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Abstract

A common problem facing mobile computing is
disconnected operation, or computing in the ab-
sence of a network. Hoarding eases disconnected
operation by selecting a subset of the user’s files
for local storage. We describe a hoarding system
that can operate without user intervention, by ob-
serving user activity and predicting future needs.
The system calculates a new measure, semantic
distance, between individual files, and uses thisto
feed aclustering algorithm that chooseswhichfiles
should be hoarded. A separate replication system
manages the actual transport of data; any of anum-
ber of replication systemsmay be used. We discuss
practical problems encountered in the real world
and present usage statistics showing that our sys-
tem outperforms previous approaches by factors
that can exceed 10:1.
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1 Introduction

The face of computing today is rapidly being
changed by the advent of mobility, but the utility
of the portable computer is seriously challenged
by the problem of disconnected operation, where
useful work must continue in the absence or near-
absence (i.e., available only at high cost or low
bandwidth) of the network. Although impressive
resources are being devoted to research in wire-
less networking, with agoal of making communi-
cation continuously available, the problemis diffi-
cult, anditislikely to bealong time beforethe mo-
bile user will have the same networking capabili-
tiesaswe expect from a stationary computer today.
In the interim, portable computers will often find
themselves either completely lacking communica-
tion or significantly restricted by battery power,
bandwidth, or cost.

In the absence of readily available high-quality
communication, users are often forced to oper-
ate disconnected from the network. But in a
world dominated by networking, this is a major
drawback, because the computing paradigm has
grown dependent on the availability of non-local
resources. Lack of access to aremote file can halt
work on a particular task or even make the com-
puter unusable.

A very attractive solution to the lack of com-
munication is hoarding, in which non-local files
are cached on thelocal disk prior to disconnection.
Thelocal files can be managed and kept consi stent
by areplication system [7, 9, 11].

The difficult challenge is the “hoarding prob-
lem” of selecting which files should be stored lo-
cally. Earlier solutions have simply chosen the
most recently referenced files [1, 9] or asked the
user to participate at least peripheraly in manag-
ing hoard contents [11, 21]. The former approach
is wasteful of scarce hoard space, while the latter



requires more expertise and involvement that most
users are willing to offer.

We have taken afresh approach to this problem,
and have succeeded in creating a predictive hoard-
ing system, called SEER, that makes hoarding deci-
sions without user interaction. SEER considers the
user’s activities to be composed of projects, rather
than individual files, which greatly enhances the
accuracy of itspredictions. Indaily use, the system
has dramatically improved the achievable quality
of hoarding decisions, in general requiring a hoard
that isonly dlightly larger than the working set.

2 System Overview

Automated predictive hoarding is based on theidea
that a system can observe user behavior, make in-
ferences about the semantic relationships between
files, and usethoseinferencesto aid theuser. SEER
consists of two major components built atop a
replication substrate. First, an observer watches
the user’s behavior and file accesses, classifying
each access according to type, converting path-
namesto absoluteformat, and feeding theresultsto
acorrelator. The correlator evaluates the file ref-
erences, cal culating the semantic distances among
variousfiles (see Section 3.1). These semantic dis-
tances drive a clustering algorithm (Section 3.3.2)
that assigns each file to one or more projects.

When new hoard contents are to be chosen, the
correlator examines the projects to find those that
arecurrently active, and sel ectsthe highest-priority
projects until the maximum hoard size is reached.
Only complete projects are hoarded, under the as-
sumption that partial projects are not sufficient to
make progress.

SEER does not itself do the file hoarding; in-
stead an underlying replication system performs
this task. This design frees SEER from the trou-
blesome details of moving files back and forth be-
tween computers, making sure updates are prop-
agated to other replicas of the files, and man-
aging conflicts [17]. It also makes SEER more
portable because very little is assumed about the
underlying system. SEER currently runs atop

the RUMOR [6, 18] user-level replication sys-
tem, a custom-built master-dave replication ser-
vice called CHEAP RUMOR, and CoDA [11], and
it could easily be used with other systems such as
Ficus[7]and LITTLE WORK [9].

A feature critical to usability isthat, unlike pre-
vious systems, SEER normally operates without
user intervention. Thereisno need to build explicit
lists of important files or to instruct the system that
certain activities are of interest. The only user in-
teraction (beyond any that might berequired by the
underlying replication system) involves informing
the computer that adisconnection isimminent, and
even this requirement can be eliminated by auto-
mated periodic hoard filling if desired. Although
SEER allows usersto provide explicit hoarding in-
structions, our experience shows that such inter-
vention is rarely necessary.

3 Underlying Concepts

The fundamental assumption of SEER isthat there
is semantic locality in user behavior. By detect-
ing and exploiting this locality, a system can make
inferences about the relationships between various
files. Once these relationships are known, there is
potential for an automated hoarding system to per-
form much better than one that is based on LRU-
style caching algorithms.

3.1 Semantic Distance

To detect semantic locality, SEER defines a new
concept known as semantic distance. Conceptu-
ally, semantic distance attemptsto quantify auser’s
intuition about the relationship between files. A
low semantic distance suggests that the files are
closely related and thus are probably involved in
the same project, while alarge value indicates rel-
ative independence and different projects.

In our system, semantic distance is based on
measurements of individual file references, rather
than looking at the files themselves. The dis-
tance between referencesisthen summarized (Sec-
tion 3.1.2) to produce avalue that isrelevant to the
individual files.



In our system, a file reference is considered to
be a high-level operation, such as an open or sta-
tus inquiry. We do not track individual reads and
writes, partly for efficiency but primarily because
we believe that doing so would obscure the infor-
mation we are trying to extract. SEER isinterested
in whole files, rather than individual bytes, so it is
more informative to look at whole-file operations.

3.1.1 Measuring Semantic Distance

While the concept of semantic distance is simple,
it is not so easy to come up with a quantification
that is both meaningful and implementable. The
method we have chosenisbased onthe observation
that semantic locality is similar to temporal local-
ity: filesthat are referenced at the same time tend
to be semantically related. This observation is not
original to us [4, 5, 12, 21], but to our knowledge
we arethefirst to formalize the notion of semantic
locality and its relationship to temporal locality.

Thisleads directly to afirst definition of seman-
tic distance (notethat all of our suggested measures
are asymmetric):

Definition 1 Temporal semantic distance. The
temporal semantic distance between two file refer-
encesisequal tothe elapsed clock time between the
references.

This definition has intuitive appeal: it is Sm-
ple and easy to measure, and it nicely captures the
fact that files referenced at the same time tend to
be semantically related. Unfortunately, it has a ba-
sic flaw, which is the fundamental disparity be-
tween computer and human time scales. For ex-
ample, during a compilation, object files would be
considered related to their respective sources, but
two source files that were components of the same
program would be less closely related because ac-
cesses to them during editing may be separated by
many minutes. Also, the definition is subject to
artificial distortion due to anomalies such as tele-
phone interruptions or large variations in system
load.

To avoid these difficulties, we can modify our
definition to use the sequence of file references,
without regard to clock time:
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Definition 2 Sequence-based semantic distance.
The sequence-based semantic distance between
two file references is equal to the number of inter-
vening references to other files.!

This definition allows us to infer semantic rela-
tionships from temporal locality without suffering
distortions due to time-scale anomalies. However,
Definition 2 still needs improvement. If we con-
sider only whole-file references such as opens, an
individual reference does not take place at a par-
ticular point in time. Instead, a file reference can
then be considered to have alifetime reaching from
an open to a corresponding close. Our experiences
suggest that it isthe relationship betweentheselife-
times, rather than the individual point-in-time ref-
erences, that is of semantic importance.

