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Abstract

Same energing aplications regiire prograns to main-
tain sensitive statenountrustedhosts. This paper pre-
sents the architecture ard implemertation of a trusted
databese system TDB, which leveieges a srall anount
of trusted storag to protect a scalable aomt of un-
trusted storag. The database is enypted aml validated
againsta cdllision-resistant hash keéjn trustedstaage,
so untrusted progans camot read he dasbas or mod-
ify it undetectably TDB integrates enryption ard hash-
ing with a low-level data nodel, which protects dta
andmetadata uniformly, unlike sytens huilt on top of a
conventimal database sgtem The inplementation ex-
ploits synergies between hashing and log-stuctured
stora@. Preliminary performance reslts stow that
TDB outperforms an off-the-shéf embedded database
system thus supporting the suitability of the TDB arch-
tectue.

1 Introduction

Same emergingapplications regjire trustedprograns to
run an untrusted hosts. For example, vendors of digital
goods such as software amd music need b cortrol the
use of their gpodsaccordimgy to their cortractswith the
corsumers.The corntractsmay be erforced byexecuing
a trusted progam on the corsumer’s conputer orplay-
ing device [BVI5, IBM0OO, Xer00].

Often, trustedprograns needto maintain same sensi-
tive, persistenstate. Foexanple, under a pay-peruse
cortract, the progam may verify ard debit the con
sumer’s account. Or, under a linited-use trial, the pro-
grammay cownt ard limit the rumber oftimesthe good
is used. The amount of swch state my grow with the
number of vendors goods ard the types of cortracs.
Furthernore, the sensitive naturef dhe state rkes it
desirableto protectit from bothtanpering ard acciden
tal corription. Therebre, the state sbuld be stored ira
scalable ad trusted database stem

Although atrusted program runs o the client, it could
maintain its citabase a a trustedserver ér best secu-
rity. However, this nay require frequent canmunication

between the trustegbrogram and the server,which is
corstraining for deviceswith poorcomecivity. Idealy,
cormsumers should be abé to use gpodsdistributed on
mass media or prewusly hoarded ontheir devces
even when they are disconected fom the network.
Therebre, it is dssirade tomaintain the dtabase o the
client sice.

The pary hosting the datba® storage has the opporu-
nity to alter its statedr unauthoized benefits. Fa ex-
anple, a cosumer coud sawe a copyof the local data-
ba®, puchase some goods thenreplay the saved copy,
thus eliminating paymerts for the puchased goods

It is difficult to secure a trustegrogram andits data-
base becase the hosting party ultimately controls the
uncerlying hadware and the operating system. How-
ewver, a mmber ofemergng trusted platbrms provde a
processing @vironment that runs aly trustedprogranms
ard resistsreverse ergineerirg and tanpering. Sich
platforms enploy a hardware paclage coraining a
processor, mmory, ard tanper-detectirg circuitry
[SPW98, KK99, Wa®9, DaDO0], or arious techiques
for software proecion [Coh93, Auc96, CTL98]. How-
ever, these latforms b nat provide trustedpersistent
storag inbuk becase it is dificult to prevert readand
write access to deses suoh as diskard flashmemory
from outside the trustegblatform.

This paper preses the arclitecture ard implementation
of a trwsted database stem TDB. By “trust” we mean
secrecy(protectionagainst readirg from untrusted pro-
grams) ard tamper detection (protection against witing

from untrusted progarns). An untrusted progam camot

be preventedfrom tanpering wth the dia, but such
data fails validation when a trustedorogram read it.

This enaltes the trustegbrogram to reject thedata and
perhapsrefuse further operation

TDB may also be sed to protect a databastredatan
untrustedsener. Sich a database &g be wsed byclient
devices tha do nat have enough local starage. In this
case, tk wer may have no incertive to tanper with the
client device, so ro explicit mechtarisms may be re-
quired to provide a trustegblatform on the client.



1.1 Basic Trust Management

TDB leverages atrustal processing @vironment and a
small anount of trusted storag awailable onthe plat-
form. It provides secrecyy ercrypting data vith a key
hiddenin secret storag It provdes tanper detectiorby
leveragng a small anmount of tanper+esistan storag,
asdegribed bebw.

A common mechanismfor validating data is to sign it
with a secret key. However, signel data is vulngable to
replay attacls. The attackis easybecase it doesnot
regure understamling the data; it verks even when the
data is eorypted. TDB resists replawttackby storing a
cdlision-resistant hash fothe database in tanyper-
resstant sorage [MOV96]. When a trusted progam
writes ard readsdatbas objecs, TDB updats ard
validatesthe database hash éfciently by maintaining a
tree of hash vdues over the objects, as suggsted by
Merkle [Mer80].

TDB provides an ption to use atanper+esistant
cownter, which camot be decrerarted, in placeof ge-
neric tanmper~esistan stora@. After eachdatabase
date, B increnents the counter ard generatesa cer-
tificate comaining the counter value ard the database
hash The certificate is signed with the secret & ard
stored inuntrusted storag.

