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Abstract
A common problem facing mobile computing is
disconnected operation, or computing in the ab-
sence of a network. Hoarding eases disconnected
operation by selecting a subset of the user’s files
for local storage. We describe a hoarding system
that can operate without user intervention, by ob-
serving user activity and predicting future needs.
The system calculates a new measure, semantic
distance, between individual files, and uses this to
feed a clustering algorithm that chooses which files
should be hoarded. A separate replication system
manages the actual transport of data; any of a num-
ber of replication systems may be used. We discuss
practical problems encountered in the real world
and present usage statistics showing that our sys-
tem outperforms previous approaches by factors
that can exceed 10:1.
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1 Introduction
The face of computing today is rapidly being
changed by the advent of mobility, but the utility
of the portable computer is seriously challenged
by the problem of disconnected operation, where
useful work must continue in the absence or near-
absence (i.e., available only at high cost or low
bandwidth) of the network. Although impressive
resources are being devoted to research in wire-
less networking, with a goal of making communi-
cation continuously available, the problem is diffi-
cult, and it is likely to be a long time before the mo-
bile user will have the same networking capabili-
ties as we expect from a stationary computer today.
In the interim, portable computers will often find
themselves either completely lacking communica-
tion or significantly restricted by battery power,
bandwidth, or cost.

In the absence of readily available high-quality
communication, users are often forced to oper-
ate disconnected from the network. But in a
world dominated by networking, this is a major
drawback, because the computing paradigm has
grown dependent on the availability of non-local
resources. Lack of access to a remote file can halt
work on a particular task or even make the com-
puter unusable.

A very attractive solution to the lack of com-
munication is hoarding, in which non-local files
are cached on the local disk prior to disconnection.
The local files can be managed and kept consistent
by a replication system [7, 9, 11].

The difficult challenge is the “hoarding prob-
lem” of selecting which files should be stored lo-
cally. Earlier solutions have simply chosen the
most recently referenced files [1, 9] or asked the
user to participate at least peripherally in manag-
ing hoard contents [11, 21]. The former approach
is wasteful of scarce hoard space, while the latter



requires more expertise and involvement that most
users are willing to offer.

We have taken a fresh approach to this problem,
and have succeeded in creating a predictive hoard-
ing system, called SEER, that makes hoarding deci-
sions without user interaction. SEER considers the
user’s activities to be composed of projects, rather
than individual files, which greatly enhances the
accuracy of its predictions. In daily use, the system
has dramatically improved the achievable quality
of hoarding decisions, in general requiring a hoard
that is only slightly larger than the working set.

2 System Overview
Automated predictive hoarding is based on the idea
that a system can observe user behavior, make in-
ferences about the semantic relationships between
files, and use those inferences to aid the user. SEER

consists of two major components built atop a
replication substrate. First, an observer watches
the user’s behavior and file accesses, classifying
each access according to type, converting path-
names to absolute format, and feeding the results to
a correlator. The correlator evaluates the file ref-
erences, calculating the semantic distances among
various files (see Section 3.1). These semantic dis-
tances drive a clustering algorithm (Section 3.3.2)
that assigns each file to one or more projects.

When new hoard contents are to be chosen, the
correlator examines the projects to find those that
are currently active, and selects the highest-priority
projects until the maximum hoard size is reached.
Only complete projects are hoarded, under the as-
sumption that partial projects are not sufficient to
make progress.

SEER does not itself do the file hoarding; in-
stead an underlying replication system performs
this task. This design frees SEER from the trou-
blesome details of moving files back and forth be-
tween computers, making sure updates are prop-
agated to other replicas of the files, and man-
aging conflicts [17]. It also makes SEER more
portable because very little is assumed about the
underlying system. SEER currently runs atop

the RUMOR [6, 18] user-level replication sys-
tem, a custom-built master-slave replication ser-
vice called CHEAP RUMOR, and CODA [11], and
it could easily be used with other systems such as
FICUS [7]and LITTLE WORK [9].

A feature critical to usability is that, unlike pre-
vious systems, SEER normally operates without
user intervention. There is no need to build explicit
lists of important files or to instruct the system that
certain activities are of interest. The only user in-
teraction (beyond any that might be required by the
underlying replication system) involves informing
the computer that a disconnection is imminent, and
even this requirement can be eliminated by auto-
mated periodic hoard filling if desired. Although
SEER allows users to provide explicit hoarding in-
structions, our experience shows that such inter-
vention is rarely necessary.

3 Underlying Concepts
The fundamental assumption of SEER is that there
is semantic locality in user behavior. By detect-
ing and exploiting this locality, a system can make
inferences about the relationships between various
files. Once these relationships are known, there is
potential for an automated hoarding system to per-
form much better than one that is based on LRU-
style caching algorithms.

3.1 Semantic Distance
To detect semantic locality, SEER defines a new
concept known as semantic distance. Conceptu-
ally, semantic distance attempts to quantify a user’s
intuition about the relationship between files. A
low semantic distance suggests that the files are
closely related and thus are probably involved in
the same project, while a large value indicates rel-
ative independence and different projects.

In our system, semantic distance is based on
measurements of individual file references, rather
than looking at the files themselves. The dis-
tance between references is then summarized (Sec-
tion 3.1.2) to produce a value that is relevant to the
individual files.
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In our system, a file reference is considered to
be a high-level operation, such as an open or sta-
tus inquiry. We do not track individual reads and
writes, partly for efficiency but primarily because
we believe that doing so would obscure the infor-
mation we are trying to extract. SEER is interested
in whole files, rather than individual bytes, so it is
more informative to look at whole-file operations.

3.1.1 Measuring Semantic Distance
While the concept of semantic distance is simple,
it is not so easy to come up with a quantification
that is both meaningful and implementable. The
method we have chosen is based on the observation
that semantic locality is similar to temporal local-
ity: files that are referenced at the same time tend
to be semantically related. This observation is not
original to us [4, 5, 12, 21], but to our knowledge
we are the first to formalize the notion of semantic
locality and its relationship to temporal locality.

This leads directly to a first definition of seman-
tic distance (note that all of our suggested measures
are asymmetric):

Definition 1 Temporal semantic distance. The
temporal semantic distance between two file refer-
ences is equal to the elapsed clock time between the
references.

This definition has intuitive appeal: it is sim-
ple and easy to measure, and it nicely captures the
fact that files referenced at the same time tend to
be semantically related. Unfortunately, it has a ba-
sic flaw, which is the fundamental disparity be-
tween computer and human time scales. For ex-
ample, during a compilation, object files would be
considered related to their respective sources, but
two source files that were components of the same
program would be less closely related because ac-
cesses to them during editing may be separated by
many minutes. Also, the definition is subject to
artificial distortion due to anomalies such as tele-
phone interruptions or large variations in system
load.

To avoid these difficulties, we can modify our
definition to use the sequence of file references,
without regard to clock time:

Definition 2 Sequence-based semantic distance.
The sequence-based semantic distance between
two file references is equal to the number of inter-
vening references to other files.1

This definition allows us to infer semantic rela-
tionships from temporal locality without suffering
distortions due to time-scale anomalies. However,
Definition 2 still needs improvement. If we con-
sider only whole-file references such as opens, an
individual reference does not take place at a par-
ticular point in time. Instead, a file reference can
then be considered to have a lifetime reaching from
an open to a corresponding close. Our experiences
suggest that it is the relationship between these life-
times, rather than the individual point-in-time ref-
erences, that is of semantic importance.

