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Abstract also be able to deal with the drive’s cache prefetching al-
Igorithms, since the most efficient use of a free bandwidth

Freeblock scheduling replaces a disk drive’s rotationa0 ortunity is on the same track as a forearound request
latency delays with useful background media transfers, PP y 9 q ’

potentially allowing background disk I/O to occur with These requirements can be met with two extensions to
no impact on foreground service times. To do so, a freethe common external SPTF design: limited command
block scheduler must be able to very accurately predicgueueing and request merging. First, by keeping two re-
the service time components of any given disk requesguests outstanding at all times, an external scheduler can
— the necessary accuracy was not previously considfocus on just media access delays; the disk’s firmware
ered achievable outside of disk firmware. This paper dewill overlap bus and command processing overheads
scribes the design and implementation of a working ex-for any one request with the media access of another.
ternal freeblock scheduler running either as a user-levellhis tighter focus simplifies the scheduler’s timing pre-
application atop Linux or inside the FreeBSD kernel. dictions, allowing it to achieve the necessary accuracy.
This freeblock scheduler can give 15% of a disk’s po- Second, by merging physically adjacent free bandwidth
tential bandwidth (over 3.1MB/s) to a background disk and foreground fetches into a single request, an external
scanning task with almost no impact (less than 2%) onscheduler can employ same-track fetches without con-
the foreground request response times. This can increadesing the firmware’s prefetching algorithms.

disk bandwidth utilization by overs. With its service time prediction accuracy, our external
scheduler's SPTF decisions match those of the disk’s
1 Introduction firmware, and its freeblock scheduling decisions are ef-

fective. On the other hand, the achieved free bandwidth
Freeblock scheduling is an exciting new approach to uti-is 35% lower than the earlier simulations, because the
lizing more of a disk's potential media bandwidth. It external prediction accuracies and control are not per-
consists of anticipating rotational latency delays and fill- fect. Nonetheless, the goals of freeblock scheduling are
ing them with media transfers for background tasks. Viamet: potential free bandwidth is used for background ac-
simulation, our prior work [14] indicated that 20-50% tivities with (almost) no impact on foreground response
of a never-idle disk's bandwidth could be provided to times. For example, when using free bandwidth to scan
background applications with no effect on foregroundre- the entire disk during on-line transaction processing, we
sponse times. Thiee bandwidth was shown to enable measure 3.1 MB/s of steady-state progress or 37 free
free segment cleaning in a busy log-structured file sysscans per day on a 9 GB disk. When employing free-
tem (LFS), or free disk scans (e.g., for data mining orplock scheduling, foreground response times increase by
disk media scrubbing) in an active transaction processtess than 2%.

Ing system. The remainder of this paper is organized as follows. Sec-

At the time of that writing, we and others believed that tion 2 describes freeblock scheduling. Section 3 de-
freeblock scheduling could only be done effectively from scribes challenges involved with implementing freeblock
inside the disk’s firmware. In particular, we did not scheduling outside of disk firmware. Section 4 describes
believe that sufficient service time prediction accuracyour implementation. Section 5 evaluates our external
could be achieved from outside the disk. We were wrong freeblock scheduler. Section 6 discusses related work.

Th|s paper describes and eva'uates Working proto_section 7 Summal’izeS th|S papel"S Contl’ibutions.

types of freeblock scheduling on Linux and within

the FreeBSD kernel. Recent research has successful :

demonstrated software-only Shortest-Positioning-Time-5 Freeblock Scheduling

First (SPTF) [12, 25] schedulers [28, 31], but their pre- Current high-end disk drives offer media bandwidths in
diction accuracies were not high enough to support free-excess of 40 MB/s, and the recent rate of improvementin
block scheduling. To squeeze extra media transfers intanedia bandwidth exceeds 40% per year. Unfortunately,
rotational latency gaps, a freeblock scheduler must banechanical positioning delays limit most systems to only
able to predict access times to within 200300t must  2—-15% of the potential media bandwidth. We recently
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Figure 1: Illustration of two freeblock scheduling possibilities.  Three sequences of steps are shown, each starting after completing the
foreground request to block and finishing after completing the foreground request to bBclEach step shows the position of the disk platter,

the read/write head (shown by the pointer), and the two foreground requests (in black) after a partial rotation. The top row, labelled (a), shows the
default sequence of disk head actions for servicing redBiestich includes 4 sectors worth of potential free bandwidth (rotational latency). The
second row, labelled (b), shows free reading of 4 block&'srirack using 100% of the potential free bandwidth. The third row, labelled (c), shows

free reading of 3 blocks on another track, yielding 75% of the potential free bandwidth.

proposed freeblock scheduling as an approach to increa$df Taceess, Only the Ty ansger COMponent represents useful
ing media bandwidth utilization [14, 21]. By interleaving utilization of the disk head. Unfortunately, the other two
low-priority disk activity with the normal workload (here components usually dominate. While seeks are unavoid-
referred to as background and foreground, respectively)able costs associated with accessing desired data loca-
a freeblock scheduler can replace many foreground rotions, rotational latency is an artifact of not doing some-
tational latency delays with useful background mediathing more useful with the disk head. Since disk platters
transfers. With appropriate freeblock scheduling, back-rotate constantly, a given sector will rotate past the disk
ground tasks can make forward progress without anyhead at a given time, independent of what the disk head
increase in foreground service times. Thus, the backis doing up until that time. If that time can be predicted,
ground disk activity is completed for free during the me- there is an opportunity to do something more useful than
chanical positioning for foreground requests. just waiting for desired sectors to arrive at the disk head.

