
Time-to-failure andtime-to-repair are the distributions of
how long a system is available for use, and how long it takes
to bring the system back to normal operation after a failure has
occurred. These distributions are often summarized by their
means (MTTF andMTTR).

Many studies have assumed that failure and repair
followed Poisson processes, that is, that the distributions for
TTF and TTR were exponential. This assumption is often
made more for analytic simplicity than out of a conviction that
it is the best model of reality. For example, some analyses of
replication protocols using Markov models [Pâris86, Long89]
depend on that assumption. We investigate the accuracy of
this assumption in §3.1.2 and §3.2.2.

Availability is the fraction of time a system is functioning.
More precisely, it is the stationary probability of the system
being in a state where it can be accessed. For a replication
protocol, for example, it gives the probability that a replica
site will be functioning when a client starts executing a read
or write protocol. Availability can also be used in conjunction
with MTTF to derive an estimate ofMTTR.

Reliability is the (non-stationary) probability that a
system will remain constantly available over a fixed time
period. Consider a system that functions for one second, then
fails, but recovers in a small number of milliseconds. This
system would have a high availability, but would not be useful
for applications like process control that must remain
continuously functioning for extended periods. Reliability is
a more appropriate measure for these applications because it
includes duration.

There have been few analyses of host system reliability
published, and most of those have been for specific systems.
Recent studies include analyses of Tandem systems [Gray85,
Gray90] and the IBM/XA system [Mourad85]. It is certain
that most companies perform reliability studies of their
products internally.

We have measured the reliability of a wide variety of host
systems connected to the Internet. For this study, we
monitored nearly 1 200 hosts for an extended period, polling
them to determine how long they were available. The
emphasis on a heterogeneous set of hosts, selected so that its
composition should be similar to the overall population of

1 Introduction

Accurate analyses of distributed fault-tolerance,
caching, and replication mechanisms depend on an accurate
model of the reliability of the systems that make them up.
The overall reliability of a replication protocol, for example,
depends on the probability that some fraction of the replica
sites are functioning when data must be read or written.

There are several important measures used to quantify
system reliability, includingtime-to-failure (TTF), time-to-
repair (TTR), availability, andreliability. Throughout this
study, “failure” is defined in a distributed-environment
sense; that is, as an inability to access a host within a
specified time. The term encompasses both hardware and
software faults attributable to the host, and can include
power failures and scheduled downtime. It can also be
caused by off-site communications failures, ranging from
temporary routing failures to problems with the physical
communications links. We have not attempted to
characterize the causes of failure, though it seems that most
failures are brief and are probably caused by software faults
or voluntary reboots.

A longitudinal survey of Internet host reliability

Darrell Long and Andrew Muir Richard Golding

Computer and Information Sciences Storage Systems Program
University of California Hewlett-Packard Laboratories
Santa Cruz, CA 95064 Palo Alto, CA 94304

Abstract

An accurate estimate of host reliability is important for
correct analysis of many fault-tolerance and replication
mechanisms. In a previous study, we estimated host system
reliability by querying a large number of hosts to find how
long they had been functioning, estimating the mean time-
to-failure (MTTF) and availability from those measures, and
in turn deriving an estimate of the mean time-to-repair
(MTTR). However, this approach had a bias towards more
reliable hosts that could result in overestimatingMTTR and
underestimating availability. To address this bias we have
conducted a second experiment, using a fault-tolerant
replicated monitoring tool. This tool directly measuresTTF,
TTR, and availability by polling many sites frequently from
several locations. We find that these more accurate results
generally confirm and improve our earlier estimates,
particularly for TTR. We also find that failure and repair are
unlikely to follow Poisson processes.

Internet hosts, makes our results more generally applicable
than studies specific to one type of system.

We conducted a similar study four years ago [Long91],
but the method we used to estimate time-to-failure and time-
to-repair was biased. Estimates ofMTTF were derived by
querying systems for their up-time. This was the best
information available from the host system, since it is not
generally in a position to give its failure time as its dying
gasp. As a result, there was a bias towards more reliable
hosts which means that the estimate ofMTTF may be larger
than the true value.