For example, consider the compilation of a C
module that is composed of a source file S and
several included header files H1;H2; : : : ;Hn. The
header files will be opened and closed in sequence,
yet the nth header file is just as essential to compil-
ing the program as the first. To capture this impor-
tant relationship, we can define a measure based on
file lifetimes by taking advantage of the fact that S
remains open during the entire process:

Definition 3 Lifetime semantic distance. The
lifetime semantic distance between an open of file
A and an open of file B is defined as 0 if A has not
been closed before B is opened, and the number
of intervening file opens (including the open of B)
otherwise.

For example, consider the reference sequence
fAo; Bo;Bc; Co; Cc;Ac;Do;Dcg, where the su-

1In practice, there are several alternative ways of im-
plementing this definition. For example, in the sequence
fA;A; : : : ;Bg, SEER uses only the closest pair of references
in calculating the distance from A to B. Similarly, in the se-
quence fA;C;C;C;Bg, a strict interpretation of the defini-
tion would result in a semantic distance of 3, which is the
choice used by SEER. However, it might be equally sensi-
ble to elide the repeated references, so that the distance was
only 1. We chose not to do this partly for efficiency, and
partly to capture the phenomenon of intensive work on a sin-
gle project. The various options involved in calculating se-
mantic distance are discussed in detail in [15].
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A D

B C

Figure 1: Sample file access sequence.

perscripts o and c indicate opens and closes respec-
tively. This sequence is diagrammed in Figure 1,
where the extent of an access is indicated by the
width of the enclosing box. The lifetime-based se-
mantic distance from Ao to each of Bo and Co will
be 0, while the distance from Ao to Do will be 3.
Similarly, the distances Bo ! Co, Bo ! Do, and
Co ! Do will be 1, 2, and 1, respectively. All
other distances (Bo ! Ao, Co ! Ao, Do ! Ao,
Co ! Bo, Do ! Bo, and Do ! Co) are unde-
fined in this brief example.

Finally, we need to consider file references other
than opens or closes. For example, a file rename
may be an essential part of a compilation and thus
as semantically meaningful (in terms of hinting at
file relationships) as an open. For most purposes,
SEER treats such references as if they were an open
followed immediately by a close. We discuss these
other types of references in more detail in Sec-
tion 4.

3.1.2 Data Reduction
Semantic distance is calculated between two file-
reference events (normally file opens). For SEER’s
purposes, however, the more interesting informa-
tion is the semantic relationship between two files,
rather than between two references to those files.
Tracking files instead of references reduces the
amount of data that must be stored, but brings up
the issue of how to convert the multiple distances
between events into a single distance between files.

The most obvious conversion method is to use
a simple mathematical summary, such as the arith-
metic mean, to represent the entire sequence of ref-
erences. The particular summary chosen should be
easy to calculate, updatable on-line, small in stor-
age requirements, and defensible as being a reason-
able representation of the actual semantic relation-
ship between files.

The arithmetic mean, attractive for its simplic-
ity, satisfies all of these requirements, and was the
first method we tried. However, we found that
the arithmetic mean produced undesirable results.
For example, if three event pairs produce distances
of 1, 1, and 1498, the arithmetic mean would be
500. But the user would very likely consider the
files involved to be more closely related than two
other files represented by semantic distances 500,
500, and 500. The problem is that small numbers
are much more indicative of a relationship than
are large ones. Because of this disparity in signif-
icance, we turned to the geometric mean, which
gives smaller values more importance.
3.1.3 Practical Algorithms
Definitions 1 through 3 in Section 3.1.1 have the
common characteristic that they define a distance
value between every pair of files mentioned in a
stream of references. Since SEER is designed to
process data from months or even years of ref-
erences, encompassing tens or hundreds of thou-
sands of files, the O(N 2) storage complexity re-
quired to keep track of the distance between ev-
ery pair of files becomes prohibitive. Furthermore,
each new reference to a given file generates new
distances between it and all previously-referenced
files, so that the cost of processing a single refer-
ence online isO(N) in the number of files, which is
also unacceptably high. Even if a reference could
be processed in 1 �s, keeping track of all pairs
would expend 10 ms of CPU time per open if only
10,000 files were known. This is even higher than
the base CPU cost of an open in a modern system,
and 10,000 files is a very small number for a mod-
ern distributed system.

Fortunately, since we are interested in locating
files that are semantically close to each other, it is
not necessary to store all N2 distances. Instead,
SEER uses an approximation heuristic to calculate
semantic distances. The heuristic makes two com-
promises for the sake of efficiency. First, rather
than storing the distance between every pair of
files, only n distances (n = 20 in our current im-
plementation; see Section 4.9 for more information
on how the algorithm’s constants were chosen) to a
file’s closest neighbors are tracked. Second, when
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processing a new file reference, the distances up-
dated are limited to those from files that are within
a distance of M (currently M = 100) of the cur-
rent reference. Although these heuristics can in-
troduce a large error in pathological cases [15], in
practice they have produced acceptable results. A
compensation algorithm detects and partially ad-
justs for larger distances by inserting M whenever
a value larger than M would have occurred.

From time to time, it is necessary to replace one
of the n distances kept for each file (i.e., when a
new semantic distance arrives with a small value).
In this case, a priority system is used. The high-
est priority goes to a closely related file that is
marked for deletion from the internal table. If no
such file exists, the list of n references is scanned
to locate the one with the largest current semantic
distance (with ties broken randomly). If this ref-
erence has a distance larger than that of the new
candidate, it is chosen for replacement. Finally, if
there is still no candidate, an aging system is ap-
plied that allows very old and inactive references to
be replaced by newer ones; details are given else-
where [15]. This aging system is necessary to al-
low SEER to track fundamental changes in user be-
havior and to allow incorrectly inferred relation-
ships to be removed over time.

3.2 Other Distance Measures
Besides semantic distance, there is a wealth of
other information that can be gleaned from a run-
ning computer system to help an automated hoard-
ing system achieve acceptable results. That infor-
mation includes:

Directory membership. As a general rule, files in
the same directory are more closely related to
each other than files in different directories.

File naming conventions. Naming often pro-
vides clues to important relationships. For
example, C++ classes are often described in
header files and implemented in source files
that differ only in the extension.

“Hot” links. The Object Linking and Embedding
facility in WINDOWSr (OLE) allows docu-

ments, graphs, and other objects to be inter-
linked as necessary to build larger structures
in a flexible manner. These so-called hot links
provide valuable and low-cost information
about fundamental relationships among mem-
bers of a project. A programming-language
analog is the #include statement in C and
C++, which also indicates a very strong inter-
file relationship.

To take advantage of directory membership,
SEER incorporates a directory-distance measure
that is zero for files in the same directory and in-
creases for files in more widely-separated directo-
ries.

To handle the other two types of relationships,
SEER provides a generalized external investigator
mechanism. An external investigator is an auxil-
iary program that can examine selected files and
extract application-specific information, which is
then supplied to the correlator as extra file relation-
ship data. For example, we have developed a sim-
ple script that can read C source files to discover
#include relationships that are then passed to
the correlator for inclusion in the clustering deci-
sion. The information is expressed as groups of
related files, together with an investigator-chosen
weight indicating the strength of the relation. The
clustering algorithm discussed in Section 3.3.2
makes use of these relationships when specified,
although it does not require them. The method of
integrating these relationships is described in Sec-
tion 3.3.3.

If an external investigator can identify an entire
project, this information can be communicated to
SEER independently of the internal clustering al-
gorithm. For example, a makefile investigator
could potentially identify every file needed to build
a particular program and create a cluster containing
exactly these files.

3.3 Clustering Algorithm
Simply knowing the relationships among individ-
ual files solves only half the problem of predictive
hoarding. These pairwise relationships must be
converted into meaningful groupings of files into
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projects. To do so, we use a multidimensional clus-
tering algorithm.