This section describes the free bandwidth concept inFreeblock scheduling is the process of identifying free
greater detail, discusses how it can be used in systembandwidth opportunities and matching them to pend-
and outlines how a freeblock scheduler works. Most ofing background requests. It consists of predicting how
the concepts were first described in our prior work [14] much rotational latency will occur before the next fore-

and are reviewed here for completeness. ground media transfer, squeezing some additional media
i i transfers into that time, and still getting to the destina-
2.1 Wherethefreebandwidth lives tion track in time for the foreground transfer. The addi-

Taccess, Can be computed as a sum of seek tifigg,  1ON tracks, on another track near the two, or anywhere

cases, additional seek overheads are incurred, reducing

Taccess = Teeek + Trotate + Tiransfer the actual time available for the additional media trans-



fers, but not completely eliminating it. 2.3 Freeblock scheduling

The potential free bandwidth in a system is equal to thein a system supporting freeblock scheduling, there are
disk's potential media bandwidth multiplied by the frac- two types of requests: foreground requests and freeblock
tion of time it spends on rotational Iatency delays. The(background) requests. Foreground requests are the nor-
amount of rotational latency depends on a number ofmal workload of the system, and they will receive top
disk, workload, and scheduling algorithm characteris-priority. Freeblock requests specify the background disk
tics. For random small requests, about 33% of the to-activity for which free bandwidth should be used. As an
tal time is rotational |a.tency for most disks. This per- examp|e’ a freeblock request m|ght Specify that a range
centage decreases with increasing request size, becorgf 100,000 disk blocks be read, but in no particular order
ing 15% for 256 KB requests, because more time is— as each block is retrieved, it is handed to the back-
spent on data transfer. This percentage increases withround task, processed immediately, and then discarded.
increasing locality, up to 60% when 70% of requests area request of this sort gives the freeblock scheduler the

in the most recent “cylinder group” [16], because lessflexibility it needs to effectively utilize free bandwidth
time is spent on the shorter seeks. The value is abougpportunities.

50% for seek-reducing scheduling algorithms (e.g., C-
LOOK [17, 24] and Shortest-Seek-Time-First [9]) and
about 20% for scheduling algorithms that reduce overall
positioning time (e.g., Shortest-Positioning-Time-First).

Foreground and freeblock requests are kept in separate
lists and scheduled separately. The foreground scheduler
runs first, deciding which foreground request should be
serviced next in the normal fashion. Any conventional
2.2 Usesfor free bandwidth scheduling algorithm can be used. Device driver sched-
) ) ) ) ) ulers usually employ seek-reducing algorithms, such as
Potential free bandwidth exists in the time gaps thatc_| ook or Shortest-Seek-Time-First. Disk firmware

would otherwise be rotational latency delays fpr fore- schedulers usually employ Shortest-Positioning-Time-
ground requests. Therefore, freeblock scheduling must; s (SPTF) algorithms [12, 25] to reduce overall po-

opportunistically match these potential free bandwidthsitioning overheads (seek time plus rotational latency).
sources to real bandwidth needs that can be met within o
the given time gaps. The tasks that will utilize the largest”fter the next foreground request (requBsh Figure 1)

fraction of potential free bandwidth are those that pro-'S détermined, the freeblock scheduler computes how
vide the freeblock scheduler with the most flexibility. Much rotational latency would be incurred in servicing
Tasks that best fit the freeblock scheduling model haveD: this is the free bandwidth opportunity. Like SPTF, this

low priority, large sets of desired blocks, and no particu_computation requires accurate estimates of disk geome-
lar order of access. try, current head position, seek times, and rotation speed.

o o _ The freeblock scheduler then searches its list of pending
These characteristics are common to many dlsk-mtenswﬁeebmck requests for a good match. (Section 4.3 de-

background tasks that are designed to occur during othgcripes a specific freeblock scheduling algorithm.) After
erwise idle time. For example, in many systems, theréyaking its choice, the scheduler issues any free band-
are a variety of support tasks that scan large portions of;iqih accesses and then requBst

disk contents, such as report generation, RAID scrub-

bing, virus detection, and backup. Another set of exam- . . . .

ples is the many defragmentation [15, 29] and replica—3 Fine-grain External Disk Scheduling
tion [18, 31] techniques that have been developed to im+ine-grain disk scheduling algorithms (e.g., Shortest-
prove the performance of future accesses. A third set oPositioning-Time-First and freeblock) must accurately
examples is anticipatory disk activities such as prefetchpredict the time that a request will take to complete. In-
ing [7, 11, 13, 19, 27] and prewriting [2, 4, 8, 10]. side disk firmware, the information needed to make such
e. Predictions is readily available. This is not the case out-

Using simulation, our previous work explored two spe- V. ; i e :
cific uses of freeblock scheduling. One set of experi—s'de the disk drive, such as in disk array firmware or OS
device drivers.

ments showed that cleaning in a log-structured file sys-
tem [22] can be done for free even when there is no trulyModern disk drives are complex systems, with finely-
idle time, resulting in up to a 300% increase in applica- engineered mechanical components and substantial run-
tion performance. A second set of experiments exploredime systems. Behind standardized high-level interfaces,
the use of free bandwidth for data mining on an activedisk firmware algorithms map logical block numbers
on-line transaction processing (OLTP) system, showing(LBNSs) to physical sectors, prefetch and cache data, and
that over 47 full scans per day of a 9 GB disk can be madeschedule media and bus activity. These algorithms vary
with no impact on OLTP performance. This resulted in aamong disk models, and evolve from one disk genera-
7x increase in media bandwidth utilization. tion to the next. External schedulers are isolated from



necessary details and control by the same high-level in- one request at the disk

terfaces that allow firmware engineers to advance their
algorithms while retaining compatibility. This section
outlines major challenges involved with fine-grain ex- scenaric ENEREENTTN i) NN predia) [ request!

head idle
request A , request B
positioning time | positioning time!

