequences via variable-rate coding,” IEEE
Transactions on Information Theory, vol. IT-24,
pp. 530–6, September 1978.