3.3.1 Requirements
Although clustering has been widely studied, rela-
tively few known clustering algorithms are appro-
priate for the problem at hand. In particular, SEER

needs the following characteristics:

Efficiency. SEER must cluster many thousands
of files, so algorithms that require exponen-
tial time or O(N2) storage are not practical.2

Since clustering must be done shortly before
disconnection, the algorithm must take only
seconds, or at worst a few minutes.

Partial Information. Because of space limi-
tations, SEER does not store the distance
between every pair of files, and there is
no way to calculate this distance from the
information that is kept, so the algorithm
must be able to make its decisions based on
limited data.

No Distance Metric. Although we call semantic
distance a “distance measure,” it is not a dis-
tance metric as required by many clustering
algorithms [3]. In particular, it is asymmetric
and does not satisfy the triangle inequality.

Overlapping Clusters. Perhaps the most trouble-
some characteristic of the problem is the need
for files to be members of more than one clus-
ter. A compiler, for example, may be used to
compile programs for a number of different
projects, and so should be a member of more
than one cluster. Relatively few clustering al-
gorithms allow points to be members of mul-
tiple clusters simultaneously; in fact, most al-
gorithms assume that this characteristic would
be undesirable.

No Objective Criterion. There is no numerical
measure that can be used to characterize the
“goodness” of a particular cluster assignment,
eliminating algorithms that seek to optimize
such a criterion.

2Optimal clustering is NP-hard [16].

3.3.2 Agglomerative Algorithm
The algorithm we have developed is based on one
originated by Jarvis and Patrick [10]. This algori-
thm is bottom-up, or agglomerative, starting with
each data point assigned to an individual cluster
and then combining clusters according to a shared-
neighbors criterion. In the original formulation,
the algorithm first calculates the n nearest neigh-
bors to each point, where n is a parameter of the
algorithm. After the n nearest neighbors of each
point have been calculated, the Jarvis and Patrick
algorithm compares the nearest-neighbor list for
each pair of points. If two points have more than
k of their n nearest neighbors in common, they are
considered to be members of the same cluster, and
their clusters are combined. The storage require-
ments are thusO(N ), while the time complexity is
O(N2) since each point must be compared to every
other point.

In our variation, we achieve O(N ) time com-
plexity by avoiding the comparison of every pos-
sible pair of points to locate nearest neighbors. In-
stead, we use the existing table of n nearby files
calculated by our semantic-distance heuristic. In
addition, we use two thresholds, kn (near) and kf
(far), where kn > kf .3

If two files share at least kn neighbors, their
clusters are combined into one, as in the Jarvis and
Patrick algorithm. However, if the files share fewer
than kn but at least kf neighbors, their clusters are
not combined, but instead are overlapped. In the
overlapping operation, each of the closely-related
files is added to the other file’s containing cluster.
These options are summarized in Table 1, where x
represents the number of shared neighbors.

For example, consider seven files, A, B, C, D,
E, F , and G. The number of shared neighbors be-
tween each pair of these seven files is given in Ta-
ble 2. In the table, a blank entry indicates that the
file heading the row does not list the paired file as
related; thus, even if they share neighbors, the clus-
tering algorithm will not discover this fact. For

3The idea of “near” exceeding “far” may seem counterin-
tuitive, but is necessary because smaller thresholds are more
lenient, so that the lower value of kf allows more-distant re-
lationships to be discovered.
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Relationship Action
kn � x Clusters combined into one

kf � x < kn Files inserted, but clusters
not combined

x < kf No action

Table 1: Summary of clustering algorithm (x is
number of shared neighbors).

To:
From: A B C D E F G

A kn kf
B kn
C kf
D kn
E

F kn
G kn

Table 2: Example relationships among seven files.

simplicity, we list the other distances in terms of
the thresholds: 0, kf , or kn. Thus, for example,
fileA listsB as a neighbor and shares kn neighbors
with it. A also lists C as related, but the two files
share only kf neighbors. None of the other four
files are mentioned in A’s relation list, so the algo-
rithm will have no knowledge of neighbors shared
with them.

In the first phase, our algorithm looks for files
that share at least kn neighbors, and combines their
clusters. In our example, files A and B share kn
neighbors, so they become a two-file cluster. No
other files are closely related toA, so the algorithm
moves on to B. Since this file shares kn neighbors
with C , C is added to B’s cluster. This step also
clusters A with C, even though there is no direct
relationship between the two files. Since neitherB
nor C share kn or more neighbors with any other
files, no other files are added to this cluster.

Continuing with filesD throughF , the same cri-
teria are applied to combineD andE into one clus-
ter, and to combine F andG into a second. At this
point there are three clusters: fA;B;Cg, fD;Eg,
and fF;Gg. File G is then processed; noting that

it shares at least kn neighbors with D, the clusters
containing these two files are combined into a sin-
gle four-member cluster, fD;E;F;Gg. Phase one
is now complete.

In the second phase, the algorithm re-processes
all files, looking for pairs that share fewer than
kn but at least kf neighbors. There are two such
pairs, fA;Cg and fC;Dg. Since A and C are al-
ready in the same cluster, no further action is taken.
For C and D, the algorithm adds each of these
files to its counterpart’s cluster, but does not com-
bine the entire clusters. Thus, the final clusters are
fA;B;C;Dg and fC;D;E;F;Gg.

3.3.3 Incorporating Additional Information
The algorithm discussed in Section 3.3.2 is simple
and effective, but does not support the additional
distance measures discussed in Section 3.2. In the
Jarvis and Patrick formulation, multiple measures
could be handled by calculating the Euclidean dis-
tance between potential cluster measures. How-
ever, this calculation would require that all mea-
sures be available between all file pairs, which is
not possible with the possibly limited information
provided by external investigators. Thus, SEER

uses a more ad hoc approach.
When extra information is available, the shared-

neighbor count is incremented or decremented by
the value of the additional information, option-
ally weighted by an administrator-chosen amount.
For example, since a large directory distance (as
defined in Section 3.2) tends to indicate a looser
relationship, the directory distance is subtracted
from the shared-neighbor count, causing widely-
separated files to be less likely to cluster together.
Conversely, an investigated relationship is addi-
tional evidence of closeness between files, so the
strength of the relation as provided by the investi-
gator is added to the shared-neighbor count to in-
crease the likelihood of clustering.

Since it is the shared-neighbor count that is
modified, the additional information does not mod-
ify the semantic distance, instead acting more di-
rectly on the clustering algorithm. This allows
the tendency of two files to cluster together to
be either enhanced or reduced, and also sidesteps
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the difficulties introduced by the asymmetry of
semantic distance. In addition, modifying the
shared-neighbor count allows the extra informa-
tion to be given greater importance, which is ap-
propriate because external investigators can use
their application-specific knowledge to achieve
more accuracy than is available through the more
general-purpose algorithms of semantic distance.

An important point is that the investigated re-
lationships are tested regardless of whether SEER

has independently stored a semantic distance be-
tween the files. By setting the strength of a rela-
tion sufficiently high, an external investigator can
force two or more files to be clustered together in-
dependently of other factors, so automated investi-
gators can override the clustering algorithm if they
choose.

4 Real-World Intrusions
The previous sections have presented an elegant
framework for the design of an automated hoard-
ing system. Unfortunately, the realities of an ac-
tual operating system are not so clean. During the
development of SEER, we repeatedly encountered
real-world behavior that made the system operate
incorrectly. This section reviews the most impor-
tant of those practical intrusions. Although SEER

currently runs under the LINUX operating system,
we have concentrated on difficulties that are com-
mon to most, if not all, software platforms.