For example, consider the compilation of a C
module that is composed of a source file S and
several included header files Hy, H,, ..., H,. The
header fileswill be opened and closed in sequence,
yet the n'" header fileisjust as essential to compil-
ing the program asthe first. To capture thisimpor-
tant relationship, we can define ameasure based on
filelifetimes by taking advantage of the fact that .5
remains open during the entire process:

Definition 3 Lifetime semantic distance. The
lifetime semantic distance between an open of file
A and an open of file B isdefined as 0 if A hasnot
been closed before B is opened, and the number
of intervening file opens (including the open of B)
otherwise.

For example, consider the reference sequence
{A°, B°, B¢, C°, C° A°, D°, D¢}, where the su-

Un practice, there are several alternative ways of im-
plementing this definition. For example, in the sequence
{A, A,..., B}, SEER usesonly the closest pair of references
in calculating the distance from A to B. Similarly, in the se-
quence {A,C,C, C, B}, astrict interpretation of the defini-
tion would result in a semantic distance of 3, which is the
choice used by SEER. However, it might be equally sensi-
ble to elide the repeated references, so that the distance was
only 1. We chose not to do this partly for efficiency, and
partly to capture the phenomenon of intensive work on asin-
gle project. The various options involved in calculating se-
mantic distance are discussed in detail in [15].
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Figure 1: Sample file access sequence.

perscripts o and ¢ indicate opens and closes respec-
tively. This sequence is diagrammed in Figure 1,
where the extent of an access is indicated by the
width of the enclosing box. The lifetime-based se-
mantic distance from A° to each of B° and C'° will
be O, while the distance from A° to D° will be 3.
Similarly, the distances B° — C°, B° — D°, and
C° — D°will bel, 2, and 1, respectively. All
other distances (B° — A%, C° — A°, D° — A°,
C° — B°, D° = B° and D° — (°) are unde-
fined in this brief example.

Finally, we need to consider filereferencesother
than opens or closes. For example, a file rename
may be an essential part of a compilation and thus
as semantically meaningful (in terms of hinting at
file relationships) as an open. For most purposes,
SEER treats such references asif they werean open
followed immediately by aclose. We discussthese
other types of references in more detail in Sec-
tion 4.

3.1.2 DataReduction

Semantic distance is calculated between two file-
reference events (normally file opens). For SEER’S
purposes, however, the more interesting informa-
tion is the semantic relationship between two files,
rather than between two references to those files.
Tracking files instead of references reduces the
amount of data that must be stored, but brings up
the issue of how to convert the multiple distances
between eventsinto asingle distance between files.

The most obvious conversion method is to use
asimple mathematical summary, such asthe arith-
metic mean, to represent the entire sequence of ref-
erences. The particular summary chosen should be
easy to calculate, updatable on-line, small in stor-
agerequirements, and defensible asbeing areason-
able representation of the actual semantic relation-
ship between files.

The arithmetic mean, attractive for its smplic-
ity, satisfies al of these requirements, and was the
first method we tried. However, we found that
the arithmetic mean produced undesirable results.
For example, if three event pairs produce distances
of 1, 1, and 1498, the arithmetic mean would be
500. But the user would very likely consider the
filesinvolved to be more closely related than two
other files represented by semantic distances 500,
500, and 500. The problem is that small numbers
are much more indicative of a relationship than
are large ones. Because of this disparity in signif-
icance, we turned to the geometric mean, which
gives smaller values more importance.

3.1.3 Practical Algorithms

Definitions 1 through 3 in Section 3.1.1 have the
common characteristic that they define a distance
value between every pair of files mentioned in a
stream of references. Since SEER is designed to
process data from months or even years of ref-
erences, encompassing tens or hundreds of thou-
sands of files, the O(N?) storage complexity re-
quired to keep track of the distance between ev-
ery pair of files becomes prohibitive. Furthermore,
each new reference to a given file generates new
distances between it and all previously-referenced
files, so that the cost of processing a single refer-
enceonlineisO( V) inthenumber of files, whichis
also unacceptably high. Even if areference could
be processed in 1 ps, keeping track of all pairs
would expend 10 ms of CPU time per openif only
10,000 files were known. Thisis even higher than
the base CPU cost of an open in a modern system,
and 10,000 filesisavery small number for amod-
ern distributed system.

Fortunately, since we are interested in locating
files that are semantically close to each other, it is
not necessary to store all N? distances. Instead,
SEER uses an approximation heuristic to calculate
semantic distances. The heuristic makes two com-
promises for the sake of efficiency. First, rather
than storing the distance between every pair of
files, only n distances (n = 20 in our current im-
plementation; see Section 4.9 for moreinformation
on how the algorithm’s constants were chosen) to a
file's closest neighbors are tracked. Second, when



processing a new file reference, the distances up-
dated are limited to those from files that are within
adistance of M (currently M = 100) of the cur-
rent reference. Although these heuristics can in-
troduce a large error in pathological cases[15], in
practice they have produced acceptable results. A
compensation algorithm detects and partially ad-
justsfor larger distances by inserting M whenever
avalue larger than M would have occurred.

From time to time, it is necessary to replace one
of the n distances kept for each file (i.e., when a
new semantic distance arrives with asmall value).
In this case, a priority system is used. The high-
est priority goes to a closely related file that is
marked for deletion from the internal table. If no
such file exists, the list of n references is scanned
to locate the one with the largest current semantic
distance (with ties broken randomly). If this ref-
erence has a distance larger than that of the new
candidate, it is chosen for replacement. Finaly, if
there is still no candidate, an aging system is ap-
pliedthat allowsvery old and inactivereferencesto
be replaced by newer ones; details are given else-
where [15]. This aging system is necessary to al-
low SEER to track fundamental changesin user be-
havior and to allow incorrectly inferred relation-
ships to be removed over time.

3.2 Other Distance M easures

Besides semantic distance, there is a wealth of
other information that can be gleaned from a run-
ning computer system to help an automated hoard-
ing system achieve acceptable results. That infor-
mation includes:

Directory member ship. Asageneral rule, filesin
the same directory are more closely related to
each other than filesin different directories.

File naming conventions. Naming often pro-
vides clues to important relationships. For
example, C++ classes are often described in
header files and implemented in source files
that differ only in the extension.

“Hot” links. The Object Linking and Embedding
facility in WiINDoOws® (OLE) allows docu-

ments, graphs, and other objects to be inter-
linked as necessary to build larger structures
in aflexible manner. These so-called hot links
provide valuable and low-cost information
about fundamental rel ationships among mem-
bers of a project. A programming-language
analog isthe #i ncl ude statement in C and
C++, which asoindicates avery strong inter-
file relationship.

To take advantage of directory membership,
SEER incorporates a directory-distance measure
that is zero for files in the same directory and in-
creases for files in more widely-separated directo-
ries.

To handle the other two types of relationships,
SEER provides a generalized external investigator
mechanism. An external investigator is an auxil-
iary program that can examine selected files and
extract application-specific information, which is
then supplied to the correlator asextrafilerelation-
ship data. For example, we have developed asim-
ple script that can read C source files to discover
#i ncl ude relationships that are then passed to
the correlator for inclusion in the clustering deci-
son. The information is expressed as groups of
related files, together with an investigator-chosen
weight indicating the strength of the relation. The
clustering algorithm discussed in Section 3.3.2
makes use of these relationships when specified,
although it does not require them. The method of
integrating these relationships is described in Sec-
tion 3.3.3.

If an external investigator can identify an entire
project, this information can be communicated to
SEER independently of the internal clustering al-
gorithm. For example, amakef i | e investigator
could potentially identify every file needed to build
aparticular program and create acluster containing
exactly thesefiles.

3.3 Clustering Algorithm

Simply knowing the relationships among individ-
ual files solves only half the problem of predictive
hoarding. These pairwise relationships must be

5 converted into meaningful groupings of files into



projects. Todo so, weuseamultidimensional clus-
tering algorithm.