Our new study uses direct measurement ofTTF and
TTR, rather than an estimate. We measured these
distributions by polling each selected host every few
minutes. The resulting distributions should reflect all but the
shortest periods of failure. Instead of estimating parameters
such asMTTF based on a large sample with an unknown
distribution, we recorded the actual events (with an epsilon
error). Since the quantities are being directly measured,
questions such as the governing distribution are less
important.

The current study used a distributed, fault-tolerant
measurement system (theTattler [Long92]) to reduce bias
from the measurement approach. The tattler system consists
of replicated monitoring sites placed at strategic locations
around the Internet. Individual tattlers were placed to
minimize the amount of shared network so that a failure of
a router or a link was unlikely to disable more than one
monitor. The tattlers replicated their measurements using a
weak-consistency group communication mechanism so that
even the permanent failure of some monitors would not
cause a significant loss of information.

In the sections that follow, we present our experimental
method, followed by the results we obtained and our
analysis.

2 Experimental method

We began the study by selecting a large number of
candidate hosts for measurement, and eliminating
unsuitable ones. The Tattler system then monitored these
hosts for an extended period to measure theirTTF and TTR.
In this section we detail how these steps were accomplished.

2.1 Selecting hosts

Our first step was to find a list of at least a thousand
hosts that could respond to our polling (using RPC calls to
rpc.statd, which is common on systems using NFS). We
wanted a method that would probably yield a set of hosts
statistically similar to the overall population of hosts on the
Internet.

We began by compiling a list of all visible host names
on the Internet. We used the Census tool [Ganatra92], which

queries the top-level DNS servers for the names of the hosts
at each site and for secondary domain servers, then
recursively applies the process to the entire visible Internet
DNS name-tree. This resulted in almost three million hosts—
nearly ten times the figure we reported four years ago.

This approach does not consider all the hosts connected
to the Internet. Some installations, particularly corporations,
choose to shield their internal network behind a gateway;
those subnetworks are thus invisible to the network at large.

From the census results we chose 15 000 hosts at random.
This list was then filtered to ensure that the hosts actually
existed, could respond to the poll, and that their administrators
would not mind the poll. In the end we obtained a list of 1 170
hosts.

These hosts were uniformly distributed over the name
space, and all responded to our RPC polls. Geographic
locations with more hosts had a stronger representation than
those with fewer. Limiting ourselves to systems responding to
the rpc.statd protocol biased the list, but we believe that the
typical workstation on the Internet—the kind of system that is
of most interest to us—is likely to include this protocol.

In our previous study we grouped hosts by type, based on
information reported in the name service’s host information
(HINFO) records. This has proven impossible in the newer
study. We found that in general these records are not as well
maintained now as they were four years ago, so that in most
cases we cannot determine what kind of host we are polling.
Many sites no longer provideHINFO records, and many of the
ones that were provided did not include enough information
to determine system models.

2.2 Measuring host systems

There were two ways we could have measured the
systems. In our first study, we queried each site to determine
the time since its last initialization and used this to estimate
MTTF, and separately estimated overall availability. In this
study, we chose to take direct measurements of the
distributions ofTTF andTTR by repeated polling each site for
an extended period.

The first method has the advantage of requiring only a
single query for each host, but the results are not as accurate
as those of the second. Randomly sampling the length of time
since the last system initialization, which we used in the first
study, is distinct from sampling the length of time between
initialization and failure. Sampling system up-time reports
results in a skewed set of data, as hosts which have been up
the longest are more likely to be polled. Analysis of the data
must accommodate this effect.

In this study, on the other hand, we directly measuredTTF
andTTR by polling each of the selected hosts frequently. We
used an exponential distribution of times between polls, with
a mean of ten minutes, both for statistical purposes and to

avoid synchronous behavior where multiple tattlers poll the
same host at once.