1.2 Storage Management

To protect tle state fom accidemal corryption, TDB
provides stadard databassystem senices swch as
crashatomicity, corcurrert trarsactiors, type clecking,
pickling, cacte management, ard index mainterance.

Onemight cansider huilding a trusteddatabese sgtem
by layering ayptography on top of a conventiond data-
base sgtem This layer coud ercrypt objects before
staring themin the dtabase andmaintain a tree bhash
valuesover them This arclitecture is attractie becase
it does nd require building a newdatabase system Un-
fortunately the layer would nat protect the retackta
inside the databasesystem An attackcoud efectively
delete an objectby modifying the indexes. Therecoud
be some performance probéns aswell. For exanple,
the chitabase sytemcould nat maintain ordered indexes
for rarge queries on ercrypted dag

For these reas@) TDB applieshashing and ercryption
to a low-level data nodel, which protects data and
metadata uniformly. It also enalbes TDB to maintain
ordered ndexes ondat.

To protect the sensitive stateofm media failures such
as dsk crashes, DB provides the ahlity to create
backups and to restore did backups. An attacler might
fake a mediafailure and restore a baalp to rollbackthe

state. D limit the extent ba rdlback, itis desiralde to
make frequent backups and disdlow restaring dd back-
ups. TDB facilitates this ¥ providing increnental
backups [HMF99].

We discowered ad exloited tre syergy betweenthe
functions mentioned abowe aml logstructured storag
systens [RO91]. Log-stiuctured systens have acom-
pretersive ard hierarclical location map, becase all
objectsare relocatable. Ebeddirg the hesh tree inthe
location map allows an dject to be validated asit is
located. The checkpointing optimzation defers ard
corsolidatesthe propagtion of hash values p the tree.
Copy-on-write using the loation map provides cheap
smapsiots, which erables irenertal backups. Fur-
thernore, the abseoe offixed object locatiols makes it
hard to link multiple updates tothe same object, thus
resisting sme traffic-monitoring attacks.

Preliminary performance results shw that TDB outper-
forms a sgtemthat layers cryptography on top of an
off-the-shdf database system. The database overhead is
domnated by l/O; ercryption ard hashing represen
only 6% of the tdal overhead

1.3 Outline

The rest 6 this paper is arganizedas bllows. Sectiam 2
specifes tke infrastricture TDB requres aml the ser-
vice it provides. Sectior83 describes # owerall arcli
tectue of TDB. Sectiors 4 ard 5 describe th intega-
tion of encryption and hashingin a low-level data
model Secion 6 desribes baclup creaton and re-
stores Secions 7 ard 8 briefly desribe the corstruc-
tion of databese iinctions over the lav-level data
model. Sectim 9 givespreliminary performanceresults.
Sectin 10 describes potential extensins to TDB. Sec-
tion 11 compares DB with relatedwork. Sectiom 12
draws same conclusians.

2 System Specification

This sectim specifies theinfrastructureTDB requires
andthe service it pvides toapplications.

2.1 Required Infrastructure

TDB requires a trustedplatform that povides the 6l-

lowing, as shawvn in Figue 1:

e Truged procesing envionmentwhich executes my
trustedprogranms and protects the viatile state 6 an
execuing progam from being read or modified by
untrusted progans. The static inage of a trusted
progamneed mt be secret.



« Secret storea snall anount (e.g, 16 bytes) of read-
only persisteh storag@ that canbe readonly by a
trusted progam

» Tamperredstant sore. a snall anount (e.g., 16
bytes) d writable persistent stoagethat canbe writ-
ten ally by a trustedorogram Alternatively, the tam
perfesistah store nay be a conter that camot be
decrenerted. In either case, & assune that the tam
perresstart gore canbe pdatd abmicaly with re-
spect to crass.

Authorized program Unauthorized program

J

Truskd platform

Processing ervironment
Volatile Untrusted
Cirl memory store
Secret Tamperresistant _
sore | | store Wm@
stae

Figure 1: The trusted platform

The trsted platbrm may be a lardware paclage sich
asthe IBM scue cooprocesr [SPW98], which con
tains a processor, battebacked SRAM, DRAM, and
ROM. The ROM firmware loads amly trustedprograns
using ahash suplied during themanufacturing process.
The batterybacked SRAM is zeroed iftanpering is
detected, so it casene as bothsecret ad tanper-
resistant stee.

The infrastricture also provdes anuntrusted stae to
hod the databese. It is grsistent, allas efficient ran-
dom access, ahcan be readand written by ary pro-
gram. This might ke a disk, flash memory, or an un-
trusted storag serer comected to tk trusted platbrm.

An archival store is needed to recar from the failures
of the wntrusted store. It is alsontrusted. It red mt
provide efficiert random access to data, bninput ard
output streams. It might be atape or anftp server. We
assume its falures are indpendent d the untrusted
stare.

We assune that sutable steps are tak whentanpering
is detected. fie exact reture of sich stepss outsidethe
scope ofthis paper.

2.2 Service Provided
We list the functions d TDB below.

Truged gorage TDB provides tanper-detection ard
secrecyfor buk data. his includes resistare to replay
attacls ard attacls onmetadata.