3.3.1 Requirements

Although clustering has been widely studied, rela-
tively few known clustering algorithms are appro-
priate for the problem at hand. In particular, SEER
needs the following characteristics:

Efficiency. SEER must cluster many thousands
of files, so algorithms that require exponen-
tial time or O(N?) storage are not practical .2
Since clustering must be done shortly before
disconnection, the algorithm must take only
seconds, or at worst afew minutes.

Partial Information. Because of space limi-
tations, SEER does not store the distance
between every pair of files, and there is
no way to calculate this distance from the
information that is kept, so the agorithm
must be able to make its decisions based on
limited data.

No Distance Metric. Although we call semantic
distance a “ distance measure,” it isnot adis-
tance metric as required by many clustering
algorithms [3]. In particular, it is asymmetric
and does not satisfy the triangle inequality.

Overlapping Clusters. Perhapsthe most trouble-
some characteristic of the problem isthe need
for files to be members of more than one clus-
ter. A compiler, for example, may be used to
compile programs for a number of different
projects, and so should be a member of more
than one cluster. Relatively few clustering al-
gorithms allow points to be members of mul-
tiple clusters smultaneoudly; in fact, most al-
gorithmsassumethat this characteristic would
be undesirable.

No Objective Criterion. There is no numerical
measure that can be used to characterize the
“goodness’ of aparticular cluster assignment,
eliminating algorithms that seek to optimize
such acriterion.

20ptimal clustering is NP-hard [16].
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3.3.2 Agglomerative Algorithm

The algorithm we have developed is based on one
originated by Jarvis and Patrick [10]. This algori-
thm is bottom-up, or agglomerative, starting with
each data point assigned to an individual cluster
and then combining clusters according to ashared-
neighbors criterion. In the original formulation,
the agorithm first calculates the n nearest neigh-
bors to each point, where n is a parameter of the
algorithm. After the n nearest neighbors of each
point have been calculated, the Jarvis and Patrick
algorithm compares the nearest-neighbor list for
each pair of points. If two points have more than
k of their n nearest neighbors in common, they are
considered to be members of the same cluster, and
their clusters are combined. The storage require-
mentsare thus O( V), while the time complexity is
O(N?) since each point must be compared to every
other point.

In our variation, we achieve O(V) time com-
plexity by avoiding the comparison of every pos-
sible pair of pointsto locate nearest neighbors. In-
stead, we use the existing table of »n nearby files
calculated by our semantic-distance heuristic. In
addition, we use two thresholds, £,, (near) and &/
(far), where k,, > k;.2

If two files share at least £, neighbors, their
clusters are combined into one, asin the Jarvisand
Patrick algorithm. However, if thefilessharefewer
than &, but at least k£ neighbors, their clusters are
not combined, but instead are overlapped. In the
overlapping operation, each of the closaly-related
filesis added to the other file's containing cluster.
These options are summarized in Table 1, where «
represents the number of shared neighbors.

For example, consider sevenfiles, A, B, C, D,
E, F,and G. The number of shared neighbors be-
tween each pair of these seven filesisgivenin Ta-
ble 2. In the table, a blank entry indicates that the
file heading the row does not list the paired file as
related; thus, evenif they shareneighbors, theclus-
tering algorithm will not discover this fact. For

3Theideaof “near” exceeding “far” may seem counterin-
tuitive, but is necessary because smaller thresholds are more
lenient, so that the lower value of & alows more-distant re-
lationships to be discovered.



Relationship
k, <=z
kf S T < kn

Action
Clusters combined into one
Filesinserted, but clusters
not combined
No action

$<kf

Table 1: Summary of clustering algorithm (x is

number of shared neighbors).
To:
From|A B ¢ D FE F G
A kn k¢
B ky,
C kg
D k,
E
F ky,
G ky,

Table 2: Example relationships among seven files.

smplicity, we list the other distances in terms of
the thresholds: O, £, or k,. Thus, for example,
file A lists B asaneighbor and shares k,, neighbors
withit. A dsolists €' asrelated, but the two files
share only k; neighbors. None of the other four
filesare mentioned in A’srelation list, so the algo-
rithm will have no knowledge of neighbors shared
with them.

In the first phase, our algorithm looks for files
that share at least &, neighbors, and combinestheir
clusters. In our example, files A and B share %,
neighbors, so they become a two-file cluster. No
other filesareclosely related to A, so thealgorithm
moveson to B. Since thisfile shares k,, neighbors
with ', C' is added to B’s cluster. This step also
clusters A with ', even though there is no direct
relationship between the two files. Since neither B
nor C' share k,, or more neighbors with any other
files, no other files are added to this cluster.

Continuing withfiles D through F', the samecri-
teriaareapplied to combine D and £ into oneclus-
ter, and to combine /' and (& into a second. At this
point there are three clusters: {A, B,C'}, {D, E'},
and { I, G}. File (& is then processed; noting that

it shares at least &, neighbors with D, the clusters
containing these two files are combined into asin-
gle four-member cluster, { D, I/, I, G'}. Phase one
IS now complete.

In the second phase, the algorithm re-processes
all files, looking for pairs that share fewer than
k,, but a least k; neighbors. There are two such
pairs, {A,C} and {C, D}. Since A and C are al-
ready inthe samecluster, no further actionistaken.
For ¢' and D, the algorithm adds each of these
filesto its counterpart’s cluster, but does not com-
bine the entire clusters. Thus, thefinal clustersare
{A,B,C,D}and {C,D,E, F,G}.

3.3.3 Incorporating Additional Information

The algorithm discussed in Section 3.3.2 issimple
and effective, but does not support the additional
distance measures discussed in Section 3.2. In the
Jarvis and Patrick formulation, multiple measures
could be handled by calculating the Euclidean dis-
tance between potential cluster measures. How-
ever, this calculation would require that all mea-
sures be available between all file pairs, which is
not possible with the possibly limited information
provided by external investigators. Thus, SEER
uses a more ad hoc approach.

When extrainformation isavailable, the shared-
neighbor count is incremented or decremented by
the value of the additional information, option-
ally weighted by an administrator-chosen amount.
For example, since a large directory distance (as
defined in Section 3.2) tends to indicate a looser
relationship, the directory distance is subtracted
from the shared-neighbor count, causing widely-
separated files to be less likely to cluster together.
Conversely, an investigated relationship is addi-
tional evidence of closeness between files, so the
strength of the relation as provided by the investi-
gator is added to the shared-neighbor count to in-
crease the likelihood of clustering.

Since it is the shared-neighbor count that is
modified, the additional information does not mod-
ify the semantic distance, instead acting more di-
rectly on the clustering agorithm. This alows
the tendency of two files to cluster together to
be either enhanced or reduced, and also sidesteps



the difficulties introduced by the asymmetry of
semantic distance. In addition, modifying the
shared-neighbor count alows the extra informa-
tion to be given greater importance, which is ap-
propriate because external investigators can use
their application-specific knowledge to achieve
more accuracy than is available through the more
general-purpose algorithms of semantic distance.

An important point is that the investigated re-
lationships are tested regardless of whether SEER
has independently stored a semantic distance be-
tween the files. By setting the strength of arela
tion sufficiently high, an external investigator can
force two or more files to be clustered together in-
dependently of other factors, so automated investi-
gators can override the clustering algorithmif they
choose.

4 Real-World Intrusons

The previous sections have presented an elegant
framework for the design of an automated hoard-
ing system. Unfortunately, the realities of an ac-
tual operating system are not so clean. During the
development of SEER, we repeatedly encountered
real-world behavior that made the system operate
incorrectly. This section reviews the most impor-
tant of those practical intrusions. Although SEER
currently runs under the LINUX operating system,
we have concentrated on difficulties that are com-
mon to most, if not al, software platforms.