4.1 Meaningless Activities
Perhaps the most troublesome problem that arose
during the development of SEER is the existence of
processes and programs that engage in “meaning-
less” activity that provides no information about
semantic relationships. One of the best exam-
ples of this type of activity is the UNIXr program
find, which searches the disk looking for a file
with certain specified characteristics (most modern
systems have a similar function). Because find
opens every directory and looks at every file in se-
quence, the accesses it makes do not give any hint
about inter-file relationships. In addition, because

find accesses every file, it destroys any LRU his-
tory that might have been useful in hoarding deci-
sions. This problem is even more severe in LRU-
based systems such as CODA and LITTLE WORK.

As we gained experience with SEER, we learned
that there were many programs with similar behav-
ior, and we spent a considerable amount of time
searching for the best solution to the problem. Ap-
proaches we experimented with included:

1. List programs such as find as special cases
in a control file, and ignore the accesses gen-
erated by such programs (by flagging it as
“meaningless”).

2. Detect that a process has opened a directory
for reading (which is a typical behavior of
such programs) and use this fact to automat-
ically mark it as meaningless for the rest of its
lifetime.

3. Detect directory opens, and mark a process
meaningless only while the directory is open.

4. Apply a threshold-based heuristic to com-
pare the number of files a process might
know about (from reading directories) with
the number of files it actually touches, mark-
ing it meaningless if it touches the majority of
files it has learned about.

The first approach is attractive due to simplicity
of implementation, but places a heavy burden on
the person responsible for creating and maintain-
ing the control file. The second is almost as sim-
ple, but failed in practice because many meaning-
ful programs read directories. For example, many
text editors do so to implement filename comple-
tion.

The third solution is based on the assumption
that a meaningless program such as find will
keep at least one directory open while it descends
the directory tree. Unfortunately, this assumption
turned out to be false, so that this solution, too, fails
in practice.

The fourth method, though more complex, has
proven successful. Each time a process opens a di-
rectory, SEER counts the total number of files the
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process could potentially access. Actual accesses
are then recorded in a second counter. SEER tracks
the historical behavior of a particular program and
compares the relative values of the counters to a
threshold, based on that history. So, for example,
findwill tend to have a history of accessing every
possible file, and thus would get marked as being a
meaningless process, while an editor will (on aver-
age) access far fewer than the maximum and will
remain meaningful.

There remains one more difficulty, however,
which is the UNIX getcwd library routine. get-
cwd deduces the full pathname of a process’ work-
ing directory by climbing the directory tree and
locating the individual components of the path.
Doing so requires opening and reading directories
in a fashion that is very similar to the behavior
of find, so that the potential-access counter ap-
proach would mark as meaningless any process
that asked for the name of its own working direc-
tory. To address that problem, we installed another
heuristic that detects getcwd’s behavior pattern
and temporarily marks the process as being inside
this function. During this period, all file references
are ignored, even for purposes of inferring mean-
inglessness).

These heuristics have made it possible for SEER

to make the right decision about the relevance of
a process’ references in most cases. However, we
have retained the ability to hand-specify a few pro-
cesses as being meaningless.4 As in information
retrieval, it is necessary to filter out certain irrele-
vant relationships, and as in that field, the current
mechanisms are inelegant and could benefit from
further refinement.

4.2 Shared Libraries
Certain files on a modern computer are so funda-
mental that nearly every program uses them. The
most common example, though hardly the only
one, is the shared library.

Shared libraries present a serious problem for
a system that tries to infer inter-file relationships

4The current list is limited to xargs, rdist, the repli-
cation substrate, and the external investigators.

from the sequence of opens. Since every program’s
reference sequence includes the shared library, the
library becomes a common link between otherwise
unrelated files. For example, if S is the shared li-
brary, SEER might observe the sequences A;S;X
andB;S; Y . S appears to be related to both X and
Y , even though they are actually members of unre-
lated sequences. This eventually causes the clus-
tering algorithm to combine all files into a single
large cluster.

SEER’s solution is to apply a simple but effec-
tive heuristic. If a particular file represents more
than a given percentage (currently 1%) of all ac-
cesses, it is designated a “frequently-referenced”
file and is eliminated from the calculation of se-
mantic distances and file relationships. Since such
a file is obviously important, it is always included
in the hoard regardless of its last reference time.
On the machine with the largest frequent-file list, 8
files fall into this class, representing 2.3 MB of disk
space, or about 5% of that user’s 50-MB hoard.

4.3 Critical Files
Every system has some files that are essential to
system operation, such as files used in the boot-
strap process or for personal startup and configura-
tion. Because modern laptops often support a sus-
pend/resume mode that allows power to be con-
served without rebooting or repeatedly logging in
and out, SEER may observe that these startup files
are rarely used, and incorrectly assume that the
user can do without them. The phenomenon of
rare access to critical files is a fundamental prob-
lem with any completely automated hoarding sys-
tem.

SEER addresses the problem in two ways. First,
a system control file can be used to specify espe-
cially critical system files or directories (such as
/etc in UNIX) that should be left outside SEER’s
control. Second, a UNIX-specific heuristic applies
a similar exclusion to any file whose name begins
with a period (e.g., .login). We have found
that such files tend to be relatively small compared
to the total hoard size, and that they usually con-
tain important control and configuration informa-
tion that the user cannot do without.
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Although it is possible for the user to modify the
system control file to list other files that he con-
siders critical to successful operation, this has not
been necessary in practice. Out of nine SEER users
in our initial deployment, only one even learned
how to list special files, and this was to correct an
oversight by the system administrator. Neverthe-
less, we are unhappy with the necessity for explicit
specification and plan to seek alternatives in our fu-
ture research.

4.4 Detecting Hoard Misses
When the user wishes to access a file that SEER has
decided to omit from the hoard, it is necessary to
detect the hoard miss. This capability is important
for two reasons. First, SEER needs to know of the
miss so that it can add the file (and all other mem-
bers of its project) to the hoard for future use. Sec-
ond, because hoard misses are often devastating to
the user, causing a change in the work being done,
they provide the best statistics for measuring the
success of SEER (see Section 5.1) and tuning the
algorithms.

Depending on the underlying replication sys-
tem, detecting a hoard miss can range from triv-
ial to impossible. For example, FICUS supports
so-called remote access, where an access to a non-
local object is automatically converted to an access
to a remote one. However, the success of this re-
mote access depends on the availability of the re-
mote replica(s) of the object. If the access suc-
ceeds, SEER will be able to identify it as a remote
access and can mark the file to be hoarded later. If
the access fails, however, and returns an error code
to the user, it is difficult or impossible (depending
on the replication system, the error code, and the
state of SEER’s internal tables) to distinguish this
case from an attempt to access a completely nonex-
istent file. Unfortunately, accesses to nonexistent
files are common in many programs, so that it is
neither meaningful nor efficient to assume that any
failed access represents a hoard miss.

A further difficulty arises because some hoard
misses are “implied,” occurring without a direct at-
tempt to access the file. For example, a user might

ask for a directory listing, note that the file is miss-
ing, and never attempt to open it. Again, this is
dependent on the replication system, but because
SEER is portable, it must deal with the possibility.

Because of these problems, we have created
a separate mechanism for tracking hoard misses
when the replication system is unable to support
this function. Whenever the user cannot access a
file, he runs a simple program to record the miss
in a log file and arrange for it to be hoarded in the
future. This is a violation of our no-user-burden
design, but is forced upon us by deficiencies in
some replication systems. For research purposes,
the program also records the time and date of the
miss and a user-specified severity code, as follows:

0 The lack of the file has made the entire com-
puter unusable, e.g., a critical startup file is
unavailable. In this case the miss cannot be
recorded until a network connection is re-
established.

1 The current task will change because of the
missing file e.g., the user can log in but the
primary source file for a program or document
isn’t hoarded.