Partitions: An application may needto protect dfferent
typesof dat differertly. For exanple, it may have no
needto encrypt same data a to validate dher dita.
TDB allows an ajpplication to create mltiple logical
partitions, each protecting data with its own crypto-
graphic parameters:

e asecret &y

* a cipter (anercryption algorithm), e.g, 3DES

« a cdlision-resistant hashuhction, e.g., SHAL

Using appropréte parangters awids unnecesary time
and spaceoverhead.Using differert secret kys redices
the Icss fom the dsclosure ¢ asinglekey. This shauld
not be confusal with access cnotrol among trusted par-
ties, which may be providedin a higher lagr, if neecd

Atomic updaes TDB can update multiple piecesof
dataatomically with respect todil-stop crasks sich as
power failures

Backups TDB canback up a corsistert srapsiot of a
set d partitions andrestae a lackup after validation.
Backups allow recowery from media corryption. TDB
provides fast incrementalbackups, which contain only
charges mede sirte a preious backup.

Concurent transactons TDB provides serializale
accessto data fom corcurrert trarsactiors. Unlike
shaed databeses o file sewvers, TDB is nd designed
for simultaneous access bynany users. Therebre, its
concurrency control is geared to low concurrency. It
enploys teciques for redwcing latercy, but lacks so-
phisticated techniques for susténing thioughput.

Databa® sze: TDB allows the ditabaseto scalewith
gradwal performance degadation It uses scalable data
structuresand fetches data piecemal ondenand. How
ewver, it relies ona caclkable verking set br perform-
arce becase its logstructured storag ney destroy
physical clustering. Another limitation is its nesteal
buffering of dirty dat, which doesnot scale to trarmsac-
tions with many modifications [GR3].

Objects TDB stores abstract objts that the applica-
tion canaccess Whout explicitly invoking ercryption,
validation, and pickling. TDB pickles objects using
applcaton-provided nethods so the storedrepregna-
tion is conpact aml portable.

Collection and IndexesTDB provides indx mainte-
nance oer collectionsof objects. Acollectionis a set



of objecs that share o or nore indexes. An index
provides scanexactimatch ard rarge iterators.

3 System Architecture

TDB is desgned for use on per®nal conputersaswell
as smaller devces. Te arclitecture is layered, soappli-
cations can tra@ df functionality for snmaller cale size.
In Figure 2, boxesrepreert modues ard arrows repre-
sent depeidercies betveenthem Dasled boxs repre-
sent infastructural mdules.

Collection Store
objectcdlections
funcional indexes

scan, match, range queres

N
Object Store Backup Store
abstract objecs partition backups
concurrency control full/incremental
objed cache validatedregore
g
Chunk Store [ ZR .
untyped churks i Archival Store |
partitions | large siz i
encryption, hashing ! anystream RIW !
patition copies ! backups !
atomic upddes - '
recovery
[
L —  A— F—E—
i Untrusted | i Tamper-resistant I 1 Secret '
| Store I 1 Store 11 Store :
! largesze | | smallsize 11 small size E
i anyR'W | | trusted write, any read 1 | trusted read !
| database 1 1 hashkount i 1 secretkey E

Figure 2: Sytemarchtectue

The chunk $ore provides trusted gorage for a set of
named chunks A chunk is avariable-sized segquence of
bytesthat is the unit bencryption andvalidation. (We
expect chunk sizs between 100 bytes ard 10 Kbytes)
All dat ard metadata from higher modues are stored
as chunks.Chunks ee logically grouped into partitions
with separate cryptograghic parameters. Rirtitions can
be sngsha using thecopy-on-write technique.

Chunks are stared in the untusted stae. The chunk
store supportsatorric updatesof multiple chunks in the
presee of crastes. It Hdes loging ard recoery from

higher modues. This architecure doesot supportlogi-

cal logging, but the variable-sized chunks fom a more

conmpact logthanfixed-sized pags.

The backup tore createsandrestaes a set fopartition
backups. The chunk stee and the backup stare encapsu-
late secrecyard tanper-detection This erables tle
higher modues to provide dagba® management with-
out worrying alout trust.

The object sore manages a %t of named objecs. It
stares pickled objects in dhunks—one or more objecs
per chunk. t keeps a cache fofrequentlyusedor dirty
objects.Caching data at tfs lewvel is bereficial becase
the data is decpted, \didated, ad unpickled. The
object store also prades readtransactioral accessto
objects @ing readwrite locking.

The collecion gore manages ased of named collections
of objects. It updates th indexes on a collectionas
needed.Collections and indexes are tenseles repre-
serted as olgcts.

This paper focuses a integrating trustwith starage
management in thechunk stae and the backup stare. It

desaibes highe modules triefly to shav that the chunk
store i ablke to supportthem, ard to explain ahigh-level

performance benchmark we use

4  Chunk Store: Single Partition

To simplify presentatio, this sectia describes the
chunk stoe as it would be in the absence of multiple
partitions. Sectia 5 describes nultiple partitions.