4.1 MeaninglessActivities

Perhaps the most troublesome problem that arose
during the development of SEER isthe existence of
processes and programs that engage in “meaning-
less” activity that provides no information about
semantic relationships. One of the best exam-
ples of thistype of activity isthe UNIX® program
f i nd, which searches the disk looking for afile
with certain specified characteristics (most modern
systems have a smilar function). Because fi nd
opens every directory and looks at every filein se-
guence, the accesses it makes do not give any hint
about inter-file relationships. In addition, because
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f 1 nd accessesevery file, it destroysany LRU his-
tory that might have been useful in hoarding deci-
sions. This problem is even more severe in LRU-
based systems such as CobA and LITTLE WORK.
Aswegained experiencewith SEER, welearned
that there were many programswith similar behav-
ior, and we spent a considerable amount of time
searching for the best solution to the problem. Ap-
proaches we experimented with included:

1. List programssuch asf i nd as specia cases
in a control file, and ignore the accesses gen-
erated by such programs (by flagging it as
“meaningless’).

2. Detect that a process has opened a directory
for reading (which is a typical behavior of
such programs) and use this fact to automat-
ically mark it asmeaninglessfor therest of its
lifetime.

3. Detect directory opens, and mark a process
meaningless only while the directory is open.

4. Apply a threshold-based heuristic to com-
pare the number of files a process might
know about (from reading directories) with
the number of files it actually touches, mark-
ing it meaninglessif it touches the majority of
filesit has learned about.

Thefirst approach is attractive due to smplicity
of implementation, but places a heavy burden on
the person responsible for creating and maintain-
ing the control file. The second is amost as sim-
ple, but failed in practice because many meaning-
ful programs read directories. For example, many
text editors do so to implement filename comple-
tion.

The third solution is based on the assumption
that a meaningless program such as fi nd will
keep at least one directory open while it descends
the directory tree. Unfortunately, this assumption
turned out to befalse, so that thissolution, too, fails
in practice.

The fourth method, though more complex, has
proven successful. Each time a process opensadi-
rectory, SEER counts the total number of files the



process could potentially access. Actual accesses
arethen recorded in asecond counter. SEER tracks
the historical behavior of a particular program and
compares the relative values of the counters to a
threshold, based on that history. So, for example,
f i nd will tend to haveahistory of accessing every
possiblefile, and thuswould get marked asbeing a
meaningless process, while an editor will (on aver-
age) access far fewer than the maximum and will
remain meaningful.

There remains one more difficulty, however,
whichisthe UNIX get cwd library routine. get -
cwd deducesthe full pathname of aprocess work-
ing directory by climbing the directory tree and
locating the individual components of the path.
Doing so requires opening and reading directories
in a fashion that is very smilar to the behavior
of fi nd, so that the potential-access counter ap-
proach would mark as meaningless any process
that asked for the name of its own working direc-
tory. To addressthat problem, we installed another
heuristic that detects get cwd’s behavior pattern
and temporarily marks the process as being inside
thisfunction. During this period, all file references
are ignored, even for purposes of inferring mean-
inglessness).

These heuristics have madeit possiblefor SEER
to make the right decision about the relevance of
aprocess referencesin most cases. However, we
have retained the ability to hand-specify afew pro-
cesses as being meaningless.* As in information
retrieval, it is necessary to filter out certain irrele-
vant relationships, and as in that field, the current
mechanisms are inelegant and could benefit from
further refinement.

4.2 Shared Libraries

Certain files on a modern computer are so funda-
mental that nearly every program uses them. The
most common example, though hardly the only
one, isthe shared library.

Shared libraries present a serious problem for
a system that tries to infer inter-file relationships

4The current list is limited to xar gs, r di st , the repli-
cation substrate, and the external investigators.
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from the sequence of opens. Sinceevery program’s
reference sequence includes the shared library, the
library becomes acommon link between otherwise
unrelated files. For example, if S isthe shared li-
brary, SEER might observe the sequences A, S, X
and B, 5, Y. S appearsto berelated to both X and
Y, even though they are actually members of unre-
lated sequences. This eventually causes the clus-
tering algorithm to combine al filesinto a single
large cluster.

SEER’s solution is to apply a simple but effec-
tive heuristic. If a particular file represents more
than a given percentage (currently 1%) of all ac-
cesses, it is designated a “frequently-referenced”
file and is eliminated from the calculation of se-
mantic distances and file relationships. Since such
afileis obviously important, it is aways included
in the hoard regardless of its last reference time.
On the machine with the largest frequent-filelist, 8
filesfall intothisclass, representing 2.3 MB of disk
space, or about 5% of that user’s 50-MB hoard.

4.3 Critical Files

Every system has some files that are essential to
system operation, such as files used in the boot-
strap process or for personal startup and configura-
tion. Because modern laptops often support a sus-
pend/resume mode that allows power to be con-
served without rebooting or repeatedly logging in
and out, SEER may observe that these startup files
are rarely used, and incorrectly assume that the
user can do without them. The phenomenon of
rare access to critical files is a fundamental prob-
lem with any completely automated hoarding sys-
tem.

SEER addresses the problem in two ways. First,
a system control file can be used to specify espe-
cially critical system files or directories (such as
/ et c in UNIX) that should be left outside SEER’S
control. Second, a UNIX-specific heuristic applies
asimilar exclusion to any file whose name begins
with a period (e.g., . | ogi n). We have found
that such filestend to be relatively small compared
to the total hoard size, and that they usually con-
tain important control and configuration informa-
tion that the user cannot do withoui.



Although itispossiblefor the user to modify the
system control file to list other files that he con-
siders critical to successful operation, this has not
been necessary in practice. Out of nine SEER users
in our initial deployment, only one even learned
how to list special files, and this was to correct an
oversight by the system administrator. Neverthe-
less, we are unhappy with the necessity for explicit
specification and plan to seek alternativesin our fu-
ture research.

4.4 Detecting Hoard Misses

When the user wishesto accessafilethat SEER has
decided to omit from the hoard, it is necessary to
detect the hoard miss. This capability isimportant
for two reasons. First, SEER needs to know of the
miss so that it can add the file (and all other mem-
bers of its project) to the hoard for future use. Sec-
ond, because hoard misses are often devastating to
the user, causing a change in the work being done,
they provide the best statistics for measuring the
success of SEER (see Section 5.1) and tuning the
algorithms.

Depending on the underlying replication sys-
tem, detecting a hoard miss can range from triv-
ial to impossible. For example, Ficus supports
so-called remote access, where an access to a non-
local object isautomatically converted to an access
to a remote one. However, the success of this re-
mote access depends on the availability of the re-
mote replica(s) of the object. If the access suc-
ceeds, SEER will be able to identify it as aremote
access and can mark thefile to be hoarded later. If
the accessfails, however, and returns an error code
to the user, it is difficult or impossible (depending
on the replication system, the error code, and the
state of SEER’s internal tables) to distinguish this
casefrom an attempt to accessa compl etely nonex-
istent file. Unfortunately, accesses to nonexistent
files are common in many programs, so that it is
neither meaningful nor efficient to assume that any
failed access represents a hoard miss.

A further difficulty arises because some hoard
missesare“implied,” occurring without adirect at-
tempt to accessthefile. For example, a user might
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ask for adirectory listing, note that thefileismiss-
ing, and never attempt to open it. Again, thisis
dependent on the replication system, but because
SEER is portable, it must deal with the possibility.

Because of these problems, we have created
a separate mechanism for tracking hoard misses
when the replication system is unable to support
this function. Whenever the user cannot access a
file, he runs a simple program to record the miss
in alog file and arrange for it to be hoarded in the
future. Thisisa violation of our no-user-burden
design, but is forced upon us by deficiencies in
some replication systems. For research purposes,
the program also records the time and date of the
miss and a user-specified severity code, asfollows:

0 The lack of the file has made the entire com-
puter unusable, e.g., a critical startup file is
unavailable. In this case the miss cannot be
recorded until a network connection is re-
established.