: one o
ternal scheduling, the consequences of these challenges, bus
. .y . xrer xter
and some solutions that mitigate the negative effects of | response ime __!
cmeppecdmes o B i
these consequences. > variation . 1

scenario

two request B i T
31 Chal I enges positioning time ;
The challenges faced by a fine-grained external scheduler 2 4 6 8 10 12 14
largely result from disks’ high-level interfaces, which time [ms]

hide internal information and restrict external control.
Specific challenges include coarse observations, NOMgigure 2: Effects of uncertainty on prediction accuracy.  This

constant delays, non-preemption, on-board caching, infigure shows two possible scenarios of observed response times when

drive scheduling, computation of rotational offsets, andemploying external scheduling. In each scenario, the scheduler issues

disk-internal activities. requestA, waits for its completion, and then issues requgsthe two
scenarios only differ in the amount of overlap between the media and

Coarse observations. An external scheduler sees only bus transfers. The varying overlap has different effects on the posi-

the total response time for each request. These Coarg@ning.time of request B and therefore on the amount of available free
. . e bandwidth.
observations complicate both the scheduler’s initial con-
figuration and its runtime operation. During initial con-
figuration, the scheduler must deduce from these obser®n-board caching. Modern disks have large on-board
vations the individual component delays (e.g., mechanicaches. Exploiting its local knowledge, disk firmware
cal positioning, data transfer, and command processingprefetches sectors into this cache based on physical local-
as well as the amount of their overlap. These delays musity. Usually, the prefetching will occur opportunistically
be well understood for an external scheduler to accuduring idle time and rotational latency periddsSome-
rately predict requests’ expected response times. Duringimes, however, the firmware will decide that a sequential
runtime operation, the scheduler must deduce the disk'sead pattern will be better served by delaying foreground
current state after each request; without this knowledgesequests for further prefetching. An external scheduler is
the subsequent scheduling decision will be based on inunlikely to know the exact algorithms used for replace-
accurate information. ment, prefetching, or write-back (if used). As a result,

Non-constant delays. Deducing componentdelays from cache hits and prefetch activities will often surprise it.

coarse observations is made particularly difficult by the|n-drive scheduling. Modern disks support command
inherent inter-request variation of those delays. If the dequeueing, and they internally schedule queued requests
lays were all constant, deduction could be based on solvto maximize efficiency. An external scheduler that
ing sets of equations (response time observations) to figwishes to maintain control must either avoid command
ure out the unknowns (component delays). Instead, thgjueueing or anticipate possible modification of its deci-
delays and the amount of their overlap vary. As a resultsjons.

an external scheduler m_ust deduce moving targets (th.?:omputation of rotational offsets. A disk’s rotation
component delays) from its coarse observations. In add|—s ced mav varv sliahtly over time. As a result. an exter-
tion, the variation will affect response times of scheduled P y vary sightly ) '

. ) . ) al scheduler must occasionally resynchronize its under-
requests, and so it must be considered in making schedul- . S .
. o . : : standing of the disk’s rotational offset. Also, whenever
ing decisions. Figure 2 illustrates the effect of variable

overlap between bus transfer and media transfer on thmakmg a scheduling decision, it must update its view of

. ?he current offset.
observed response time.

. . . Internal disk activities. Disk firmware must sometimes
Non-preemption. Once a request is issued to the disk, . : o
execute internal functions (e.g., thermal recalibration)

the scheduler cannot change or abort it. The SCSI pro: :

. . “that are independent of any external requests. Unless a
tocol does include an BORT message, but most device
drivers do not support it and disks do not implement it  lFreeblock scheduling often removes the disk’s opportunity to
efficiently. They view it as an unexpected condition, so prefetch during rotational latency periods. It does so to fetch known-to-
it is usually more efficient to just allow a request to com- P&-Wanted data, which we argue is a more valuable activity. In part, we

. assert this because the lost prefetching will rarely eliminate subsequent

plete. Thus, an external scheduler must take care in th@egia accesses, since the prefetched sectors are usually not forward in

decisions it makes. LBN order and not aligned to any block boundary or size.
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(a) Seek time over-estimation. The larger predicted seek of
3.3 ms suggests a full rotation, resulting in a predicted re-
sponse time of 1@ ms. Since the actual seek is smaller
(3.0 ms), the extra rotation does not occur and the request
completes in £ ms, resulting in & 6.0 ms prediction error.
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(b) Seek time under-estimation The predicted seek of2ms
results in a prediction of rotational latency af30Oms and a
predicted response time of8ms. Since the actual seek is
larger (29 ms), the disk will suffer an extra rotation resulting
in aresponse time of. 8 ms. The prediction error i$6.0 ms.

Figure 3:The effects of mispredicted seek times,

device driver uses recent S.M.A.R.T. interface extensionsmall predicted delay, the scheduler is likely to select this
to avoid these functions, an unexpected internal activityrequest even though it is probably a bad choice.

will occasionally invalidate the scheduler’s predictions. Under-estimated seeks can cause substantial unwanted
extra rotations for foreground requests. Over-estimated
seeks usually do not cause significant problems for fore-

The challenges listed above have five main consequencéfound scheduling, because selecting the second-best re-

on the operation of an external fine-grained disk sched-duest usually results in only a small penalty. When the
uler. foreground scheduler is used in conjunction with a free-

block scheduler, however, an over-estimated seek may
Complexity. Both the initial configuration and runtime  cause a freeblock request to be inserted in place of an in-
operation of an external scheduler will be complex andcorrectly predicted large rotational latency. Like a self-
disk-specific. As a result, substantial engineering maulfilling prophecy, this will cause an extra rotation be-

be required to achieve robust, effective operation. Worsefore servicing the next foreground request even though it
effective freeblock scheduling requires very accurate serwould not otherwise be necessary.

vice time predictions to avoid disrupting foreground re-
guest performance.