2 The task will remain the same, but activity
within the task will be modified, e.g., an infor-
mational file is missing but work can proceed
on another part of the same task.

3 The lack of the file will cause little or no trou-
ble.

4 The file isn’t actually needed right now, but
the hoard should be preloaded so that the file
will be available in the future.

This manual recording of misses is subject to the
vagaries of user behavior, since it is possible that
a user might neglect to record a miss and thus per-
turb the statistics collected. It is for this reason that
we designed the system so that the same user ac-
tion both records the miss and arranges for the file
to be hoarded at the next reconnection. By combin-
ing the gathering of statistics with a function neces-
sary to the user, we were able to ensure that misses
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would not go unrecorded. In addition, regular per-
sonal interaction with users in our small-office en-
vironment allowed us to independently verify the
low failure rate.5

As a backup to the manual miss reporting, SEER

also includes an automated miss-detection system
that notes when a user attempts to access a file
that is known to exist but is absent from the hoard.
This mechanism will sometimes detect misses that
a user would consider unimportant, and it cannot
detect “implied” misses, but it is still a useful fea-
ture.

4.5 Temporary Files and Directories
Many programs create temporary files to hold tran-
sient results. Because of their transient nature, se-
mantic relationships between these files and more
permanent ones are not useful to an automated
hoarding system, yet the nature of how they are
created causes them to have a very small semantic
distance, displacing other files from the short list of
n closely-related files kept by SEER.

The current implementation of SEER allows cer-
tain directories, e.g. /tmp, to be marked as tran-
sient in a control file (normally set up by a system
administrator, rather than a user). Files created in
these directories are completely ignored by SEER.
Similar pattern-based detection methods could be
used in other operating systems.

It would be much more elegant to detect tempo-
rary files automatically, but the current design can-
not accomplish this because by the time a file can
be recognized as temporary, it has already had the
opportunity to displace more important files in the
list of n related files that is kept for each file (see
Section 3.1.3). We plan to pursue automated algo-
rithms in the future.

4.6 Non-Files
The LINUX filesystem supports a number of ob-
jects besides files, including directories, symbolic

5In early testing before statistical collection was began,
the first machine deployed did experience a single severity-
0 failure due to the lack of .cshrc; it was this failure that
led us to install the UNIX-specific heuristic discussed in Sec-
tion 4.3.

links, and more exotic objects such as device files
and pseudo-filesystems. Many of these objects are
critically necessary for system operation; for ex-
ample, the lack of a device file for the console will
probably render it impossible to log in, or even to
receive a login prompt.

With the exception of directories and possi-
bly some pseudo-filesystems, these objects take
almost no disk space. Because of the impor-
tance of these objects and their minimal space
requirements, SEER always includes them in the
hoard. Many of these objects are also omit-
ted from semantic-distance and clustering calcula-
tions, since they often vary depending on extrane-
ous factors (e.g., /dev/ttyxx). A control file, set
up by the system administrator, specifies which ob-
jects are ignored.

Directories are the only objects that regularly re-
quire significant disk space. However, the under-
lying replication system may have its own needs
regarding directories (for example, RUMOR might
choose to store a directory so that its contained ob-
jects are accessible when disconnected). For this
reason, SEER leaves hoarding decisions regard-
ing directories up to the replication substrate. For
space calculations, however, it makes the conser-
vative assumption that all directories are hoarded.

4.7 Simultaneous Accesses
The formulations of semantic distance in Sec-
tion 3.1 assume that the user is generating only a
single stream of references. In a modern multi-
tasking operating system, however, a typical user
often simultaneously generates multiple indepen-
dent reference streams, for instance by reading e-
mail while waiting for a compilation. These inde-
pendent streams are intermixed when observed by
SEER, and create incorrect and spurious file rela-
tionships if not properly handled.

We had originally hypothesized [13] that the
data reductions discussed in Section 3.1.2 would
provide a noise-filtering mechanism that would
eliminate the effects of these spurious relation-
ships. Unfortunately, experience proved this hy-
pothesis incorrect: although noise was reduced, it
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was not eliminated, and the resulting spurious rela-
tionships tended to cause poor hoarding decisions.

To address the problem, we found it necessary
to separate the reference streams on a per-process
basis in a manner similar to that used by Tait et
al.’s SPY UTILITY [21]. SEER maintains a sepa-
rate reference-history list for each process, and cal-
culates semantic distances on a process-local ba-
sis. The file-open test mentioned in Definition 3
is also performed on a per-process basis. Refer-
ence histories are inherited from parent processes
and merged when children exit, allowing SEER to
detect extended relationships between files refer-
enced by a process and by its parent.

4.8 Non-Open References
A real program can refer to a file in a variety of
ways. Besides being opened and closed, a file may
be executed as a process, deleted, created as a spe-
cial filesystem object (e.g., a directory), and have
its attributes examined or modified. Under some
systems, alternative names for a file may also be
created and used.

Many of these situations can be treated as a
point-in-time reference, similar to an open imme-
diately followed by a close. A few require more
complex treatment:

Process Lifetimes. Executions and terminations
of processes are treated as opens and closes,
respectively.

File Deletion. Because many programs delete and
immediately recreate files, SEER delays re-
moval from its internal tables for a short pe-
riod (measured in terms of total deletions)
so valuable relationship information won’t be
lost if the file name is immediately reused.

Attribute Examination. Many programs exam-
ine file attributes to see whether a file exists
or to discover whether it can be written. Usu-
ally, the file will be subsequently opened. It
would be less correct to record this activity as
two references to the file, since from the user’s
point of view there is only a single access.

However, other programs, such asmake, base
important decisions on the values of the at-
tributes, and the examination may indicate a
close relationship between the examined file
and another that is actually opened.

In general, SEER treats examination of an
attribute as a simultaneous open/close pair.
However, an examination immediately fol-
lowed by an open is discarded as insignificant.
In addition, certain more complex heuristics,
discussed in Section 4.1, are applied in some
cases.

4.9 Parameter Settings
SEER’s semantic-distance and clustering algori-
thms make use of a number of parameters and
thresholds to make their decisions. The correct set-
tings for these parameters are not obvious, and in-
teractions among them are complex and difficult to
predict. Although space precludes a detailed dis-
cussion, we found it necessary to devote significant
effort to searching the parameter space for the val-
ues that would produce good results for all users.
The search methods and the parameters we used for
our tests are detailed in [15].

4.10 Avoiding Deadlock
Since SEER issues its own system calls, deadlock
can occur if these calls are themselves traced. To
avoid this problem, the trace mechanism does not
record calls made by the observer and correlator
themselves. However, experience showed that this
step was not enough. Some of the system calls
made by SEER can activate daemons, notably those
that support the Network File System (NFS), and
deadlock can occur due to calls made by these pro-
cesses. We solved this problem by not tracing most
calls made by the superuser (“root”). This pre-
vents SEER from being able to manage certain files
needed by superuser activities (e.g., programs in-
voked by cron). We are investigating alternative
methods that will allow use to trace superuser op-
erations and still avoid deadlock.

12



4.11 Tracing System Calls
We indicated in Section 2 that the observer watches
the user’s file accesses. Observation is imple-
mented with a simple modification to the operating
system kernel that allows system calls to be traced.
In general, calls are traced after they complete so
that SEER can observe their success or failure sta-
tus. However, a few calls (on LINUX, only exec
and exit) are traced before execution to capture
important information that will be destroyed when
the call completes.