1 The current task will change because of the
missing file e.g., the user can log in but the
primary sourcefilefor aprogram or document
isn't hoarded.

The task will remain the same, but activity
within thetask will bemodified, e.g., aninfor-
mational file is missing but work can proceed
on another part of the same task.

3 Thelack of thefilewill causelittle or no trou-
ble.

4 The file isn't actually needed right now, but
the hoard should be preloaded so that the file
will be available in the future.

Thismanual recording of missesissubject tothe
vagaries of user behavior, since it is possible that
auser might neglect to record a miss and thus per-
turb the statistics collected. Itisfor thisreason that
we designed the system so that the same user ac-
tion both records the miss and arranges for the file
to be hoarded at the next reconnection. By combin-
ing the gathering of statistics with afunction neces-
sary to the user, we were able to ensure that misses



would not go unrecorded. In addition, regular per-
sonal interaction with usersin our small-office en-
vironment allowed us to independently verify the
low failure rate.®

Asabackup to the manual missreporting, SEER
also includes an automated miss-detection system
that notes when a user attempts to access a file
that isknown to exist but is absent from the hoard.
This mechanism will sometimes detect misses that
a user would consider unimportant, and it cannot
detect “implied” misses, but it is still a useful fea-
ture.

45 Temporary Filesand Directories

Many programs create temporary filesto hold tran-
sient results. Because of their transient nature, se-
mantic relationships between these files and more
permanent ones are not useful to an automated
hoarding system, yet the nature of how they are
created causes them to have avery small semantic
distance, displacing other filesfrom the short list of
n closely-related files kept by SEER.

The current implementation of SEER allows cer-
tain directories, e.g. / t np, to be marked as tran-
sient in acontrol file (normally set up by a system
administrator, rather than a user). Files created in
these directories are completely ignored by SEER.
Similar pattern-based detection methods could be
used in other operating systems.

It would be much more el egant to detect tempo-
rary files automatically, but the current design can-
not accomplish this because by the time afile can
be recognized as temporary, it has already had the
opportunity to displace more important filesin the
list of n related files that is kept for each file (see
Section 3.1.3). We plan to pursue automated algo-
rithmsin the future.

4.6 Non-Files

The LINuUX filesystem supports a number of ob-
jects besides files, including directories, symbolic

SIn early testing before statistical collection was began,
the first machine deployed did experience a single severity-
O failure due to the lack of . cshr c; it was this failure that
led ustoinstall the UNIx-specific heuristic discussed in Sec-
tion 4.3.
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links, and more exotic objects such as device files
and pseudo-filesystems. Many of these objects are
critically necessary for system operation; for ex-
ample, the lack of adevice filefor the console will
probably render it impossible to log in, or even to
receive alogin prompt.

With the exception of directories and possi-
bly some pseudo-filesystems, these objects take
amost no disk space. Because of the impor-
tance of these objects and their minimal space
requirements, SEER always includes them in the
hoard. Many of these objects are also omit-
ted from semantic-distance and clustering calcula-
tions, since they often vary depending on extrane-
ousfactors(e.g.,/ dev/ t t yxx). A control file, set
up by the system administrator, specifieswhich ob-
jects are ignored.

Directoriesaretheonly objectsthat regularly re-
quire significant disk space. However, the under-
lying replication system may have its own needs
regarding directories (for example, RUMOR might
chooseto store adirectory so that its contained ob-
jects are accessible when disconnected). For this
reason, SEER leaves hoarding decisions regard-
ing directories up to the replication substrate. For
space calculations, however, it makes the conser-
vative assumption that all directories are hoarded.

4.7 Simultaneous Accesses

The formulations of semantic distance in Sec-
tion 3.1 assume that the user is generating only a
single stream of references. In a modern multi-
tasking operating system, however, a typical user
often simultaneously generates multiple indepen-
dent reference streams, for instance by reading e-
mail while waiting for a compilation. These inde-
pendent streams are intermixed when observed by
SEER, and create incorrect and spurious file rela
tionships if not properly handled.

We had originally hypothesized [13] that the
data reductions discussed in Section 3.1.2 would
provide a noise-filtering mechanism that would
eliminate the effects of these spurious relation-
ships. Unfortunately, experience proved this hy-
pothesis incorrect: athough noise was reduced, it



was not eliminated, and the resulting spuriousrela-
tionships tended to cause poor hoarding decisions.

To address the problem, we found it necessary
to separate the reference streams on a per-process
basis in a manner similar to that used by Tait et
al.’s SPy UTILITY [21]. SEER maintains a sepa-
ratereference-history list for each process, and cal-
culates semantic distances on a process-local ba
ss. The file-open test mentioned in Definition 3
is also performed on a per-process basis. Refer-
ence histories are inherited from parent processes
and merged when children exit, allowing SEER to
detect extended relationships between files refer-
enced by aprocess and by its parent.

4.8 Non-Open References

A real program can refer to afile in a variety of
ways. Besides being opened and closed, afile may
be executed as a process, deleted, created as a spe-
cial filesystem object (e.g., adirectory), and have
its attributes examined or modified. Under some
systems, alternative names for a file may also be
created and used.

Many of these situations can be treated as a
point-in-time reference, smilar to an open imme-
diately followed by a close. A few require more
complex treatment:

Process Lifetimes. Executions and terminations
of processes are treated as opens and closes,
respectively.

File Deletion. Because many programs delete and
immediately recreate files, SEER delays re-
moval from its internal tables for a short pe-
riod (measured in terms of total deletions)
so valuabl e relationship information won't be
lost if the file name isimmediately reused.

Attribute Examination. Many programs exam-
ine file attributes to see whether afile exists
or to discover whether it can be written. Usu-
ally, the file will be subsequently opened. It
would beless correct to record this activity as
two referencesto thefile, sincefromtheuser’s
point of view there is only a single access.
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However, other programs, such asmak e, base
important decisions on the values of the at-
tributes, and the examination may indicate a
close relationship between the examined file
and another that is actually opened.

In general, SEER treats examination of an
attribute as a simultaneous open/close pair.
However, an examination immediately fol-
lowed by an openisdiscarded asinsignificant.
In addition, certain more complex heuristics,
discussed in Section 4.1, are applied in some
Cases.

4.9 Parameter Settings

SEER'S semantic-distance and clustering algori-
thms make use of a number of parameters and
thresholdsto maketheir decisions. Thecorrect set-
tings for these parameters are not obvious, and in-
teractions among them are complex and difficult to
predict. Although space precludes a detailed dis-
cussion, wefound it necessary to devote significant
effort to searching the parameter space for the val-
ues that would produce good results for all users.
The search methods and the parameterswe used for
our tests are detailed in [15].

410 Avoiding Deadlock

Since SEER issues its own system calls, deadlock
can occur if these calls are themselves traced. To
avoid this problem, the trace mechanism does not
record calls made by the observer and correlator
themselves. However, experience showed that this
step was not enough. Some of the system calls
made by SEER can activate daemons, notably those
that support the Network File System (NFS), and
deadlock can occur due to calls made by these pro-
cesses. We solved this problem by not tracing most
calls made by the superuser (“r oot ). This pre-
vents SEER from being able to manage certain files
needed by superuser activities (e.g., programs in-
voked by cr on). We are investigating alternative
methods that will alow use to trace superuser op-
erations and till avoid deadlock.



4.11 Tracing System Calls

Weindicated in Section 2 that the observer watches
the user’s file accesses. Observation is imple-
mented with a simple modification to the operating
system kernel that allows system callsto betraced.
In general, calls are traced after they complete so
that SEER can observe their success or failure sta-
tus. However, afew calls (on LINUX, only exec
and exi t ) are traced before execution to capture
important information that will be destroyed when
the call completes.