3.2 Conseguences

Idle disk head time. The response time for a single
request includes mechanical actions, bus transfers, and
Seek misprediction. When making a scheduling deci- command processing. As a result, the read/write head
sion, the scheduler prediCtS the mechanical delays thaéan be idle part of the time7 even while a request is be-
will be incurred for each request. When there are smalling serviced. Such idleness occurs most frequently when
errors in the initial configuration of the scheduler or acquiring and utilizing the bus to transfer data or com-
variations in seek times for a given cylinder distance, pletion messages. Although an external scheduler can be
the scheduler will sometimes mispredict the seek timemade to understand such inefficiencies, they can reduce
When it does, it will also mispredict the rotational la- its ability to utilize the potential free bandwidth found in
tency. foreground rotational latencies.

When a scheduler over-estimates a request’s seek tim
(see Figure 3(a)), it may incorrectly decide that the disk
head will “just miss” the desired sectors and have to wait
almost a full rotation. With such a large predicted de-
lay, the scheduler is unlikely to select this request eve
though it may actually be the best option.

ﬁmorrectly-triggered prefetching. Freeblock schedul-

ing works best when it picks up blocks on the source
or destination tracks of a foreground seek. However, if
the disk observes two sequenti@ADS, it may assume

4 sequential access pattern and initiate prefetching that
causes a delay in handling subsequent requests. If one
When the scheduler under-estimates a request's sealf theserREADSs is from the freeblock scheduler, the disk
time (see Figure 3(b)), it may incorrectly decide that thewill be acting on misinformation since the foreground
disk head will arrive just in time to access the desiredworkload may not be sequential.

sectors with almost no rotational latency. Because of the
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Automatic disk characterization. An external sched-
uler must have a detailed understanding of the specific_.
disk f hich it i heduli _?h | P . qzlgure 4: Limited command queueing.  This figure repeats the

IS 0!’ W _'C Itis sche u Ing requests. e only PraC“' two scenarios from Figure 2 but with two requests outstanding at the
cal option is to have algorithms for automatically diScov- drive. That is, the scheduler keeps two requests at the disk — in this
ering the necessary configuration information, includingexample, reques is being serviced while requeBtis queued. The
LBN—to—physicaI mappings, seek timings, rotation Sp(:‘,(:’,(.j,drlve complgtgly qverlaps th_e bus transfer of reqwawith the seek_of

. requestB, eliminating head idle time. Also, notice that the rotational

anq command processing overheads. Fortunately, mechjency is the same in both scenarios, making predictions easier for
anisms [30] and tools [23] have been developed for ex-foreground and freeblock schedulers.

actly this purpose.

Seek conservatism. To address seek time variance and

other causes of prediction errors, an external schedul%edia access delays as though the bus and processing
can add asm_all “fudge fac;or” t_o its seek_tlme estimates. arheads were not present. When the media access
By conservatively over-estimating seek times, the eXter'deIays dominate, these other overheads will always be

nal scheduler can avoid the full rotation penalty asso-,eranned with another request's media access (see Fig-
ciated with under-estimation. To maximize efficiency, ure 4)

the fudge factor must balance the benefit of avoiding _ _ o

full rotations with the lost opportunities inherent to over- The danger with using command queueing is that the
estimation. For freeblock scheduling decisions, a morefifmware’s scheduling decisions may override those of

conservative (i.e., higher) fudge factor should be selectedn€ external scheduler. This danger can be avoided by
to prefer less-utilized free bandwidth opportunities to ex- allowing only two requests outstanding at a time, one in

tra full rotations suffered by foreground requests. service and one in the queue to be serviced next.

Resync after each request. The continuous rotation of Regquest merging. When scheduling a freeblock access
disk platters helps to minimize the propagation of pre-{0 the same track as a foreground request, the two re-
diction errors. Specifically, when an unexpected cacheluests should be mergedif possible (i.e., they are sequen-
hit or internal disk activity causes the external sched-tial and are of the same type). Not only will this merging
uler to make a misinformed decision, only one requestaVOid the misinformed prefetch consequence discussed
is affected. The subsequent request’s positioning delaygPove, but it will also reduce command processing over-
will begin at the same rotational offset (i.e., the previousheads-

request’s last sector), independent of how many unexAppending a freeblock access to the end of the previous
pected rotations that the previous request incurred. foreground request can hurt the foreground request since
completion will not be reported until both requests are

Limited command queueing. Properly utilized, com- done. This performance penalty is avoided if the free-

mand queueing at the disk can be .us.ed to Increase thtgzlock access is prepended to the beginning of the next
accuracy of external scheduler predictions. Keeping two

requests at the disk, instead of just one, avoids idling Offoreground request.
the disk head. Specifically, while one request is trans-

ferring data over the bus, the other can be using the disk .
head. 4 Implementation

In addition to improving efficiency, the overlapping of This section describes our implementation of an external
bus transfer with mechanical positioning simplifies the freeblock scheduler and its integration into the FreeBSD
task of the external scheduler, allowing it to focus on 4.0 kernel.



4.1 Architecture device driver

. . . foreground scheduler freeblock scheduler
Figure 5 illustrates our freeblock scheduler's architec-| ;----=-------------- : pTTTTTT e !
ture, which consists of three major parts: a foreground fore2 ! gispatch | fb2
scheduler, a freeblock scheduler, and a common dispatc| : next selected request ! queue current best selection

pool of
foreground
requests

pool of
freeblock
requests

The foreground scheduler keeps up to two requests i
the dispatch queue; the remaining pending foregroung
requests are kept in a pool. When a foreground requeg o
completes, it is removed from the dispatch queue, and 3 P S N
new request is selected from the pool according to the i
foreground scheduling policy. This newly-selected re- \ \
guestis put at the end of the dispatch queue. Such just-in- * »

time scheduling allows the scheduler to consider recent -~ !
requests when making decisions. -

gueue that holds requests selected by the two schedule

The freeblock scheduler keeps a separate pool of pend-

ing freeblock requests. When invoked, itinspects the dis- ~ Figure 5: Freeblock scheduling inside a device driver.

patch queue and, if there is a foreground request waiting

to be issued to the disk, it identifies a suitable freeblock

candidate from its pool. The identified freeblock requestSPTF requires the same detailed disk knowledge needed
is inserted ahead of the foreground request. The freefor freeblock scheduling. SPTF-S¥Wb was proposed
block scheduler will continue to refine its choice in the to select requests with both small total positioning de-
background, if there is available CPU time. The devicelays and large rotational latency components [14]. It se-
driver may send the current best freeblock request to théects the request with the smallest seek time component
disk at any time. When it does so, it sets a flag to tell theamong the pending requests whose positioning times are
freeblock scheduler to end its search. within n% of the shortest positioning time.