The Tattler system, the monitoring tool we built,
maintained a data base ofavailable epochs for each host
being monitored. Each epoch represented one period when
the host was known to be functioning, and was stored as a
tuple <host, boot time, last sample time>. The intervals
between the available epochs were treated as periods when
the host was unavailable.

Each poll returned either the time since the host was last
initialized, or a failure. The durations were merged into the
list of available epochs for the host, extending an epoch if
they had the same boot time.

At the end of the experiment, we extracted the list of
available epochs for each measured host and computed the
distributions forTTF and TTR. Our analysis then derived
availability from these values.

The accuracy of our measurements depended on each
machine maintaining an accurate record of its boot time and
current time of day. We observed some systems that
appeared not to maintain this information, resulting in
negative or multi-decade uptimes; we removed these
outliers before analyzing the data.

The measurements were also sensitive to the polling
frequency. If a machine failed after less than ten minutes, the
Tattler might well miss the period the host was available,
though it would detect very short downtimes using the boot
time in each sample.

2.3 The Tattler system

We built the Tattler as a distributed, fault-tolerant
system. The Tattler is composed of a number of replicated
monitors, the individualtattlers, at geographically dispersed
sites, as shown in Figure 1. These monitors are called
tattlers since they periodically inquire about other hosts and
then “tattle” to each other about what they learn. In practice
we used six tattlers: four at the University of California,

Figure 1: The overall structure of the Tattler system

group communication channel

tattler tattler tattler

host host hosthost

Santa Cruz; one at San Diego State University; and one at the
Georgia Institute of Technology.

There are several advantages to replicating the tattlers
around the network. First, it provides a fault-tolerant method
for monitoring hosts. All but one of the tattlers can fail and the
set of hosts can still be monitored (albeit in a degraded mode).
It also provides a way of mitigating the effect of transient
network failures. When monitoring hosts from a single point,
the failure of one router can prevent any host from being
polled. When several relatively independent polling daemons
work together, it will be very unlikely that a total failure can
occur. Second, because the tattlers are distributed they can
perform many more queries than a single polling program—
with six tattlers, each tattler polled each host on average only
once an hour to achieve an overall mean time between polls
of ten minutes. While a single polling program would create
roughly the same message traffic, it would concentrate all the
traffic onto a small number of network links from the
monitoring host to the Internet backbone networks. The
parallelism of using multiple nodes also decreases the load on
them, so we could use ordinary workstations without
disturbing their users. A non-replicated monitor would also
take significantly longer to complete its task since it would
have to poll for a longer period to make up for data lost due to
failures.

Each tattler maintained a copy of the list of hosts to poll,
and of the data base of available epochs for each host. The list
of hosts was a sequence of tuples<host, poll method,
poll interval>. The data base contained a sequence of tuples,
one per available epoch for each host being monitored, of the
form <host, boot time, sample time>.

The tattler replicas were coordinated using a weak
consistency group communication protocol [Golding92]. This
protocol provides operations for new replicas to join the
group, sending the new replica a copy of the data base in the
process; for leaving the group, when a tattler is to be shut
down; and for propagating metadata and data base changes.
The tattlers did not communicate in real time; instead, they
proceeded independently and periodically merged their data
bases. This allowed the system to continue functioning when
individual tattlers were temporarily unavailable or the
network had partitioned—common events for a system built
on the Internet.

An individual tattler was composed of several
components: a tattler daemon, a data base daemon, and a
polling daemon,as shown inFigure 2. The tattler daemon
coordinated the other daemons, and was responsible for
managing the consistency of the replicated data base through
the group communication channel. The data base daemon
provided stable storage for sample observations (from the
polling daemon), and metadata from the tattler daemon.

The polling daemon produced sample observations. It
took samples at a specified rate, and could be requested to start

or stop sampling. For this study, it used exponentially
distributed random intervals with a mean of one hour.