5 Evaluating Success

5.1 Measurement Methodology
As discussed in [11], traditional measures of cache
performance, such as miss rate, are inappropriate in
a hoarding situation. In a traditional caching sys-
tem, a miss causes a relatively minor performance
penalty, and has no effect on the overall course of
the computation. By contrast, a miss in a hoard-
ing system is a very severe event, because there is
usually no way to service the miss at a small cost
in performance. Instead, a hoard miss generally
causes the user to stop work on the current task and
switch to a secondary one. In a trace-driven simu-
lation, a hoard miss invalidates the trace because of
this task-switching behavior.

5.1.1 Time to First Miss
An alternative measure, first suggested in [20], is
the time to the first hoard miss, measured as either
elapsed time or number of file references. This is
attractive because it quantifies the amount of work
the user was able to do before a hoard failure forced
a change in activity. We implemented this measure
in our live experiments, including measuring the
severity of the miss as discussed in Section 4.4.

Our experiments were conducted by deploying
SEER on nine 486-based laptops used in a soft-
ware development environment. Each laptop was
associated with a single user and served as the pri-
mary platform for that person. The measurement
period varied from one to eight months, with most
machines being examined over a 3-month interval.
Three of the machines (A, B, and E) were used

only occasionally in disconnected mode, while the
remainder each generated 75 or more active dis-
connection periods. The number of observed dis-
connections is reported in Table 3. Four machines
(B, C, E, and H) were not used extensively during
either connected or disconnected mode, primarily
due to outside commitments or the use of alter-
native operating systems. Traces of user activity
recorded a low of about 40,000 operations for the
least-used machines (C and H) to a high of about
326,000,000 operations for the most heavily used
(G).

To measure the time to first miss, we combined
several tools. A background daemon periodically
pings a well-known site to detect disconnection
durations. The output of this daemon was post-
processed to remove disconnections or reconnec-
tions of less than 15 minutes. This eliminated brief
disconnections in which hoard misses would not be
bothersome, and brief reconnections made to trans-
fer e-mail or service an important hoard miss. (The
latter can occur only after a miss is recorded, since
the miss must be recorded before the system can
know that it needs to be serviced. By discarding
the reconnection and thus combining the adjacent
disconnections, the total number of disconnections
is reduced and the average disconnection time in-
creased, both of which perturb our statistics in a di-
rection detrimental to SEER.)

A second daemon detects suspension periods.
This is important because laptop computers are of-
ten placed into a power-saving mode when no work
is being done. It would be incorrect to report a
16-hour overnight disconnection if the laptop were
only in active use for 2 hours; this is especially true
when calculating the time to first miss. By discard-
ing suspensions, we ensured that our statistics con-
sidered only times when the machine was being
actively used. Disconnections during which the
machine was completely unused (e.g., vacations)
were also excluded from the statistics.

Finally, misses themselves were measured us-
ing the manual and automated methods discussed
in Section 4.4.

However, preliminary analysis revealed a se-
vere flaw in this measure. The time to first miss

13



is very dependent on the relationship of the chosen
hoard size to the user’s working set. A user with
a small working set will almost never experience
a miss, while one whose configured hoard size is
only slightly larger than his working set will suffer
an abnormally high failure rate. This flaw cannot
be rectified retroactively, since any traces collected
will have been affected by the presence or absence
of hoard misses and thus cannot be reanalyzed as-
suming a different hoard size.

A secondary, though still important, drawback
is that it is difficult to compare hoarding methods
using this real-world measure. To properly com-
pare two proposed algorithms, one should ask the
user to perform the same tasks twice, once with a
hoard filled by each algorithm. This is clearly im-
possible. The best one could do would be to ask
a user to live with each algorithm for a period of
time, or to ask two different users to use the algori-
thms in parallel. Either approach would introduce
so much uncontrolled variation that dozens or hun-
dreds of experiments would be necessary to elimi-
nate uncertainty.

5.1.2 Miss-Free Hoard Size
For these reasons, we have invented a new measure
that can be used to quantify the difference between
hoarding algorithms. This is the miss-free hoard
size, which is defined as the size a hoard would
have to be to ensure no misses. For example, un-
der a strictly LRU algorithm, the miss-free hoard
size can be calculated as follows:

1. Sort all files according to their last reference
time prior to the current disconnection period,
with the most recent file first.

2. Mark each file that was referenced during the
current period.

3. Locate the last marked file in the list.

4. Sum the sizes of all files between this file and
the beginning of the list.

Clearly, if the hoard size is at least as large as
the sum, an LRU hoarding would have included
all files that were referenced in the disconnection

period. A similar approach can be applied to any
hoarding algorithm to calculate the hoard size that
would be needed to avoid misses.

The miss-free hoard size offers several advan-
tages over other measures:

� It quantifies the difference between algori-
thms in a linear, fine-grained fashion.

� It is not sensitive to current parameter set-
tings.

� It can be calculated using reference traces,
so that simulation becomes a viable analysis
tool.

� It reflects the behavior that the user desires:
working as if connected, with no awareness
that only a selected subset of files is present.

We have carried out extensive trace-driven sim-
ulations to measure the miss-free hoard size under
various conditions; the results are reported in Sec-
tion 5.2.1. For each of a group of laptop comput-
ers, we collected file reference traces, in both con-
nected and disconnected mode, over a period of
one or more months.

The question of whether to use connected or
disconnected traces was a difficult one. Traces
of connected operation include behaviors that can-
not happen while disconnected, such as browsing
the Web. Traces of disconnected operation will
at least occasionally include a period covering a
hoard miss, which may change user behavior in
some fashion. This will usually have the effect of
placing more stress on the hoarding system, since
the attempted access to the missed file will have
been recorded in the trace, and the attention shift
forced by the miss will now require the system to
hoard both the old and the new projects. Even in
the absence of misses, the user may have avoided
some activity because he was aware that it was not
hoarded.

Because of the complexity of these considera-
tions, we chose to use complete traces, covering
both disconnected and connected operation. Since
our users experienced relatively few misses, and
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the majority were at insignificant severities, we be-
lieve that the disconnected traces were generally
valid even when they covered periods with misses.
The connected portions of the traces were included
because we believe that although some activities
might not occur disconnected, the general file-
access patterns of these activities are still represen-
tative of typical applications and thus serve as a
reasonable test of a hoarding system.

We then replayed the traces into the correla-
tor running in a simulation mode. The simulation
made use of actual file sizes whenever possible;
when the size of a file was not available, the size
was randomly assigned from a geometric distribu-
tion with a parameter of 0.00007, for an average
file size of 14284 bytes. This value was chosen
by examining the actual distribution of file sizes
in traces observed by SEER. To the extent that
this distribution does not reflect actual file sizes, it
will slightly distort the hoard-size and working-set
statistics.

Each trace was replayed under up to four sets of
conditions. We simulated disconnection durations
of both 24 hours and 7 days, with each simulated
disconnection separated by an infinitesimal recon-
nection during which the simulated user performed
no work while the hoard was recomputed. On three
machines (B, F, and G), we evaluated the impact of
external investigators by simulating both with and
without the information they supplied. For each
combination of conditions, the simulation was re-
peated several times with different random seeds
to reduce the variation introduced by randomly as-
signing file sizes. The individual experiments were
done in random order to avoid possibly introducing
outside trends.

Each simulation generated comparative results
for SEER’s cluster-based management scheme, a
strict LRU scheme, and three schemes inspired by
the formula used in CODA. However, the latter
three schemes performed more poorly than LRU,
due the lack of the ongoing hand management that
they were designed to expect. (We did not have the
resources to apply such hand tuning to our simu-
lations.) Because these algorithms were not tested

under conditions appropriate to their design, we
chose not to report results for them.