Whenever there are fewer than two requests at the diskReguest timing predictions. For the SPTF and SPTF-

the device driver issues the next request in the dispatcl®Wn% algorithms, the foreground scheduler predicts re-
gueue. By keeping two requests at the disk, the drivelquest timings given the current head position. Specifi-
achieves the desired overlapping of bus and media activeally, it predicts the amount of time that the disk head
ities. By keeping no more than two, it avoids reordering will be dedicated to the given request; we call this time
within the disk firmware; at any time, one request may head time. When using command queueing, the bus ac-
be in service and the other waiting at the disk. tivity is overlapped with positioning and media access,

The diagram in Figure 5 shows a situation when there aréeducmg 'the head tlmg o seek. time, rotational Iatency,
two outstanding requests at the disk: a freeblock reques?nd media transfer. Figure 6 |IIustrates_ the head “”.‘e
£b1 is currently being serviced and a foreground requestcomponents that must be accurately predicted by the disk
forel is queued at the disk. When the disk completesmOdel'

the freeblock requestb1, it immediately starts to work The disk model in our implementation is completely
on the already queued requestre1. When the device parametrized; that is, there is no hard-coded information
driver receives the completion messageffbt, it issues  specific to a particular disk drive. The parameters fall
the next request, labeletb2, to the disk. It also sets the into three categories: complete layout information with
“stop” flag to inform the freeblock scheduler. When the slipping and defects, seek profile, and head switch time.
foreground requestore1 completes, the device driver All of these parameters are extracted automatically from
sendsfore2 to the disk, tells the foreground scheduler the disk using the DIXtrac tool [23]. The seek profile is
to select a new foreground request, and (if appropriateysed for predicting seek times, and the layout informa-
invokes the freeblock scheduler. tion and head switch time are used for predicting rota-

tional latencies and media transfer times.

4.2 Foreground scheduler . . .
€9 The layout information is a compact representation of

Our foreground scheduler implements three schedulingll LBN mappings to the physical sector locations (de-
algorithms: SSTF, SPTF, and SPTF-8W. SSTF is scribed by a sector-head-cylinder tuple). It includes in-
representative of the seek-reducing algorithms used byormation about defects and their handling via slipping
many external schedulers. SPTF yields lower foregroundr remapping to spare sectors. It also includes skews
service times and lower rotational latencies than SSTFpetween two successive LBNs mapped across a track,



start issue start issue start

T, T, T, T, The scheduling algorithm greedily tries to maximize the

l l l l l numberlof bl_ocks read in eac_h 0pportumty. To reduce

search time, it searches the bitmap, looking for the most

promising candidates. It starts by considering the source
and destination tracks (the locations of the current and
| next foreground requests) and then proceeds to scan the
LA LA tracks closest to the two tracks. It keeps scanning pro-
Dy end Dy end gressively farther and farther away from the source and
destination tracks until it is notified via the stop flag or
reaches the end of the disk. If a better free bandwidth
opportunity is found, the scheduler creates a new request
that replaces the previous best selection.

i . i i i iqend end . .

Figure 6: Computing head time.  The head time IS — T | early experimentation, we found that two requests on

T's€ i3 the time when the request is issued to the di$R'! is when h K . . isk fetchi

the disk starts servicing the request, asd is when completion is re- the same track often trigger aggr(_asswe dis pre et_c _mg.

ported. Notice thaT's** is different fromT$2't and that total response  When the foreground workload involves sequentiality,

time, T3 — T, includes (a portion) of bus transfer and the time the this can be highly beneficial. Unfortunately, a freeblock

request is queued at the disk. request to the same track can make a random foreground
workload appear to have some locality. In such cases,
the disk firmware may incorrectly assume that aggres-

cylinder, or zone boundary. To achieve the desired presive prefetching would improve performance.

diction accuracy, the skews are recorded as a fractionof &, 4y0id such incorrect assumptions, our freeblock

revolution—using just an integral number of sectors doesgcpeqyling algorithm will not issue a separate request
not give the required resolution. on the same track. To reclaim some of the flexibility
The seek profile is a lookup table that gives the expectedost to this rule, it will coalesce same-track freeblock
seek time for a given distance in cylinders. The tablefetches with the next foreground request. That is, it
includes more values for shorter seek distances (everwill lower the starting LBN and increase the request size
distance between cylinder 1-10, cylinders, evely@r  when blocks on the destination track represent the best
1020, every B for 20-50, every 1% for 50-100, every  selection. When the merged request completes, the data
25" for 100-500, and every 18for distances beyond are split appropriately.