The system also provided a user interface for
controlling individual tattlers. It allowed hosts to be added
and deleted from the monitoring list, and allowed a user to
suspend monitoring of certain hosts. It could inform a tattler
that it should shut down and leave the process group. New
tattlers could be added equally easily. The user interface
contacted a single tattler—preferably the closest—to
perform all of these operations, and the group
communication protocols ensured that the operation was
eventually known by all tattlers.

3 Results

This study was conducted over a seven-month period.
The study is continuing, and as more time passes the
accuracy of our results will improve.

3.1 Time-to-failure

During the seven-month experimental period, we
observed 13 250 intervals when systems were available.

There are two ways to analyze these periods: to
aggregate all hosts together, or to separate them. The results
are notably different because the aggregated measures are
heavily influenced by unreliable hosts that contributed many
short available epochs. The aggregated results are useful if
one is trying to characterize the “average” host—perhaps as
might be seen as a client of a wide-area service. Different
makes of host, however, are likely to fail in different ways—
and indeed analysis of our data indicate that the hosts are not
homogeneous—so we also present unaggregated statistics.

3.1.1 Aggregated TTF

The average (aggregated) duration of all available
periods was 12.99 days, or 311.8 hours. Table 1 summarizes
these measurements.

The distribution is rather skewed, with a few very long
intervals. Figure 3 shows the density.

These values are close to what system administrators
would expect, according to anecdotal reports we have
gathered. The values differ greatly from theMTTF values

Figure 2: The structure of an individual tattler replica

group
communication

channel

data base
daemon

polling
daemon

tattler
daemon

user
interface

reported by manufacturers because we are using a different
definition of failure: manufacturers are generally concerned
with permanent hardware failures, while we are concerned
with the ability to communicate with a service.

The number reported is also much shorter than the time
between operating system or hardware “failures”. Manually
shutting down a machine—for software maintenance or to
conserve power, for example—make the system unavailable
according to our definition. Many people reboot their systems
nightly or weekly, contributing many short intervals. The
spike at one day in Figure 3 bears this out.

This difference may also account for another difference
between our observation and common wisdom: that failure
rates follow the “bathtub curve” so that failures are likely
soon after a repair has been completed. Figure 3 does not
exhibit this behavior. This would be expected, however, if
many system shutdowns are planned reboots that do not
involve changes to the system’s configuration.

Table 1: Measured aggregate TTF

mean 12.99 days (311.8 hours)
 (50% confidence)
 (95% confidence)
 (99% confidence)

median 4.080 days
n 13 250 intervals

24.92

min 0.000428
25% 0.8986
50% 4.080
75% 14.12
max 550.4

Figure 3: Aggregate TTF distribution

0.01 0.1 1 10 100 1000

Time to failure (days, aggregated)

0.02

0.04

0.06

F
ra

ct
io

n
of

 h
os

ts

0.15±
0.42±
0.56±

σ

3.1.2 Is failure a Poisson process?

In our previous study, we found evidence that the time-
since-initialization values we measured were not
exponentially distributed, and argued that ifTTF were
exponential, time-since-initialization must be as well—
indicating thatTTF most likely does not follow a Poisson
process. In this section, we apply the same test statistic to
the data we collected in this study.

We use a test statistic based on the parametric family of
distributions with linear failure rate density, which has been
shown to be applicable to a large class of nonparametric
distributions as well, and has been shown to be applicable to
machine behavior [Doksum84]. This test does not depend
on advance knowledge of the mean of the proposed
governing distribution. Forn samples through with
mean , the test statistic is given by:

If the null hypothesis that the samples come from a
single exponential distribution is true, the test statisticT has
a standard normal distribution when the sample sizen is
large. Thus the null hypothesis can be rejected at a
specified level of significance when the value of the
equivalent formula

is large, where is the sample variance.
The test statisticT can be also used in testing the null

hypothesis that the samples come from a population with a
linear failure-rate density as well as a population with a
nondecreasing failure-rate average. For these cases, the null
hypothesis can be rejected for extreme values of the test
statisticT; the significance probability is calculated from the
standard normal distribution.