5.2 Results
We now have approximately 35 man-months of
experience using SEER in a live setting, with ex-
cellent results. We have also conducted extensive
simulations. In live use, SEER has performed even
better than expected; several users experienced no
hoard misses at all, no one suffered a significant
percentage of failed disconnections, and there were
no severity-0 failures. In simulations, SEER’s clus-
tering algorithm essentially always outperforms
LRU-style methods, and is usually so close to the
optimum that we at first suspected an error in our
measurement procedures.

Our only disappointment has been analytical,
rather than experimental. The clusters produced by
SEER often have contents that are surprising to us,
either by including apparently unrelated files or by
separating a single project into a few clusters rather
than the single grouping that would correctly repre-
sent it. However, this problem can be mitigated by
the use of external investigators. In any case, this
discrepancy has not affected the success of our live
and simulated experiments, so it is possible that it
is only a theoretical difficulty that will never bother
real users.

5.2.1 Simulations
Figure 2 shows the miss-free hoard sizes graphi-
cally. Each pair of stacked bars represents a sin-
gle machine; the left-hand bar of each pair is for
daily disconnections and the right-hand bar is for
weekly activity. For three machines (B, F, and G),
the effect of using external investigators is shown
by a bar pair marked with an asterisk. The lowest
element of each stack represents the mean work-
ing set for the machine and period; the center el-
ement is the additional space required by SEER’s
clustering algorithm to remain miss-free, and the
upper element shows the additional space needed
by the LRU algorithm. 99% confidence intervals
were within �2 MB about the mean for all mea-
surements except the LRU hoard space, which al-
ways fell within � 5 MB about the mean.
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Figure 2: Mean working sets and miss-free hoard
sizes for two managers. The left-hand bar of
each pair represents daily disconnections, while
the right-hand bar gives weekly values. Starred la-
bels represent the use of external investigators.

It is remarkable in Figure 2 that the clustering
algorithm consistently requires space only slightly
greater than the working set, which represents the
needs of an optimum algorithm. By contrast, the
LRU approach frequently uses space several times
greater. This shows that SEER can be successfully
used to hoard files in near-optimal space, so that
power users who normally operate with nearly-
full disks can work disconnected without inconve-
nience.

An interesting and unexpected result is that the
external investigators did not make a significant
difference in the required hoard size. In every case,
the 99% confidence durations show that the use of
external investigators had no statistically meaning-
ful effect. In future research, we plan to examine
this anomaly to see whether we can devise param-
eter settings that will make external investigation
more useful.

Figure 3 gives another view of the same mate-
rial. Here, instead of showing means, we give de-
tailed data for a single machine and simulated dis-
connection period. This graph shows the weekly
working set sizes for the most heavily-used ma-
chine (F), plus the miss-free hoard size needed
by the clustering and LRU managers for each
week. To aid visualization, the X axis is sorted by
working-set size. Each X value represents a par-
ticular week, but consecutive values do not repre-
sent consecutive weeks. Instead, the X values re-

Sorted working set sizes of machine F
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Figure 3: Performance of two hoard managers
vs. working set sizes for simulated weekly discon-
nections of machine F (sorted by working set size;
X axis represents sort order).

flect the ordering of the disconnection periods after
sorting. Again, we see that SEER’s clustering man-
ager requires a hoard size only slightly larger than
the working set, while the LRU manager often re-
quires significantly more space.

Another result of the simulations is that the
working sets are relatively small. This is somewhat
surprising in the face of the frequently made ob-
servation that disks tend to be full. This is an in-
dication of the wastage on most systems: only a
small fraction of all files are actually needed by the
user on any given day. We also note that the ad-
vent of multimedia, voice recognition, and similar
features can be expected to increase everyday disk
requirements, placing added pressure on hoarding
systems and making the superior performance of
SEER even more important.

5.2.2 Live Usage
Table 3 gives statistics on the general disconnec-
tion behavior of actual users, including the num-
ber of observed disconnections (which reflects the
machine’s usage level during the measurement pe-
riod), the mean (�x), median (x0:5), and standard
deviation (�) of the disconnection duration, and
maximum duration. (The minimum duration tends
to be nearly constant approximately at 0.25 hours
because of the 15-minute minimum disconnection
time mentioned in Section 5.1.1.)

Table 4 summarizes statistics on failed discon-
nections, defined as those in which there was at
least one hoard miss. For each machine, the table

16



Days No. of Disconnection Duration (Hours)
User Measured Disconnections Total �x x0:5 � Max
A 111 38 424 11.16 3.24 15.82 71.89
B 79 10 431 43.20 0.57 127.19 404.94
C 113 75 745 9.94 1.12 40.87 348.20
D 118 90 271 3.01 1.38 4.46 26.50
E 71 25 47 1.87 0.81 2.54 12.08
F 252 184 1711 9.30 2.00 16.33 90.62
G 132 107 862 8.06 1.47 38.29 390.60
H 113 75 763 10.17 1.12 41.09 348.20
I 123 116 274 2.36 0.78 4.26 27.68

Table 3: Disconnection statistics.

Failures
Hoard Any

User Size 0 1 2 3 4 Sev. Auto
A 50 0 0 0 0 0 0 2
C 50 0 0 0 0 0 0 1
D 50 0 0 0 0 0 0 5
E 50 0 0 0 0 0 0 1
F 50 0 3 6 11 9 24 2
G 98 0 0 0 0 0 0 3
I 50 0 1 0 0 0 1 5

Table 4: Summary of failed disconnections at var-
ious severities.

gives the hoard size used in megabytes, the abso-
lute number of failures at each severity level, the
number of failures at any severity, and the automat-
ically detected failure count. To save space, all-
zero rows have been omitted from Table 4. Two ap-
parent anomalies in this table require further expla-
nation. First, the number of failures at any sever-
ity can be smaller than the row sum if a particu-
lar disconnection experienced failures at multiple
severities. Second, interviews with users and ex-
amination of traces have shown that automatically
detected failures are not always failures from the
user’s point of view, which is why they tend to ex-
ceed the user-reported count.

Most users experienced very few failures. Only
the most heavily used machine (F) suffered a sig-
nificant number of failed disconnections (13% of

the total disconnections), and the majority of those
failures were at the unobtrusive severity levels 3
and 4. We should also emphasize that we de-
liberately chose unrealistically small hoard sizes
to stress the system; in a real environment there
would have been no failed disconnections at all.
This reduced hoard size was the primary cause of
the misses observed for machine F. Post-analysis
of the data revealed that this machine’s working set
often exceeded 50 MB, so that no hoarding system
could have performed miss-free with the config-
ured hoard size. We have since increased the hoard
size to 100 MB for this machine, and the miss rate
is now comparable to that experienced by the other
users.

Table 5 summarizes the time until the first miss,
in hours, for the failed disconnections listed in Ta-
ble 4. Here, the mean (�x), median (x0:5), standard
deviation (�), and range are given. The median
is omitted when there are fewer than 4 samples.
This table also omits rows for all severity levels
that had a zero miss count, and for machines that
had no misses. Such rows would merely report the
disconnection-time statistics for those machines;
interested readers may refer to [15] for more infor-
mation.

It is clear from these tables that the users of
SEER did not suffer greatly due to hoard misses.
Misses were rare, although when they did occur,
they often occurred relatively soon after discon-
nection (as shown by the median values in Table 5).
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Hours
User Sev. �x x0:5 � Min Max
A Auto 1.8 — 2.3 0.21 3.4
C Auto 1.6 — — 1.6 1.6
D Auto 0.9 1.0 0.5 � 0 1.3
E Auto 11.0 — — 11.0 11.0
F 1 10.6 — 16.3 � 0 29.4

2 6.6 0.9 9.1 � 0 21.5
3 3.4 0.5 4.9 0.1 12.9
4 6.2 0.5 11.2 0.1 29.3
Auto 20.4 — 28.4 0.3 40.5

G Auto 0.5 — 0.3 0.2 0.8
I 1 1.0 — — 1.0 1.0

Auto 0.9 0.6 0.6 0.1 1.8

Table 5: Hours until first miss for failed disconnec-
tions.