5 Evaluating Success

5.1 Measurement M ethodology

Asdiscussed in [11], traditional measures of cache
performance, such asmissrate, areinappropriatein
a hoarding situation. In atraditional caching sys-
tem, amiss causes arelatively minor performance
penalty, and has no effect on the overall course of
the computation. By contrast, a miss in a hoard-
ing system isavery severe event, because thereis
usually no way to service the miss at a small cost
in performance. Instead, a hoard miss generally
causesthe user to stop work on the current task and
switch to a secondary one. In atrace-driven smu-
lation, ahoard missinvalidates thetrace because of
this task-switching behavior.

511 TimetoFirst Miss

An aternative measure, first suggested in [20], is
the timeto the first hoard miss, measured as either
elapsed time or number of file references. Thisis
attractive because it quantifies the amount of work
the user was ableto do beforeahoard failureforced
achangein activity. Weimplemented this measure
in our live experiments, including measuring the
severity of the miss as discussed in Section 4.4.
Our experiments were conducted by deploying
SEER on nine 486-based laptops used in a soft-
ware development environment. Each laptop was
associated with a single user and served as the pri-
mary platform for that person. The measurement
period varied from one to eight months, with most
machines being examined over a3-month interval.
Three of the machines (A, B, and E) were used
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only occasionally in disconnected mode, while the
remainder each generated 75 or more active dis-
connection periods. The number of observed dis-
connectionsis reported in Table 3. Four machines
(B, C, E, and H) were not used extensively during
either connected or disconnected mode, primarily
due to outsde commitments or the use of alter-
native operating systems. Traces of user activity
recorded a low of about 40,000 operations for the
least-used machines (C and H) to a high of about
326,000,000 operations for the most heavily used
(G).

To measure the time to first miss, we combined
several tools. A background daemon periodically
pings a well-known site to detect disconnection
durations. The output of this daemon was post-
processed to remove disconnections or reconnec-
tions of lessthan 15 minutes. This eliminated brief
disconnectionsin which hoard misseswould not be
bothersome, and brief reconnections madeto trans-
fer email or servicean important hoard miss. (The
latter can occur only after amissisrecorded, since
the miss must be recorded before the system can
know that it needs to be serviced. By discarding
the reconnection and thus combining the adjacent
disconnections, thetotal number of disconnections
is reduced and the average disconnection time in-
creased, both of which perturb our statisticsinadi-
rection detrimental to SEER.)

A second daemon detects suspension periods.
Thisisimportant because laptop computers are of -
ten placed into a power-saving mode when no work
is being done. It would be incorrect to report a
16-hour overnight disconnection if the laptop were
only inactiveusefor 2 hours; thisisespecially true
when calculating thetime to first miss. By discard-
ing suspensions, we ensured that our statistics con-
sidered only times when the machine was being
actively used. Disconnections during which the
machine was completely unused (e.g., vacations)
were a so excluded from the statistics.

Finally, misses themselves were measured us-
ing the manual and automated methods discussed
in Section 4.4.

However, preliminary analysis reveadled a se-
vere flaw in this measure. The time to first miss



isvery dependent on the relationship of the chosen
hoard size to the user’s working set. A user with
a small working set will almost never experience
a miss, while one whose configured hoard size is
only dightly larger than hisworking set will suffer
an abnormally high failure rate. This flaw cannot
be rectified retroactively, since any traces collected
will have been affected by the presence or absence
of hoard misses and thus cannot be reanalyzed as-
suming a different hoard size.

A secondary, though still important, drawback
isthat it is difficult to compare hoarding methods
using this real-world measure. To properly com-
pare two proposed algorithms, one should ask the
user to perform the same tasks twice, once with a
hoard filled by each agorithm. Thisis clearly im-
possible. The best one could do would be to ask
a user to live with each algorithm for a period of
time, or to ask two different usersto usethe algori-
thmsin paralel. Either approach would introduce
so much uncontrolled variation that dozens or hun-
dreds of experiments would be necessary to elimi-
nate uncertainty.

5.1.2 MissFreeHoard Size

For thesereasons, we haveinvented anew measure
that can be used to quantify the difference between
hoarding algorithms. This is the miss-free hoard
size, which is defined as the size a hoard would
have to be to ensure no misses. For example, un-
der a strictly LRU algorithm, the miss-free hoard
Size can be calculated as follows:

1. Sort al files according to their last reference
timeprior to the current disconnection period,
with the most recent file first.

2. Mark each file that was referenced during the
current period.

3. Locate the last marked filein the list.

4. Sum the sizes of al files between thisfile and
the beginning of thelist.

Clearly, if the hoard size is at least as large as
the sum, an LRU hoarding would have included
all files that were referenced in the disconnection
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period. A similar approach can be applied to any
hoarding algorithm to cal culate the hoard size that
would be needed to avoid misses.

The miss-free hoard size offers several advan-
tages over other measures:

e It quantifies the difference between algori-
thmsin alinear, fine-grained fashion.

e It is not sensitive to current parameter set-
tings.

e It can be calculated using reference traces,
so that simulation becomes a viable analysis
tool.

e |t reflects the behavior that the user desires:
working as if connected, with no awareness
that only a selected subset of filesis present.

We have carried out extensive trace-driven sim-
ulations to measure the miss-free hoard size under
various conditions; the results are reported in Sec-
tion 5.2.1. For each of a group of laptop comput-
ers, we collected file reference traces, in both con-
nected and disconnected mode, over a period of
one or more months.

The question of whether to use connected or
disconnected traces was a difficult one. Traces
of connected operation include behaviors that can-
not happen while disconnected, such as browsing
the Web. Traces of disconnected operation will
at least occasionally include a period covering a
hoard miss, which may change user behavior in
some fashion. This will usually have the effect of
placing more stress on the hoarding system, since
the attempted access to the missed file will have
been recorded in the trace, and the attention shift
forced by the miss will now require the system to
hoard both the old and the new projects. Even in
the absence of misses, the user may have avoided
some activity because he was aware that it was not
hoarded.

Because of the complexity of these considera-
tions, we chose to use complete traces, covering
both disconnected and connected operation. Since
our users experienced relatively few misses, and



the majority were at insignificant severities, we be-
lieve that the disconnected traces were generally
valid even when they covered periods with misses.
The connected portions of the traceswereincluded
because we believe that although some activities
might not occur disconnected, the general file-
access patterns of these activitiesare still represen-
tative of typical applications and thus serve as a
reasonabl e test of a hoarding system.

We then replayed the traces into the correla-
tor running in asimulation mode. The simulation
made use of actual file sizes whenever possible;
when the size of afile was not available, the size
was randomly assigned from a geometric distribu-
tion with a parameter of 0.00007, for an average
file size of 14284 bytes. This value was chosen
by examining the actual distribution of file sizes
in traces observed by SEER. To the extent that
this distribution does not reflect actual file sizes, it
will dightly distort the hoard-size and working-set
statistics.

Each trace was replayed under up to four sets of
conditions. We simulated disconnection durations
of both 24 hours and 7 days, with each simulated
disconnection separated by an infinitesimal recon-
nection during which the simulated user performed
no work whilethe hoard wasrecomputed. Onthree
machines (B, F, and G), we eval uated the impact of
external investigators by ssimulating both with and
without the information they supplied. For each
combination of conditions, the smulation was re-
peated several times with different random seeds
to reduce the variation introduced by randomly as-
signing filesizes. Theindividua experimentswere
doneinrandom order to avoid possibly introducing
outside trends.