No matter how large the sample size, no amount of
testing can assure that a population distribution is
exponential. By contrast, the test statisticT can quantify the
prohibitively small probability that certain samples were
derived from an exponential population distribution.

We calculatedT for theTTF values for each host, and
found , which gives a vanishingly small probability
thatTTF is exponentially distributed.

3.1.3 Unaggregated TTF

Rather than aggregating all hosts, we can also consider
them separately, examining the distribution of mean TTF for
the host population we followed. We would expect this
measure to be less influenced by unreliable hosts than the

t1 tn
t

T
1

n
------- 1

1
2

ti
t

 2
–

i 1=

n

∑=

H0

H0

T
1
2
--- n 1 σ̂2

t
2

------–=

σ̂2

3280–

aggregated one, and to help show differences in the failure
processes of different hosts.

The average mean duration of all hosts was 29.39 days,
or 705.4 hours—significantly longer than the aggregated
measure, as expected. Table 2 summarizes these
measurements.

The distribution is also skewed, with a few very long
intervals, as shown in Figure 4.

3.1.4 Comparison with previous study

In our previous study, we observedMTTF values ranging
from 15.85 to 20.14 days, depending on the kind of system, as
compared to our observation of 24.92 days (aggregated) and
29.39 days (unaggregated) in this study. Those systems with a
large population tended to be in the upper portion of that
range, withMTTF between 17.96 to 20.14 days.

The samples in our previous study were biased to over-
represent more reliable systems, which increased the time-to-
failure measure. These new results confirm the bias in the

Table 2: Measured MTTF

mean 29.39 days (705.4 hours)
 (50% confidence)

 (95% confidence)
 (99% confidence)

median 18.12 days
n 1139 hosts

38.76

min 0.1419
25% 9.406
50% 18.12
75% 34.58
max 546.9

0.77±
2.3±
3.0±

σ

Figure 4: MTTF distribution

0.01 0.1 1 10 100 1000

Time to failure (days, unaggregated)

0.05

0.10

F
ra

ct
io

n
of

 h
os

ts

earlier study, and encourage our belief that we have
remedied it.

3.2 Time-to-repair

The measured overall mean aggregatedTTR was
2.018 days (48.43 hours), with 12 053 epochs when systems
were unavailable. Table 3 summarizes the results.

Once again the distribution is strongly skewed, with the
median time (just over seven hours) much shorter than the
mean. Figure 5 shows the distribution.

3.2.1 UnaggregatedMTTR

We can also consider the distribution ofMTTR over the
various hosts. The measured overall meanMTTR was
3.880 days (93.11 hours) for 1081 hosts. Table 4
summarizes the results.

Once again the distribution is strongly skewed, with the
median time (just over 36 hours) much shorter than the
mean. Figure 6 shows the distribution.

Table 3: Measured aggregate TTR

mean 2.018 days
 (50% confidence)
 (95% confidence)
 (99% confidence)

median 0.2941 days
n 12 053 intervals

15.73

min 0.000660
25% 0.09741
50% 0.2941
75% 1.259
max 1449

0.001 0.01 0.1 1 10 100

Time to repair (days, aggregated)

0.02

0.04

0.06

F
ra

ct
io

n
of

 h
os

ts

Figure 5: Aggregate TTR distribution

0.097±
0.281±
0.369±

σ

3.2.2 Is repair a Poisson process?

As with failure, repair is often assumed to follow a
Poisson process. We applied the same test statistic to our
measured repair times, which yielded . Once
again, the chance that repair is exponential is vanishingly
small.

3.2.3 Comparison with previous study

In our previous study, we estimatedMTTR values
between 1.86 and 2.96 days for the most common kinds of
hosts, and with few exceptions theMTTR estimates for other
models were notably longer than our current measurements.