500). Va!ues not gxplicitly Iistgd in the table are interpo- Request merging only works when the selected freeblock
lated. Since the listed seek times are averages of seekg et is on the same (destination) track as the next fore-
of a given distance, a specific seek time may differ by 4.qnq request. Recall that the in-service foreground re-
tens ofps depending on the distance and the conditionsy et cannot be modified, since it is already queued at
of the drive. Thus, the scheduler may include an explicity,g gisk. For this reason, our freeblock scheduler will

I: head time "l

A
\

response time

conservatism value to account for this variability. not consider a request that would be on the source track.
Avoiding incorrect triggering of the prefetcher also pre-
4.3 Freeblock scheduler vents another same-track case: any freeblock opportu-

The freeblock scheduler computes the rotational Iatencyn'ty that spans contiguous physmal sectors that hold non-
contiguous ranges of LBNs (i.e., they cross the logical

for the next foreground request, and determines Whlcrbeginning of the track). To read all of the sectors would

pg?til:i? frggg?ﬂi(nriﬁql:ﬁZﬂ;ﬁZ:%?,;C:ggfrﬁ 'Etit:'Stﬁs_require two distinct requests, because of the LBN-based
b Y- 9 puting interface. However, since these two freeblock requests

extra seek time involved in going to each candidate’s . : . )
. - might trigger the prefetcher, the algorithm considers only
location and determining whether all of the necessary,
the larger of the two.

blocks could be fetched in time to seek to the location of

the foreground request without causing a rotational miss. . .
g a g 4.4 Kernel implementation

The current implementation of our freeblock scheduling

algorithm focuses on the goal of scanning the entire disk\e have integrated our scheduler into the FreeBSD
by touching each block of the disk exactly once. There-4.0 kernel. For SCSI disksydev/da), the foreground
fore, it keeps a bitmap of all blocks with the already- scheduler replaces the default C-LOOK scheduler im-
touched blocks marked. When a suitable set of blocks iplemented by th@ufqdisksort () function. Just like
selected from the bitmap, the freeblock scheduler createthe default C-LOOK scheduler, our foreground sched-
a disk request to read them. uler is called from thelastart () function and it puts



requests onto the device’s quebef,_queue, which is the Quantum Seagate
dispatch queue in Figure 5. This queue is emptied by Atlas 10k Cheetah 18LP
xpt_schedule (), which is called fromdastart () im- Year 1999 1998
mediately after the call to the scheduler. RPM 10000 10016
The only architectural modification to the direct access | Head switch (ms) 0.8 1.0
device driver is in the return path of a request. Nor- | Avg. seek (ms) 5.0 >4
mally, when a request finishes at the disk, dadone () Number of heads 6 6
function is called. We have inserted into this func- | Sectors per track 334-224 360-230
tion a callback to the foreground scheduler. If the | Bandwidth (MB/s) 27-18 28-18
foreground scheduler selects another request, it cally Capacity (GB) 9 9
xpt_schedule () to keep two requests at the disk. When | Zero-latency access yes no
the callback completegadone () proceeds normally.

The freeblock scheduler is implemented as a kernel Table 1:Disk characterigtics.

thread and it communicates with the foreground sched-
uler via a few shared variables. These variables include _
therestart andstop flags and the pointer to the nextfore- 5 Evaluation

ground request for which a freeblock request should beI'his section evaluates the external freeblock scheduler,

selected. ; : L -

showing that its service time predictions are very accu-
Before using the freeblock scheduler on a new disk, therate and that it is therefore able to extract substantial free
disk performance attributes for the disk model must firstbandwidth. As expected, it does not achieve the full per-
be obtained by the DIXtrac tool [23]. This one time cost formance that we believe could be achieved from within
of 3-5 minutes can be a part of an augmemiggfs pro-  disk firmware — it achieves approximately 65% of the
cess that stores the attributes along with the superblocfredicted free bandwidth. The limitations are explained
and inode information. and quantified.

The current implementation generates freeblock requestg
for a disk scan application from within the kernel. The
full disk scan starts when the disk is first mounted. TheExcept where otherwise specified, our experiments are
data received from the freeblock requests do not proparun on the Linux version of the scheduler. The system
gate to the user level. hardware includes a 550MHz Pentium IlI, 128 MB of
main memory, an Intel 440BX chipset with a 33MHz,
32bit PCI bus, and an Adaptec AHA-2940 Ultra2Wide
SCSI controller. The experiments use 9GB Quantum At-
las 10k and Seagate Cheetah 18LP disk drives, whose
characteristics are listed in Table 1. The system is run-
ning Linux 2.4.2. The experiments with the FreeBSD
ernel implementation use the same hardware.

.1 Experimental setup

45 User-level implementation

The scheduler can also run as a user-level applicationlf
In fact, the FreeBSD kernel implementation was origi- Unless otherwise specified, the experiments use a syn-
nally developed as a user-level application under Linuxthetic foreground workload that approximates observed
2.4. The user-level implementation bypasses the buffeOLTP workload characteristics. This synthetic workload
cache, the file system, and the device driver by assemmodels a closed system with per-task disk requests sepa-
bling SCSI commands and passing them directly to therated by think times of 30 milliseconds. The experiments
disk via Linux's SCSI generic interface. use a multiprogramming level of ten, meaning that there
are ten requests active in the system at any given point.

mentation also offers greater flexibility and control over 1€ OLTP requests are uniformly-distributed across the

the location, size, and issue time of foreground request&iSK'S cgpachny with a r<|a§1d|—to—wr|te ratrl]o of2:1and are-
during experiments. For the in-kernel implementation,queSt size that is a multiple of 4 KB chosen from an ex-

the locations and sizes of foreground accesses are dico_onentlal distribution with a mean of 8 KB. Validation

tated by the file system block size and read-ahead algo€XPeriments (in [21]) show that this workload is suffi-

rithms. Furthermore, the file system cache satisfies mangient.ly similar to disﬁ traces I?f Mig:osltzft’sl SQ dL_se_rvr? r
requests with no disk /0. To eliminate such variables'Unning TPC-C for the overall freeblock-related insights

from the evaluation of the scheduler effectiveness, wel® @PPly to more realistic OLTP environments.

use the user-level setup for most of our experiments.  The background workload consists of a single freeblock