4.1 Specification

The chunk stoe manages asd of chunks naned with
unique ids. It provides the éllowing goerations:
¢ Allocate() returns Chunkid
Returns an undlocated chunk id
* Write(chunkld, bytes)
Sds thestde of chunkld to bytes, possilly of differ-
ent size than the previous stée. Signds if chunkld is
not allocated.
¢ Read(chunkld) returns Bytes
Returns thelast written stde of chunkid.
Signds if chunkld is nd written.
* Deallocate(chunkld)
Deallocates chunkld.
Signds if chunkld is na alocated.

Tamper Detection: In anidealized secret antanper-
proof chunk stae, the operations listed above would be
availabe mly to trusted programs. Since tampering
with the untrusted stae canna be prevented, the chunk
store provdes tamper-detection instead It behaves like
the tanper{proof stae, excepits gperations nmay signal
tarmper detection if the untrustedtae is tanperedwith.



Crash Atomicity and Durability: The wite ard deal-
locate operatios are special cases afcommitopera-
tion. In general, a nuber of write anddeallccateopera-
tions may be grouped into a single conmit, which is
atamic with respect tofail- stgp crashes.

Allocated but unwitten chunks ae deallocated auto-
matically upon system restart. V& have deliberately
seprated allocate andcommit operations. An alterna-
tive is to dlocate ids when new, unnaned chunksare
committed. However, this alternative @ks nd allow an
application to stae a newly-alocated chunk id in an-
other chunk during the sane commit operation, which
may be reeded dér data inegity. Systens that swzzle
application-provided references intgpersistent i upn
commit do nat face this poblem However, the chunk
stare does nd interpret application data chunks.

Concurrency Control: Operatios are eecued ina
saidizable manne. However, the chunk stee is un-
aware of trarsactiors. Allocate, read, ahcommit op-
eratins from different transactios nay be interleaved

4.2

This sectiongives anoveniew of the implemertation
sutsequent sections givefurther detail.

I mplementation Overview

The chunk stare writes chunks ly gppending them to a
log in the untrusted stae. As in aher log-stuctured
systams, chunks @ nat have stdic versions aitside the
log [RO91]. When a chunk is witten or deallocated, its
previous versionin the log if ary, becones obsolete.

The chunk stee uses achunk mago locate ad validate
the current versions d chunks.To sale to a large num
ber of chunks,the chunk nep is itsdf organized as a
tree of chunks.Updates to the chunk nap are buffered
ard written to the log occasimally. Updates It ypon a
crashare recoered fomthe log

Secrecy is provided by encrypting chunkswith the key
in the secret store. amper-detectionis provded by
creatirg a pathof hadh links from the tanpersesistant
stare to every current chunk vesion. We sg thae is a
hash link from data x to y if x cortains a hash of sone
data that inclu@sy. If x is linkedto y via ore or nore
links usinga cdlision-resistant hastuhction, it is can-
putationally hard to changey without changing x or
breakng a hash link [Mer80]. The hash links are em
bedded in thechunk map and thelog.

Seidizability of operations is povided through nutud
exclusion, which does nd overlap 1/0 and computation,
but is sinple ard acceptable faencorcurrercy is low.

4.3 Chunk Map

The chunk rmap maps a chunk idto a chunk desriptor,
which cantains the dllowing information:

 staus d chunk id undlocated, unwritten, or written
« if written, current lgation in the untrustedtae

« if written, expected hash vdue of chunk

Figure 3 shaws thetree structure of the chunk map. The
leaves are the chunks ceated by the applications d the
chunk stae; we cal them data chunks. (These include
chunkscontaning netadata of highe modules, for ex-
anmple, tre indexng data ofthe collectionstore.) Each
internal chunk, called a map chunkstores aiked-size
vecta of chunk asciiptors. In the fgure, eachshackd
slot is a chunk desaiptor, and an arrow links thechunk
containing thedesaiptor to the chunk desaibed by the
desaiptor. The chunk a thetop contains thedesaiptor
of the root map chunk and some additiond metadata
neeckd to manage the tree; evcall it theleader chunk.
The desaiptor of the leader chunk is etrieved at
statup, as desaibed later. The chunk stare interprets
map and leader chunks,but nat data chunks.

leader chunk

map churks

data chunks

11 12 13

14 15 16 17 18

Figure 3: The chunk nap

For wiformity of access ahstorag management, non-
data chunks a@e dso named using &wunk ids. Theid of a
chunk encodes its position in the tree.The position
comprises the height of the chunk in thetree and its
rank from the left among the chunks & tha hdght. In
the figure, chunk ids ae denoted as “heightrank’. As
the tree grows, new chunks ae added to therightand to
the top, which preserves the gsitions d existing
chunks.(The position dof the leader does change soit is
given areseredid instead.) Bsides mifying access to
chunks, this gproach enables id-based navigation of
the map without staing ids in the nap exgdicitly .

4.4 Allocate Operation

Ids of dedllocated data chunks ae reused to keep the
chunk nap compact andconsewe id space.Deallocated
ids are linked through afree list embedded in the de-
scriptors. e head ofthe list is stored inhe leader.