How could significant errors have been introduced into
our previous estimates ofMTTR? In that study we derived
MTTR from theMTTF and availabilityA by:

This is most easily derived from two state birth-death process,
but by using results from the theory of renewal processes this

Table 4: Measured MTTR

mean 3.880 days
 (50% confidence)
 (95% confidence)

 (99% confidence)
median 1.508 days

n 1081 hosts
12.93

min 0.002662
25% 0.8598
50% 1.508
75% 2.552
max 147.2

0.001 0.01 0.1 1 10 100

Time to repair (days, unaggregated)

0.05

0.10

F
ra

ct
io

n
of

 h
os

ts

Figure 6: MTTR distribution

0.265±
0.771±
1.01±

σ

T 154.4–=

MTTR
MTTF 1 A–()

A
------------------------------------=

result can be shown to be independent of the distributions of
MTTF andA [Trivedi82].

The MTTR estimate is linearly dependent onMTTF. If
the MTTF were overestimated, the estimatedMTTR would
be proportionally longer than the actual. Also, if the
confidence interval for the availability of theMTTF is large,
then the estimatedMTTR can deviate significantly from the
true value.

An accurateMTTR also depended on the accuracy of
the availability measure. Consider the rate at which the
value of MTTR changes when an error is made in the
estimate of A:

The error introduced into the estimate ofMTTR is
quadratic in the error in the estimate ofA. As we will see,
the availability measure from the earlier study was flawed.

3.3 Availability

In this study, we computed availability as the ratio of
the time we observed that a host was available to the total
time, both failed and functioning. We computed an overall
availability of 0.8783 for a population of 1 134 hosts, or a
mean of 46 days unavailable per year. Table 5 summarizes.

Figure 7 shows a histogram of the distribution over the
hosts. Again, the distribution is highly skewed. Only a small
fraction of the hosts (11.7%) were available less than 75%
of the time.

Many of the hosts (242, or 5%) have availability of 1.0.
These hosts have not failed in the time we have been
monitoring them. We expect that as we continue to monitor
them we will be able to better characterize these highly-
reliable hosts.

The time that these systems are unavailable—several
days per year—is very different from anecdotal accounts of
behavior of dedicated server systems. In general we believe
that this is because we are monitoring the average host on
the Internet, which is likely to be a workstation-class
machine for a single user or for a small workgroup. These
users do not generally invest in uninterruptible power

Table 5: Computed availability

mean 0.8783
 (50% confidence)
 (95% confidence)

 (99% confidence)
n 1134 hosts

median 0.9203

A∂
∂ MTTF 1 A–()

A
------------------------------------ MTTF–

A
2

-------------------=

0.00297±
0.00864±
0.0114±

supplies, redundant processors, or other special mechanisms
for ultra-highly reliable systems.

3.3.1 Comparison with previous study

In the previous study we reported much lower availability
for most kinds of systems. This in turn led to substantially
different results forMTTR. We measured availability by
polling a large list of host names to determine which names
corresponded to real systems, then polling again two months
later to measure what fraction were reachable.

That method suffered from two problems. First, it over-
represented reliable systems, since the poll actually measured
the conditional probability of being able to reach the host a
second time, and the probabilities of the polls being
successful were not independent. Second, it did not
differentiate between the reliability of the network and the
reliability of the host. A transient network failure that lost the
query packets would be indistinguishable from a host failure,
and packet loss is likely when network segments become
congested.

4 Summary

We have performed a longitudinal measurement study of
the TTF and TTR of a sample of hosts connected to the
Internet. We collected data from almost 1 200 hosts, using
only data that could be obtained via the Internet with no
special privileges or added monitoring facilities.

We chose to directly measureTTF andTTR, rather than
trying to estimate them from other measures. We did this by
polling each host regularly to determine how long it had been
functioning. We ran the monitor for three months to obtain
long-term measures ofTTF andTTR. We used these measures
to compute overall availability.