Each simulation generated comparative results
for SEER’s cluster-based management scheme, a
strict LRU scheme, and three schemes inspired by
the formula used in CODA. However, the latter
three schemes performed more poorly than LRU,
due the lack of the ongoing hand management that
they were designed to expect. (Wedid not havethe
resources to apply such hand tuning to our smu-
lations.) Because these algorithms were not tested
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under conditions appropriate to their design, we
chose not to report results for them.

5.2 Resaults

We now have approximately 35 man-months of
experience using SEER in a live setting, with ex-
cellent results. We have also conducted extensive
simulations. Inlive use, SEER has performed even
better than expected; several users experienced no
hoard misses at all, no one suffered a significant
percentage of failed disconnections, and therewere
no severity-Ofailures. In simulations, SEER’sclus-
tering algorithm essentially always outperforms
LRU-style methods, and is usually so close to the
optimum that we at first suspected an error in our
measurement procedures.

Our only disappointment has been analytical,
rather than experimental. The clusters produced by
SEER often have contents that are surprising to us,
either by including apparently unrelated files or by
separating asingle project into afew clustersrather
than the single grouping that would correctly repre-
sent it. However, this problem can be mitigated by
the use of external investigators. In any case, this
discrepancy has not affected the successof our live
and simulated experiments, so it is possible that it
isonly atheoretical difficulty that will never bother
real users.

5.21 Simulations

Figure 2 shows the miss-free hoard sizes graphi-
cally. Each pair of stacked bars represents a sin-
gle machine; the left-hand bar of each pair is for
daily disconnections and the right-hand bar is for
weekly activity. For three machines (B, F, and G),
the effect of using external investigators is shown
by abar pair marked with an asterisk. The lowest
element of each stack represents the mean work-
ing set for the machine and period; the center el-
ement is the additional space required by SEER'’S
clustering algorithm to remain miss-free, and the
upper element shows the additional space needed
by the LRU algorithm. 99% confidence intervals
were within +2 MB about the mean for all mea-
surements except the LRU hoard space, which al-
ways fell within & 5 MB about the mean.
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Figure 2: Mean working sets and miss-free hoard
sizes for two managers. The left-hand bar of
each pair represents daily disconnections, while
theright-hand bar gives weekly values. Starred la-
bels represent the use of external investigators.

It is remarkable in Figure 2 that the clustering
algorithm consistently requires space only slightly
greater than the working set, which represents the
needs of an optimum algorithm. By contrast, the
LRU approach frequently uses space several times
greater. This shows that SEER can be successfully
used to hoard files in near-optima space, so that
power users who normally operate with nearly-
full disks can work disconnected without inconve-
nience.

An interesting and unexpected result is that the
external investigators did not make a significant
differenceintherequired hoard size. In every case,
the 99% confidence durations show that the use of
external investigators had no statistically meaning-
ful effect. In future research, we plan to examine
thisanomaly to see whether we can devise param-
eter settings that will make external investigation
more useful.

Figure 3 gives another view of the same mate-
rial. Here, instead of showing means, we give de-
tailed data for a single machine and simulated dis-
connection period. This graph shows the weekly
working set sizes for the most heavily-used ma-
chine (F), plus the miss-free hoard size needed
by the clustering and LRU managers for each
week. To aid visualization, the X axisis sorted by
working-set size. Each X value represents a par-
ticular week, but consecutive values do not repre-
sent consecutive weeks. Instead, the X values re-
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Figure 3: Performance of two hoard managers
vs. working set sizes for smulated weekly discon-
nections of machine F (sorted by working set size;
X axis represents sort order).

flect the ordering of the disconnection periods after
sorting. Again, we seethat SEER’s clustering man-
ager requires a hoard size only dightly larger than
the working set, while the LRU manager often re-
quires significantly more space.

Another result of the smulations is that the
working setsarerelatively small. Thisissomewhat
surprising in the face of the frequently made ob-
servation that disks tend to be full. Thisisan in-
dication of the wastage on most systems. only a
small fraction of all filesare actually needed by the
user on any given day. We also note that the ad-
vent of multimedia, voice recognition, and similar
features can be expected to increase everyday disk
requirements, placing added pressure on hoarding
systems and making the superior performance of
SEER even more important.

522 LiveUsage

Table 3 gives statistics on the general disconnec-
tion behavior of actual users, including the num-
ber of observed disconnections (which reflects the
machine’s usage level during the measurement pe-
riod), the mean (z), median (x(;), and standard
deviation (o) of the disconnection duration, and
maximum duration. (The minimum duration tends
to be nearly constant approximately at 0.25 hours
because of the 15-minute minimum disconnection
time mentioned in Section 5.1.1.)

Table 4 summarizes statistics on failed discon-
nections, defined as those in which there was at
least one hoard miss. For each machine, the table



Days No. of Disconnection Duration (Hours)

User | Measured Disconnections | Total T Tos o Max

A 111 38 424 1116 324 1582 71.89

B 79 10 431 43.20 0.57 127.19 404.94

C 113 75 745 994 112 40.87 348.20

D 118 90 271 301 138 446 26.50

E 71 25 47 1.87 0.81 254 12.08

F 252 184 1711 930 200 16.33 90.62

G 132 107 862 8.06 147 38.29 390.60

H 113 75 763 10.17 112 41.09 348.20

I 123 116 274 236 0.78 426 27.68

Table 3: Disconnection statistics.

Failures thetotal disconnections), and the majority of those
Hoard Any failures were at the unobtrusive severity levels 3
User Size ([0 1 2 3 4 Sev. Auto and 4. We should also emphasize that we de-
A 500 00 00O 0 2 liberately chose unredlistically small hoard sizes
C 00 00 00O 0 1 to stress the system; in a real environment there
D 0|0 00 00O 0 S would have been no failed disconnections at all.
E 500 00 0O 0 1 This reduced hoard size was the primary cause of
F 500 36 11 9 24 2 the misses observed for machine F. Post-analysis
G 98 000 00O 0 3 of the datareveal ed that this machine' sworking set
| 50010 00O 1 S often exceeded 50 M B, so that no hoarding system

Table 4: Summary of failed disconnections at var-
ious severities.

gives the hoard size used in megabytes, the abso-
lute number of failures at each severity level, the
number of failuresat any severity, and the automat-
icaly detected failure count. To save space, al-
zerorowshave been omitted from Table4. Two ap-
parent anomaliesin thistable requirefurther expla-
nation. First, the number of failures at any sever-
ity can be smaller than the row sum if a particu-
lar disconnection experienced failures at multiple
severities. Second, interviews with users and ex-
amination of traces have shown that automatically
detected failures are not always failures from the
user’s point of view, which iswhy they tend to ex-
ceed the user-reported count.

Most users experienced very few failures. Only
the most heavily used machine (F) suffered a sig-
nificant number of failed disconnections (13% of

could have performed miss-free with the config-
ured hoard size. We have sinceincreased the hoard
sizeto 100 MB for this machine, and the missrate
isnow comparable to that experienced by the other
users.

Table 5 summarizes the time until the first miss,
in hours, for the failed disconnectionslisted in Ta-
ble 4. Here, the mean (), median (z5), standard
deviation (¢), and range are given. The median
is omitted when there are fewer than 4 samples.
This table also omits rows for all severity levels
that had a zero miss count, and for machines that
had no misses. Such rows would merely report the
disconnection-time statistics for those machines,
interested readers may refer to [15] for moreinfor-
mation.

It is clear from these tables that the users of
SEER did not suffer greatly due to hoard misses.
Misses were rare, although when they did occur,
they often occurred relatively soon after discon-
nection (as shown by the median valuesin Table5).
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Hours

User Sev. | = x95 o Min Max
A Auto| 1.8 — 23 021 34
C Auto| 16 — — 16 16
D Auto| 09 10 05 =~0 13
E Auto| 110 — — 110 110
F 1 106 — 163 ~0 294
2 6.6 09 91 ~0 215
3 34 05 49 01 129
4 6.2 05 11.2 01 293
Auto | 204 — 284 03 405
G Auto| 05 — 03 02 08
| 1 10 — — 10 10
Auto| 09 06 06 01 18

Table5: Hoursuntil first missfor failed disconnec-
tions.