However, when these values are compared with the
median disconnection times given in Table 3, we
can see that misses generally occurred well into the
disconnection, and that users normally continued
to work after the miss occurred (shown both by the
fact that the time to first miss is far less than 100%
of the disconnection period and by the severity lev-
els of the misses). It is also worth reiterating that no
user experienced a severity-0 miss (computer un-
usable).

We also calculated the time-to-first-miss statis-
tics across all disconnections, both successful and
failed. Under these conditions, the time to first
miss becomes essentially equal to the mean discon-
nection time. Again, this provides evidence to sug-
gest that hoard misses were not bothersome to our
users.

It is worth noting that intelligent user behav-
ior is an important factor in the success of SEER.
This same factor was previously observed with
CODA [11, Section 5.2.2]. Before the advent
of mobile computing, a traveling businessperson
would load his briefcase with documents he ex-
pected to work on. While on an airplane, he would
not attempt to work on a project that he knew was
not in the briefcase. In a similar manner, users
of SEER tend to be at least peripherally aware of

the hoard contents, and do not attempt to work on
projects that they know are unavailable. Instead,
they plan ahead to some extent, devoting them-
selves to hoarded projects and later, while con-
nected, attacking the unhoarded ones, which has
the side effect of then causing them to become
hoarded.

5.3 Implementation and Performance
Impact

SEER is implemented primarily in C++, with a few
auxiliary shell and PERL scripts that help to sup-
port external investigators and interface to the un-
derlying replication system. All told, the system
comprises approximately 47,500 lines of code.

The cost of running SEER is twofold: CPU and
memory requirements. The CPU cost of tracking
system calls is minor, about 35 �s on a 133-MHz
PENTIUMr processor [15], and the system calls
traced are infrequent ones such as open, making
tracing inexpensive. Hoarding decisions are sig-
nificantly more costly, requiring about 2 minutes
of CPU time to form the clusters, but this is a rela-
tively rare event that can be delayed until a chosen
time, so our users have not found it troublesome.

The primary impact of SEER is in its memory
usage, which was deliberately left unoptimized to
simplify the research. The database of known files
is stored in virtual memory, requiring about 1 KB
for each of the approximately 20,000 files tracked
on behalf of a typical user. However, we believe
that a few straightforward improvements could cut
this memory requirement by 50% or more. In ad-
dition, it would be relatively simple to modify the
system to store the database on disk, rather than in
virtual memory, since only a small fraction of the
information is active at any given time. We post-
poned these optimizations because it was clear that
they would not contribute directly to the research
and could be added at a later date.

6 Related Work
There have been a number of previous systems
supporting disconnected operation; however, it is
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difficult to compare them to SEER because no
quantitative results have been published.

6.1 Early Systems
Disconnected operation was first developed in the
early 1990’s. Early systems used an LRU mecha-
nism to load the hoard [1, 9], or left the problem
to unspecified external mechanisms [8]. Some of
these systems were actually used for disconnected
operation, but no data on the performance of hoard-
ing has ever been published. Our own experience
suggests that LRU is usually an adequate approach,
so that users would find these systems acceptable.
It is only when an attention shift occurs that LRU
fails significantly, because the user must individu-
ally reference each file involved in the shift. This
is in contrast to SEER’s clustering approach, where
an attention shift will quickly cause all members of
a project to be loaded into the hoard.

6.2 CODA

The CODA system [11] enhanced simple LRU by
allowing the user to specify an offset to be applied
to the LRU age of a particular file, as a means of in-
dicating its importance. A global bound arranged
that for older files, the offset controlled the hoard-
ing decision regardless of the original reference or-
der. In practice, CODA users do not concern them-
selves with these details; instead they simply as-
sign a “hoarding priority” to each file or group of
files based on their perceived importance relative
to other files.

When an attention shift occurred, users would
change projects by loading a new set of priori-
ties, called a “hoard profile,” for that project. Ac-
cording to [20], separate hoard profiles were nor-
mally used for applications and data; a user would
choose a subset of possible profiles depending on
the expected activity. Hoard profiles for applica-
tions could potentially be created by a system ad-
ministrator, but the user was burdened with both
the specification of profiles for his own data and
with the task of choosing the proper subset of pro-
files that would reflect the work he planned to do.
Mahadev Satyanarayanan has commented [19] that

this approach is similar to programming in assem-
bly language: it provides excellent control over
what happens, but is tedious and requires great ex-
pertise.

There are very few published results on the
hoarding behavior of CODA. Although both [11]
and [20] give quantitative information, the data
presented relates to the size of working sets and the
performance of the replication system. The only
discussion of hoarding success is couched in gen-
eral terms. For example, from [20, Section 5.2.2]:

Many disconnected sessions experi-
enced by our users, including many sec-
tions of extended duration, involved no
cache misses whatsoever.

and

When disconnected misses did oc-
cur, they often were not fatal to the ses-
sion. In most such cases the user was
able to switch to another task for which
the required objects were cached. In-
deed, it was often possible for a user
to “fall-back” on different tasks two or
three times before they gave up and ter-
minated the session.

6.3 SPY UTILITY

To date, the only other attempt to automate the
hoarding process is Tait et al.’s SPY UTILITY [21].
Like SEER, this system tracks process execution
trees and infers the contents of projects based on
file accesses. It differs in that it restricts itself to
loading unions of access trees, rather than attempt-
ing to create project clusters at a higher seman-
tic level. This mechanism is much more limited.
There is no facility for providing multidimensional
semantic information, as SEER does via the exter-
nal investigators discussed in Section 3.3.3. The
system allows for certain other types of user input,
but these are not integrated with the process-tree
information.
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Unfortunately, there is even less published data
for SPY UTILITY than for CODA. The primary de-
scription appeared soon after the system was de-
ployed, without quantitative results, and no subse-
quent data has been made available to date.

7 Future Work
SEER is running successfully in our workgroup. In
the future, we would like to collect performance
data for a larger user community. We plan to con-
duct further studies with the CODA user base and to
port SEER to the WINDOWS environment. The lat-
ter port will make SEER available to business and
management users, who often have very different
behavior than computer scientists [14]. As part of
this porting effort, we plan to analyze the perfor-
mance of SEER in other settings and to compare
this to our current data.

There are also significant opportunities for fur-
ther development of the underlying mechanisms.
The clustering algorithms, in particular, are more
parameter-sensitive than one would like, and pro-
vide fruitful soil for study of more stable method-
ologies.

In addition, the predictive and inferential meth-
ods pioneered by SEER hold promise for other ap-
plications, such as Web caching, network file sys-
tems, and directory reorganization. We are cur-
rently investigating ways to apply our work to
these and similar areas.

8 Conclusion
SEER has shown that fully-automated predictive
hoarding is feasible, though the engineering chal-
lenges involved are daunting. The system is ca-
pable of supporting disconnected operation for
lengthy periods with only occasional hoard misses,
giving the user the illusion that the network is still
present even in the complete absence of commu-
nication. This level of automation enables the en-
tire virtual-networking paradigm of mobile opera-
tion [2].

An especially important contribution of SEER

is the freedom from manual user configuration.

While previous systems required the hoard con-
tents to be specified partially or entirely by hand,
SEER is able to infer project contents and make its
hoarding decisions without intruding on the user’s
work. Such automated operation is critical with
modern systems, since there is no practical way for
the user to identify all files that will be required
during disconnection.
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