As mentioned id allocation is nd persistent until the
chunk is witten (committed). Upon system restat,
chunk ids tha were previously dlocated but not written
are nade availabie in the fee list br re-dllocation.

45 Read Operation

Given achunk idc, its state ray be located ashvali-

daed by traversng the pah of de<riptors from the

leader toc. For eachdesciiptor in the m@th, the chunk
state is éund as bllows. The ercrypted stateis read
from the Iccation staed in the descriptor. It is de-

crypted sing the secret &. The decnypted state is

hashed. If the conputed hash does ot match that stored
in the descriptor, tanper cetection is signaled

For better performance,the chunk rap keeps a cachefo
desaiptors indexed by chunk ids. Also, the leader
chunk is pnnedin the cache. fie cacheddata is de-
crypted, \elidated, ad unpickled.

If the desriptor for c is ot in cacle, the read operation
looks for the desriptor of ¢'s parent chunk. Thus, the
read operatioproceedshottom up until it finds a -
scriptor inthe cacle. Then it traverses th pathback

down to ¢, readng and validating each chunk in the

path This approachexploits the validated cacle to
avadd validating the entire gth from the lea@r to the
specified chunk.

4.6 Commit Operation

The commit operation hashes anéncrpts each chunk
to be written, andwrites the encigted state tathelog in
the untrusted stae. We refer to the se of chunkswritten
as the commit set

When a chunkc is written a deallocated its descriptor
is updated to reflect its newlocation, hash, o status.
Concepually, this changes'’s parent chunkd; if d were
alsowritten aut, its descriptor would be updated andso
on up to the leackr, whose descriptor would be written
to the tanper+esistant ste. Insteadto savetime and
log space, the chunk ste upates c's degriptor in
cacte ard merks it as dirtyso it is rot evicted. The bot-
tomup searchduring reads esues that the stale de-
scriptor gored ndis nd used

4.7 Checkpoint

When the cacle becorss too larg becase of dirty
desaiptors, dl map chunkscontaning dirty desaiptors
and their ancests upto the lea@r are witten to the
log. This is dore as a special comit operationcalled a
checkpoint In practice, chckpoints happen infre-
guertly conpared to regilar commits. Other log-
structured sytens wse sinilar checlpoints to defer and

consdidate updates tothe Iccation mep [RO91]. The
chunk stare extends the optimization to propagding
hash vdues up the chunk rrep.

The leackr is written last diring a checkpint. We refer
to the m@rt of the Igg written kefore theleacer as the
checkpointed logand the part ircluding ard afer the
leader as thresidual log. Figure 4 shaws a simple ex-
ample, where the log tdl contans sane data chunks,
possildy written in multiple canmits, a checkpint can-
taining the affected map chunks &d the leader chunk,
and sane more data chunks. Arrows link chunksas in
Figure 3.

checkpoint

/_)%

=
B P S T
]

checkpointedlog

E=E

LL|r1fr3|r7|r1]is]

residual log

Figure 4: Checkpointing thechunk rrap

4.8 Recovery

A crash loses huffered updates to the chunk map, but
they are recowered upon systemrestart byrolling for-
ward through the residual log. Section 4.9 desaibes
how the log is represeted so tle recoery procedue
may find the sequence of chunks in theresidua log.

For eachchunkin the residual log, the ecovery proce-
dure conputesthe desriptor bagd on its locaion ard
hash,and puts the @sciiptor in the chunkmap cache.
This procedue requres additioral support fom the
commit operation to redo chunk deallocations and to
validate the chunks in theresidual log. This is desaibed
in the next tw sectims.

48.1 Chunk Deallocation

For eachchunk tobe deallocated the canmit operation
writes adealocate chunkto the lgy, which cantains the
id of thedeallocated chunk.

Dedllocate chunks ae instaices of unnamed chunks
they do not have chunk ids a positions in thechunk
map. This is acceptable becsel tley are wedsolelyfor
recowery from the residal log ard are always obsolete
in the creckpointed log

Like other chunks,unnamed chunks ae encrypted with
the secret ky. They are also protected aigst tarrper-
ing, asdescribed inthe rext section Otherwise, anat-



tack could cause a chunk to be un-ceallocated. Or, an
attack could replay the dedlocation of a chunk id after
it was redllocated

4.8.2 Validation of Residual Log

Although deckpointing defers the propagation of hash
values upthe chunk rap, each conmit operation must
still update the tanper+esistant ste toreflect the new
stateof the database. Ithe tanper+resistam store lept
the hesh of the leader ath were ypdated oly at check
points, the system would be unable to deect tampering
with the residal log after a crash We have imple-
mentedtwo approaches ér maintaining upto-date vali-
dation information in the tarper+esistant stee.