The results of the previous study reflected a bias toward
more reliable hosts that needed addressing. Our use of direct

0.0 0.5 1.0

Availability

0.001

0.01

0.1

F
ra

ct
io

n
of

 h
os

ts

Figure 7: Availability distribution.

measurement improves upon the earlier results. We now
believe that we have eliminated all significant sources of
bias in the measurements, and in so doing have presented
the most accurate statistic on host reliability available.

In order to accomplish this task, we constructed the
Tattler, a fault-tolerant distributed monitor that continuously
polled hosts over the Internet. Its distributed nature allowed
us to avoid putting too great a load on any particular host or
on any particular segment of the Internet. By dispersing the
tattlers geographically, we were able to minimize the effects
of network failures, which biased the previous availability
estimate.

From our TTF measurements, it appears that many
systems stay up for about one week. The data suggest daily
and weekly patterns, where systems are unavailable for a
short period each day or week. For bothTTF andTTR, the
mean and median are significantly different, suggesting that
only a few systems stay up a long time, but that most are
unavailable for only a short time.

The TTF and TTR distributions are clearly not
exponential. We believe that care needs to be taken in future
reliability analyses to ensure that assumptions about
exponential behavior do not cause problems. As more data
are collected we hope to be able to better explore the
distributions that these take.

We intend to continue the monitoring experiment for
the foreseeable future, and including at least one new cohort
of systems, focussing on server hosts. Those interested in
participating in this study, by running tattlers on their
systems, should contact the authors.

Acknowledgments

The work at the University of California has been
supported by the Office of Naval Research under grant
N00014-92-J-1807. Some of this research was performed
on equipment donated by Sun Microsystems and at Hewlett-
Packard Laboratories. We are grateful to the students who
have contributed to the Tattler, including N. Ganatra, A.
Grice, K. B. Sriram, D. Schreiber, and A. Sullivan. P. Ware,
K. Birman, and the anonymous reviewers provided many
helpful suggestions that we have incorporated. We are
particularly grateful to Dr. J. Gray for his encouragement to
pursue this line of inquiry.

References

[Doksum84] K. A. Doksum and B. S. Yandell.Handbook of
Statistics, volume 4. Elsevier, 1984.

[Ganatra92] Nitin K. Ganatra. Census: collecting host
information on a wide area network. Technical Report
UCSC–CRL–92–34, Computer and Information Sciences,
University of California Santa Cruz, 1992.

[Golding92] Richard A. Golding.Weak-consistency group
communication and membership. Ph.D. dissertation,
Computer and Information Sciences, University of
California Santa Cruz, December 1992.

[Gray85] Jim Gray. Why do computers stop and what can be
done about it? Technical Report 85.7, Tandem Computers,
June 1985.

[Gray90] Jim Gray. A census of Tandem system availability
between 1985 and 1990.IEEE Transactions on Reliability,
39(4).

[Long89] Darrell D. E. Long, John L. Carroll, and Kris
Stewart. Estimating the reliability of regeneration-based
replica control protocols. IEEE Transactions on
Computers, 38(12), December 1989.

[Long91] Darrell D. E. Long, John L. Carroll, and C. J. Park.
A study of the reliability of Internet sites. InProceedings
of the Tenth Symposium on Reliable Distributed Systems,
pages 177–186, Pisa, September 1991.

[Long92] Darrell D. E. Long. A replicated monitoring tool. In
Proceedings of the Second Workshop on the Management
of Replicated Data, pages 96–99, Monterey, November
1992.

[Mourad85] S. Mourad and D. Andrews. The reliability of the
IBM/XA operating system. InProceedings of the 15th
Annual International Symposium on Fault-tolerant
Computing. June 1985.

[Pâris86] J.-F. Pâris. Voting with witnesses: a consistency
scheme for replicated files. In Proceedings of the 6th
International Conference on Distributed Computing
Systems, pages 606–612, Cambridge, 1986.

[Trivedi82] K. S. Trivedi.Probability & Statistics with
Reliability, Queuing and Computer Science Applications.
Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