In addition to easier development, the user-level imple-
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Figure 7: PDFs of prediction error for foreground requests on a Quantum Atlas 10k disk. The three graphs show the distribution of
differences between the scheduler’s predicted head time and the observed time. Negative values denote over-estimation, which means that the
scheduler predicted a longer service time than was measured. The first graph shows the distribution of prediction errors for the user-leval foregroun
workload with 4KB average request size. The second graph shows the distribution of prediction errors for the user-level foreground workload with
40KB average request size. The third graph shows the distribution of prediction errors for the FreeBSD system running the random small file read
workload.

read request for the entire capacity of the disk. That is,The FreeBSD graph in Figure 7(c) shows the prediction
the freeblock scheduler is asked to fetch each disk sectogrror distribution for a workload of 10,000 reads of ran-

once, but with no particular order specified. domly chosen 3 KB files. For this workload, the file sys-
tem was formatted with a 4 KB block size and populated
5.2 Servicetime prediction accuracy with 2000 directories each hOIdlng 50 files. Even thOUgh

afile is chosen randomly, the file system access patternis
Central to all fine-grain scheduling algorithms is the abil- not purely random. Because of FFS’s access to metadata
ity to accurately predict service times. Figure 7 showsthat is in the same cylinder group as the file, some ac-
PDFs of error in the external scheduler’'s head time precesses are physically localized or even to the same track,
dictions for the Atlas 10k disk. For random 4 KB re- which can trigger disk prefetching.

quests, 97.5% of requests complete withiniS0of the £q this workload, 76% of all requests were correctly

scheduler’s prediction. The other 1.8% of requests takegredicted within 15Qus. 5% of requests, at800 s
one rotation longer than predicted, because the seek s je o bus and media overlap mispredictions. There

time was slightly underpredicted and the remaining 0.7%,.o 494 of +6 ms mispredictions that account for an ex-

took one rqtation sharter than predicted. For_th_e Cheeyya full rotation. An additional 4% of requests at -7.5 ms
tah 18LP disk, 99.3% of requests complete within80 e diction were disk cache hits. Finally, 8% of the
of the scheduler’s prediction and the other 0.7% take On"?equests are centered arouhdl.5 and+4.5 ms. These

rotation longer or shorter than predicted. We have Veri- o q,ests immediately follow surprise cache hits or unex-
fied that more localized requests (e.g., random requestSe e extra rotations and are therefore mispredicted.

within a 50 cylinder range) are predicted equally well. o ) .

) 0 To objectively validate the external scheduler, Figure 8
Forrandom 40 KB requgsts to the Atlas 10k dISk', 75% Ofcompares the three external algorithms (SSTF, SPTF,
requests complete within 13 of the scheduler's pre- and SPTF-SW60%) with the disk’s in-firmware sched-
dictions. The disk head times for larger requests are prego;  ag expected, SPTF outperforms SPTF-SW60%

dicted less accurately mainly because of variation in th%hich outperforms SSTF, and the differences increase

overlap of media transfer and bus transfer. For examyyit, jarger queue depths. The external scheduler's SPTF

ple, one request may overlap by 106 more than ex-  5tches the Atlas 10k's ORCA scheduler [20] (appar-
pected,wh!ch will cause the request completion to occurenﬂy an SPTF algorithm), indicating that their deci-
100 ps earlier than expected. In turn, because the nexgjons are consistent. We observed the same consistency

request’s head time is computed relative to the preViou%etween the external schedulers SPTE and the Chee-
request’s end time, this extra overlap will usually causeh 18LP’s in-firmware scheduler

the next request prediction to be 1@too low. (Recall

that media trqngfers always end at the same rotationay 3 £y eablock scheduling effectiveness

offset, normalizing such errors.) But, because the pre-

diction errors are due to variance in bus-related delaysio evaluate the effectiveness of our external freeblock

rather than media access delays, they do not effect thecheduler, we measure both foreground performance and
external scheduler’s effectiveness; this fact is particularlyachieved free bandwidth. We hope to see significant free
important for freeblock scheduling, which explicitly tries  bandwidth achieved and no effect on foreground perfor-

to create large background transfers. mance.



Comparison of Scheduling Algorithms The penalty comes from two sources, with each respon-
10 § sible for about half. The first source is conservatism; its
] direct effect can be seen in the steady decline of the simu-
81 lation line. The second source is our external scheduler’s
] inability to safely issue distinct commands to the same
track. When we allow it to do so, we observe unexpected
extra rotations caused by firmware prefetch algorithms
e SSTE extormal that are activated. We have verified that, beyond conser-
= SPTF-SW60% external vatism of 0.3 ms, the vertical difference between the two
1 ot lines is almost entirely the result of this limitation; with
o the same one-request-per-track limitation, the simulation
0 2 4 6 8 10 12 14 16 lineis within 2—3% of the measured free bandwidth be-
Queue depth [requests] yond 0.3 ms of conservatism.

Avg. response time [ms]

Disallowing distinct freeblock requests on the source or
) _ destination tracks creates two limitations. First, it pre-
Figure 8:Measured performance of foreground scheduling algo- — yents the scheduler from using free bandwidth on the
rithms on a Quantum Atlas 10k disk. The top three lines repre- track. si th . f d tis al
sent the external scheduler using SSTF, SPTF-SW60% and SPTF. TROUrce ra? » Since the prevpus oregroundrequestis al-
fourth line shows performance when all requests are given immediatelyvays previously sent to the disk and cannot subsequently
to the Quantum Atlas 10k, which uses its internal scheduling algorithmbe modified. (Recall that request merging allows free
The “disk firmware” line exactly overlaps the “SPTF external” line, si- bandwidth to be used on the destination track without
multaneously indicating that the firmware uses SPTF and that the exter- fusi he disk fetch al ith S d d
nal scheduler makes good decisions. Linux's default limit on request§ONMUSING the !S _pre etch algorithms.) Second, a_n
queued at the disk is 15 (plus one in service). more problematic, it prevents the scheduler from using
free bandwidth for blocks on both sides of a track’s end.
Figure 11 shows a free bandwidth opportunity than spans