4821 Direct Hash Validation

The chunk st@e maintains a sequential hash d the re-
sidual log. The log hash is sted in thetanper+esistant
storeard updated akr ewery commit. Upon recowery,
the hashin the tanper+esistant ste is natchedagainst
the hash conputed over the residal log This approach

is illustratedin Figure 5

hash

N
14 N

Y l ¥ ] v |
. [11]14]15]22[22[32{L L|11]|13]17[11]15]
t ]

checlpointed log

residuallog

Figure 5: Tamper+esistah store cotains databasedsh

A commit operation waits until thecommit setis written

to the untrustedtae reliably before it updatesthe hash
in the tanper+esistan store. Otlkrwise, a crasttoud

leawe the tanper+esistam store pdated vinen the wn-

trusted stare is not, and cause validtion to fail upon

recovery. The update to the tanper+esistant st is the
real canmit point: If there is a crashudng thisupdate,

the previous value stred in the tanper+esistanstaeis

recowered, ard the lastconmit set inthe wntrusted store
is ignaed The canmit operation returns aer the tam

perredstant store s updatd reiably.

Direct hash validation creates pathof hash links from
the tamper-resistant stae to al current chunk ver-
sions—in both the residwal log ard the checkpointed
log. This is trie becage tle tanper+esistanh storeis
directly linked to al chunks in theresidual log, which

includes tle leader fom the last cleckpoint, ard the
leader is linked through thechunk nap to dl current
chunk vasions in thecheckpointed log. Note tha all
unnaned chunks in theresidua log are linked as well.
Unnamed chunksin the checkpointed log are nat linked,
which is nd a weakness écause alsuch chunksare
obolete.

4822 Counter-based validation

In this approachupon eachcommit, a seqertial hash
of the commit se is staed in an unnaned chunk added
to the I, calledthe commi chunk The commit chunk
is signed with the secret key. (The signdure need nat be
publicly verifiade, soit may be based on symmetric-
key ercryption [MOV96].) An attackcamot insert an
arlitrary commit setinto the residial log because it will
be wable to create arappropriatelysigned conmit
chunk. Replays d old commit ses ae resisted by add-
ing a count to the commit chunk tha is inaemented
after every commit. Deletion of commit sets at the tail
of the log is resistedby staing the current aomit
count in the tanperdesistah store. This approachis
illustratedin Figure 6

T.R. sore
count=75
— = *
hash hash
C.C Ll C.C C.C C.C
1.1/1.4{1.5 79 2.212.1]3.0L.L 73 1.1/11.3 74 1.7|1.1{1.5 75
] R S ;
| sign |

Figure 6: Tamper+esistah store cotains commit count

checkpaintedlog | reddual log

A checkpoint is fdlowed by a commit chunk containing
the hash d the leader chunk, as if the leader were the
only chunk in thecommit set. The recovery procedure
checks that the hash of eachcormmit set inthe residal
log matches thd staed in the commit chunk, and tha
the counts stoed in the commit chunks fom a se
querce. Firdly, the procedte conparesthe count in
the last ommit chunk with tha in the tamper-resistant
store. The heshlinks created inthis approachare sini-
lar to those in drect hashvalidation, excep that the
commit chunks &e signel and linked from the tamper-
resistant stare through aseguence of numrbers.

Counter-based vdidation has several advantages. First,
the tanper+esistah cowuter is awealer requremen
than a generic tanper+esistah store. Povided tre



cownter camot be decrererted byany progam it does
not need additional potection against untrustegro-
grams. There is little incentive dr untrustedprograns
to increnert the counter becage tkey would not beable
to sign acommit chunk with theincreased count.

Secaod, the canmit count allows the sptemto tolerate
bounded discre@ncies tween the tanper+tesistant
store ad the wntrusted store, ifdesired. For eanrple,

the sytemmight allov the caint inthe tanper+esistant
stare, t, to be a little behind the last count in the un-

trusted stare, u. This trades of secuity for perform

arce. The secuty risk is that anattack might delete
commit setst+1 throughu. The perbrmance gin is that

a canmit operation needna wait for updating the count
in the tanperresistant ste, povided (u-t) is smaller

than sone threshdd Ay This is usedll if the tanper-

resistant stoe has high ugete latency The system
might dso dlow t to leapaheadof u by arother thresh-

old A. This adnmits situations wherethe untrustedstare

is written lazily (e.g., IDEdisk controllers often flush
their caclke lazily) ard the tanper+esistan storemight

be ypdatd bebre the untrusted gore. The only secuity

risk is the @letion of at nost Ay, commit sets fom the
tail of the lay.

A drawback of cowunter-based walidation is that tanper
detection relies m the secrecyof the key usal to sign
the commit chunk. Therefore, if a database systam
needed to prade tanper-detectionbu not secrecyit
would still needa secret ste.

4.9 Log Representation

This section describes the structure fothe dita written
to thelog. The log consists ¢ a sequence of chunks; ve
refer to the representation of a chunk in thelog as a
versian.

491 Chunk Versions

Chunk vesions ae read for three different fundions:

* Read operation, which use the chunk idand the de-
scriptor to read tke curent version.

* Log clearing, which reads asegnen of the check
pointedlog seaentially.

* Recowry, which reads tk residal log seqertially.

To emble segartial readirg, the log contains informa-
tion to identify and demarcate chunks.Each chunk ve-

sion conprises a lreader 6llowed by a body The header
contains thechunk id and the size of the chunk stae.