However, when these values are compared with the
median disconnection times given in Table 3, we
can seethat missesgenerally occurred well into the
disconnection, and that users normally continued
to work after the miss occurred (shown both by the
fact that thetimeto first missisfar lessthan 100%
of the disconnection period and by the severity lev-
elsof themisses). Itisalsoworthreiterating that no
user experienced a severity-0 miss (computer un-
usable).

We also calculated the time-to-first-miss statis-
tics across all disconnections, both successful and
failed. Under these conditions, the time to first
miss becomes essentially equal to the mean discon-
nectiontime. Again, thisprovidesevidenceto sug-
gest that hoard misses were not bothersome to our
users.

It is worth noting that intelligent user behav-
ior is an important factor in the success of SEER.
This same factor was previously observed with
CoDA [11, Section 5.2.2]. Before the advent
of mobile computing, a traveling businessperson
would load his briefcase with documents he ex-
pected to work on. While on an airplane, hewould
not attempt to work on a project that he knew was
not in the briefcase. In a similar manner, users
of SEER tend to be at least peripherally aware of
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the hoard contents, and do not attempt to work on
projects that they know are unavailable. Instead,
they plan ahead to some extent, devoting them-
selves to hoarded projects and later, while con-
nected, attacking the unhoarded ones, which has
the side effect of then causing them to become
hoarded.

5.3 Implementation and Performance

| mpact

SEER isimplemented primarily in C**, with afew
auxiliary shell and PERL scripts that help to sup-
port external investigators and interface to the un-
derlying replication system. All told, the system
comprises approximately 47,500 lines of code.
The cost of running SEER istwofold: CPU and
memory requirements. The CPU cost of tracking
system calls is minor, about 35 ;s on a 133-MHz
PENTIUM® processor [15], and the system calls
traced are infrequent ones such as open, making
tracing inexpensive. Hoarding decisions are sig-
nificantly more costly, requiring about 2 minutes
of CPU time to form the clusters, but thisisarela-
tively rare event that can be delayed until achosen
time, so our users have not found it troublesome.

The primary impact of SEER is in its memory
usage, which was deliberately left unoptimized to
smplify the research. The database of known files
is stored in virtual memory, requiring about 1 KB
for each of the approximately 20,000 files tracked
on behalf of atypical user. However, we believe
that afew straightforward improvements could cut
this memory requirement by 50% or more. In ad-
dition, it would be relatively simple to modify the
system to store the database on disk, rather thanin
virtual memory, since only a small fraction of the
information is active at any given time. We post-
poned these optimizations because it was clear that
they would not contribute directly to the research
and could be added at alater date.

6 Related Work

There have been a number of previous systems
supporting disconnected operation; however, it is



difficult to compare them to SEER because no
quantitative results have been published.

6.1 Early Systems

Disconnected operation was first developed in the
early 1990's. Early systems used an LRU mecha-
nism to load the hoard [1, 9], or left the problem
to unspecified external mechanisms [8]. Some of
these systems were actually used for disconnected
operation, but no dataon the performance of hoard-
ing has ever been published. Our own experience
suggeststhat LRU isusually an adequate approach,
so that users would find these systems acceptable.
It is only when an attention shift occurs that LRU
fails significantly, because the user must individu-
ally reference each file involved in the shift. This
isin contrast to SEER’s clustering approach, where
an attention shift will quickly cause all members of
aproject to be loaded into the hoard.

6.2 CODA

The CobA system [11] enhanced smple LRU by
allowing the user to specify an offset to be applied
totheLRU ageof aparticular file, asameansof in-
dicating its importance. A global bound arranged
that for older files, the offset controlled the hoard-
ing decision regardless of the original reference or-
der. In practice, CODA users do not concern them-
selves with these details; instead they smply as-
sign a“hoarding priority” to each file or group of
files based on their perceived importance relative
to other files.

When an attention shift occurred, users would
change projects by loading a new set of priori-
ties, called a “hoard profile,” for that project. Ac-
cording to [20], separate hoard profiles were nor-
mally used for applications and data; a user would
choose a subset of possible profiles depending on
the expected activity. Hoard profiles for applica-
tions could potentially be created by a system ad-
ministrator, but the user was burdened with both
the specification of profiles for his own data and
with the task of choosing the proper subset of pro-
files that would reflect the work he planned to do.
Mahadev Satyanarayanan hascommented [19] that

19

this approach is similar to programming in assem-
bly language: it provides excellent control over
what happens, but is tedious and requires great ex-
pertise.

There are very few published results on the
hoarding behavior of CoDA. Although both [11]
and [20] give quantitative information, the data
presented rel atesto the size of working setsand the
performance of the replication system. The only
discussion of hoarding success is couched in gen-
eral terms. For example, from [20, Section 5.2.2]:

Many disconnected sessions experi-
enced by our users, including many sec-
tions of extended duration, involved no
cache misses whatsoever.

and

When disconnected misses did oc-
cur, they often were not fatal to the ses-
son. In most such cases the user was
able to switch to another task for which
the required objects were cached. In-
deed, it was often possible for a user
to “fall-back” on different tasks two or
three times before they gave up and ter-
minated the session.

6.3 SpPYy UTILITY

To date, the only other attempt to automate the
hoarding processisTait et al.’s SPY UTILITY [21].
Like SEER, this system tracks process execution
trees and infers the contents of projects based on
file accesses. It differsin that it restricts itself to
loading unions of accesstrees, rather than attempt-
ing to create project clusters at a higher seman-
tic level. This mechanism is much more limited.
Thereisno facility for providing multidimensional
semantic information, as SEER does via the exter-
nal investigators discussed in Section 3.3.3. The
system alowsfor certain other types of user input,
but these are not integrated with the process-tree
information.



Unfortunately, there is even less published data
for SPY UTILITY thanfor CODA. The primary de-
scription appeared soon after the system was de-
ployed, without quantitative results, and no subse-
guent data has been made available to date.

7 FutureWork

SEER isrunning successfully in our workgroup. In
the future, we would like to collect performance
datafor alarger user community. We plan to con-
duct further studieswith the CODA user baseand to
port SEER to the WINDOWS environment. Thelat-
ter port will make SEER available to business and
management users, who often have very different
behavior than computer scientists [14]. As part of
this porting effort, we plan to analyze the perfor-
mance of SEER in other settings and to compare
thisto our current data.

There are also significant opportunities for fur-
ther development of the underlying mechanisms.
The clustering agorithms, in particular, are more
parameter-sensitive than one would like, and pro-
vide fruitful soil for study of more stable method-
ologies.

In addition, the predictive and inferential meth-
ods pioneered by SEER hold promise for other ap-
plications, such as Web caching, network file sys-
tems, and directory reorganization. \We are cur-
rently investigating ways to apply our work to
these and similar aress.

8 Conclusion

SEER has shown that fully-automated predictive
hoarding is feasible, though the engineering chal-
lenges involved are daunting. The system is ca
pable of supporting disconnected operation for
lengthy periods with only occasional hoard misses,
giving the user theillusion that the network is still
present even in the complete absence of commu-
nication. This level of automation enables the en-
tire virtual-networking paradigm of mobile opera-
tion[2].

An especially important contribution of SEER

is the freedom from manual user configuration. 0

While previous systems required the hoard con-
tents to be specified partially or entirely by hand,
SEER isableto infer project contents and make its
hoarding decisions without intruding on the user’s
work. Such automated operation is critical with
modern systems, sincethereisno practical way for
the user to identify all files that will be required
during disconnection.
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