How well it works. Figure 9 shows both performance LBNS 1326-1334 at the end of a track and LBNs 1112~
metrics as a function of the freeblock scheduler's seekl145 at the beginning of the same track. To pickup the
conservatism. This conservatism value is only added tgntire range, the scheduler would need to send one re-
the freeblock scheduler’s seek time predictions, reducduest for 9 sectors starting at LBN 1326 and a second
ing the probability that it will under-estimate a seek time request for 34 sectors at LBN 1112. The one-request re-
and cause a full rotation. As conservatism increasesstriction allows only one of the two. In this example, the
foreground performance approaches its no-freeblockSmaller range is left unused.

scheduling value. Foreground performance is reduced by

<2% at 0.3 ms of conservatism and 4%.6% at 0.4 ms.
The corresponding penalties to achieved free bandwidti?'4 CPU overhead

are 3% and 10%. To quantify the CPU overhead of freeblock scheduling,
All three foreground scheduling algorithms are shown inwe measured the CPU load on FreeBSD for the random
Figure 9. As expected, the highest foreground perfor-small file read workload under three conditions. First,
mance and the lowest free bandwidth are achieved witlwe established a base-line for CPU utilization by running
SPTF. SSTF's foreground performance is 13—-15% lowerunmodified FreeBSD with its default C-LOOK sched-
but it provides for 2.1-2.6 more free bandwidth. SPTF- uler. Second, we measured the CPU utilization when
SW60% achieves over 80% of SSTF's free bandwidthrunning our foreground scheduler only. Third, we mea-
with only a 5-6% penalty in foreground performance rel- sured the CPU utilization when running both the fore-
ative to SPTF, offering a nice option if one is willing to ground and freeblock schedulers.

give up small amounts of foreground performance. The CPU utilization for unmodified FreeBSD was 5.1%
Limitations of external scheduling. Having confirmed and 5.4% for our foreground scheduler. Therefore, with
that external freeblock scheduling is possible, we nownegligible CPU overhead (of 0.3%), we are able to run
address the question of how much of the potential isan SPTF scheduler. The average utilization of the system
lost. Figure 10 compares the free bandwidth achievedunning both the foreground and the freeblock schedulers
by our external scheduler with the corresponding simu-was 14.1%. Subtracting the base line CPU utilization of
lation results [14], which remain our optimistic expec- 5.1% when running the workload gives 9% overhead for
tation for in-firmware freeblock scheduling. The results freeblock scheduling. In future work, we expect algo-
show that there is a substantial penakyB6%) for ex-  rithm refinements to reduce this CPU overhead substan-
ternal scheduling. tially.
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Figure 9:Foreground and free bandwidth for a Quantum Atlas 10k as a function of seek conservatism. The conservatism is only for free-

block scheduling decisions, which must strive to avoid overly-aggressive predictions that penalize the foreground workload. At 0.3 ms, foreground
performance is 1-2% lower. At 0.4 ms, foreground performance is 0.2—-0.6% lower. Note that ensuring minimal foreground impact does come at a
cost in achieved free bandwidth.

Comparing the foreground and free bandwidths for the7 Summary

SPTF-SW60% scheduler in Figure 9 for a conservatism ) o o )
of 0.4 ms, the modest cost of 8% of the CPU is justified R€futing our original pessimism, this paper demonstrates
by a 6x increase in disk bandwidth utilization. thatitis possible to build an external freeblock scheduler.

From outside the disk, our scheduler can replace many

rotational latency delays with useful background media
6 Reated Work transfers; further, it does this with almost no increase

(less than 2%) in foreground service times. Achiev-
Before the standardization of abstract disk interfacesing this goal required greater accuracy than could be
like SCSI and IDE, fine-grained request scheduling wasachieved with previous external SPTF schedulers, which
done outside of disk drives. Since then, most eXternabur scheduler achieves by exp|0iting the disk’s com-
schedulers have used less-detailed seek-reducing algenand queueing features. For background disk scans,
rithms, such as C-LOOK and Shortest-Seek-First. Everpyer 3.1 MB/s of free bandwidth (15% of the disk’s to-
these are only approximated by treating LBNs as cylin-ta| media bandwidth) is delivered, which is 65% of the
der numbers [30]. simulation predictions from previous work.

Several research groups 1, 3,5, 6, 26, 28, 31] have develgiven previous pessimism that external freeblock
oped software-only external schedulers that support finescheduling was not possible, achieving 65% of the po-
grained algorithms, such as Shortest-Positioning-Timetential is a major step. However, our results also indicate
First. Our foreground scheduler borrows its structure,that there is still value in exploring in-firmware freeblock
its rotational position detection approach, and its use ofscheduling.

conservatism from these previous systems. Our original
pessimism regarding the feasibility of freeblock schedul-
ing outside the disk also came from these projects—their
reported experiences suggested conservatism values th
were too large to allow effective freeblock scheduling.

Also, some only functioned well on old disks, for large We thank Peter Honeyman (our shepherd), John Wilkes,

requests, or with the on-disk cache disabled. We havgne other members of the Parallel Data Lab, and the
found that effective external freeblock scheduling re- anonymous reviewers for helping us refine this paper.
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the merging of same-track requests. tachi, IBM, Intel, LSI Logic, Lucent, Network Appli-
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the challenge of implementing freeblock scheduling out-for their interest, insights, feedback, and support. This
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Figure 10: Measured and simulated free bandwidth as a function of conservatism. The line labeledsimulation shows the expected free
bandwidth obtained from our simulated, in-firmware freeblock scheduler operating at the given level of conservatism. The lingifaldatézh

no track shows a case when the simulated freeblock scheduler does not put a non-merged freeblock request on the same track as a foreground
request, mimicking a major limitation of our external scheduler. The line lalm®itetnal scheduler shows the actual measured free bandwidth
obtained from a disk by our freeblock scheduler implementation.
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