The header of an unnaned chunk ontans areseved id.

Both the headerard the bodyare ewrypted with the
secret ky. Similarly, the hesh of the residal log or a
commit set covers both headersard bodes

4.9.2 Head of Residual Log

The recoery procedue reeds to locate ¢hhread ad the
tail of the residal log. The headof the residal log is
the leader. Its locatioms stored ina fixed place,asin
other log-strictured storag systens. It reed ot bekept
in tanper+esistant ste: With direct hashvalidation,
tarmpering with this state W change the caputedhash
of the residal log. With counterbasedvalidation, it is
possible ér an attackto charge the locationto the be-
ginning of arother commit set. Therebre, the recowery
procedure checks tha the chunk a the stared location is
the leader.

Becawse the location of the leader is pdated ifire-

guently—upon each checlkpoint—storing it at a fixed

location outside the la@ does nd degrace performance.

This location is written ater the wites tothe untrusted
store ad the tanper+esistah store ke finished. Its

updatemarks the conpletion of the cteckpoirt. If there

is a crashbefore ths update,the recowery procedue

ignores the checlkgnt at the tail 6the Iay.

493 Tail of Residual Log

With direct hashvalidation, the Ieation o the Iay tail
may be staed in the tanper+esistant st along with
the databaséiash This works well becatse tre write to
the tanper+esistant st is the true aomit point.

With counterbasedvalidation, it is posside toinfer the
location of the tail fom the Iqg itself, asin conventianal
databases[GR93]. The last conmit set in the |lg may
have beencorrpted ina crash The hash stored ina
commit chunk serves well as a checksumfor the commit
set. The recoery procedue stops Muen the hash of a
commit setdoes nd match the hash stedin the can-
mit chunk.

494 Segments

The wtrusted store is dided irto fixed-size segnerts
to aid cleaing, as inSprite LFS [RO91]. The segnernt
sizeis chosenfor efficiert readirg ard writing by the
clearer, e.g, onthe order of100 KB for disk-basd
starage. A segment is expected to contain many chunk
versions. The size 6 a chunk vesion canno exceedhe
segnent size. A commit set nay span multiple seg-
ments.

The logis represeted as a seaquce of potertially non-

adjacen segnens. Sirce the recoery procedue needs
to read the residal log segentially, segnents in the
residual log contain an unnaned nextsegmentchunkat
the erd, which cortains the locationof the next seg

ment.



495 LogCleaning

The log deaner reclaims the starage of obsolete chunk
versiors ard conpactsthe storag to create epty seg
ments. It selects a sewernt to cleanard deternmes
whether each chunk vesion is curent by using the
chunkid in the header to find the current location in the
chunk mep. It then commits the se of current chunks,
which rewrites themto the endof the lay [BHS%].

The setof stefs from selecting a segemt tocommitting
the current chunks hapens domically with respect to
exterrally invoked operatios. The clearr may bein-
voked synchronously whenspace is lowbut it is mostly
invoked asynchronously during ide periods.

The clearer doesnot cleansegnerts in the residal log,
becawse trat would destroythe seqercing of the resid-
ual log. This also resolgs vhat the cleaer stould do
with unnaned chunks, lecause thegre always obsolete
in the checkpointed log. For perbrmance reasos, the
cleaner selects segmts wth low utilization. Detailson
the utilization metric andthe naintenanceof this infor-
mation are bepnd the sope ofthis paper.

The cleaner need nat vdidate the chunksread from the
segnent povided the conmit operation for rewriting

current chunks abes not update the hash values sedin

chunk desciptors. If the hashes are recomputed and

updated, as #y would be ina reglar conmit, the

cleaner must validate the current chunks; dherwise, the
cleaner might launder chunks nodified by an attack.

Becauseof its sinplicity, we have implemerted tre sec-
ond, less diciert, approach

5 Chunk Store: Multiple Partitions

This section desaibes extensions tothe chunkstare tha
provide multiple partitions andpartition copies. Multi-
ple prtitions enale the use bdifferent cryptographic
parameters for different types d data. Rartition cqpies
erable st backips.

5.1 Specification

The chunk stoe manages a setfaarred partitions, each
containing a s of named chunks.A chunk id comprises
the chunk position, as before, and theid of the contain-
ing partition. (A chunk in ae partition may have the
same position as another chunk in another partition.)
The chunks in gpartition are protected with the parame-
ters assoiatedwith it.

The following partition operations are povided

¢ Allocate() returns Partitionld
Returns an unaltatedpartition id.

* Write(partitionld, secretKey, cipher, hashFunction)
Sets the statef gartitionld to an enpty partition with
the specifed cryptographic paranaters.

* Write(partitionld, sourcePld)

Copies the current staté saurceRd to partitionid.
Each chunk in saurcePld is logically duplicated in
partitionld at the samposition.

« Diff(oldPId, newPId) returns set<ChunkPosition>
Returns asd containing dhunk psitions whose stae
is differert in newPld ard oldPId.

* Deallocate(partitionid)

Deallocates prtitionld andall of its cqpies, andall
chunks in thee partitions.

Furthermore, the chunk dlocate operation requires the
id of the partition in which thechunk isto be created. A
commit operation may include a nurber of write and
dedlocate operations o both partitions and chunks.
This makes it possible for exarmple, to store th id ofa
newly-written partition into a chunk in a existing perti-
tion in one atamic step

The rext few sectiors describehow the exterded speci-
fication is implemented

5.2 Multi-partition Chunk Map

Figure 7 shaws thestructure of the multi-partition chunk
map. Eachwritten partition has apodtion map which
maps a chunk position in the partition to a desaiptor.
This map is like the singlepartition mep described in
Section 4.3. The map chunks in theposition mep of
partition P belong to P: their gartition id is P ard they
are protectedsing P’s cryptographic paraneters. Inthe
figure, chunk ids ae denoted as partition: position.

system leade

partition

1:111:12 1:131:14 22112112 2213214 311312 313

Partiion 1 Partition 2 Partition 3

Figure 7: Multi-partition chunk nap



The leader chunk fa a partition contains information

neeckd to manage the psition map, as kefore, andthe
cryptographic parametersof the grtition, includng the
secret ky. The partition map at the t@ maps a partition

id to the prtition leader. This map is menagedlike the
position mep of a special partition, calledthe system
partition, which has a reserveild denoted S in thefig-

ure. The partition leaders are the data chunks ¢ the
system partition and are potected using the cryto-

graphic paraneters d the swtempartition. Many parti-

tion operations such as allcating a jartition id or read

ing a partition leader translate into chunk-level opera-

tions a the sgtempartition.

Chunks in thesystem partition and the systam leader are
protectedusing a fixed cipher ard hash function that are
corsidered secre, sich as 3DES ash SHA-1 [MOV96].

They are ewrypted with the key in the secret store.

Thus, secrecyis prouded be creatig a pathof cipher
links from the secret stae to every current chunk ver-

sion We saythat there is a cipér link from one piece
of datato ancaher if the secod is encrypted using a key
staredin the frst.

5.3 Partition Copies and Diffs

To copy a partition P to Q, the chunk st@e copies the
conterts of P's leader toQ's leader. Tus, Q ard P
shae both mep and data chunks, and Q inherits the
cryptographic paraneters of P. Thus, prtition copies
are cleap inspace adhtime.

When chunks inP are uplated, the psition map for P
is updated, but that or Q continues topoint to the
chunkversionsat the time of copying. The chunks ¢ Q
canalso be nodified ndepemertly of P, but the can-
mon use is to create a reamhly copy, called asnapsot

The chunk stoe diffs two partitions by traversing ther
position maps andcomparing thedescriptors of the cor-
responding cunks. Commonly, diffs are performed
between tvwo snapghds d the sara partition.

54 Log Representation

A commit s& may contain chunks fiom different parti-
tions. A chunk body is ercrypted with the ®cret key
and cipher of its partition. However, chunk heders ae
ercrypted with the systemkey ard cipter, so tlat clean
ing ard recowery may decrypt the heademwithout know-
ing thepartition id of the chunk.

The systemleader is tk head ofthe residal log, so it is
linked from the tanper+esistan store. e residal log
is hashed using the system hash function. Thus, each
chunk in a commit se is hashel twice: once with its
partition-specific hash fundion to update the chunk

degriptor, ard orce with the g/stem hash function to
update the lg hash. In gnciple, thelog hashcould be
computed over the partition-specific hashes of chunk
bodies However, a weak partition hash function coud
theninvalidate the use of the loghashas a cbcksum for
recowery (seeSection5.4). For simlicity, ard becase
hashing is relatiely fast, we chose tokeepthe hashes
semrate.

55 Cleaning and Recovery

Checking whether a chunk vesion is arrrent is ompli-

cated by partition copies. A chunk heder contans the
id of the ptition P to which it belonged when the
chunk wes written. Even if the version is dosolete in P,

it may be curert in some direct or indirect copy of P.

Therebre, eachpartition leacer stares the ids o its d-

rect copies ah the cleamer ctecks for currert-nessin

the copies, recusively. The process wauld be nore
complex hadit not been that the ehllocation of a parti-

tion deallocates the @rtition’s cqies as .

Suppo the clearer rewites a chunk vesion identified
as P:x that is current @y in partitions Q ard R. The
commit procedue ydaks the degriptors for Q:x ard
R:xin the cacle. Further, in order that the recoery pro-
cedure is able to identify the chunk orrectly, the
cleaner appends an unnamed cleaner chunk which
specifies tha the chunk is arrent in both Q ard R.

6 Backup Store

The backip store creates dnrestoresbackup sts. A
backup set corsists of one or nore partition backups.
The backp store creates bagi sets by streaning
backugs of individual partitions tothe archival ste and
restoes them by redacing prtitions with the kacku
ps readfom the arclival store.

6.1 Backup Consistency

The backup stae guaantees consistency of backup

creation and restare with respect to other chunk stae

operations. Insteadof locking eachpartition for the en

tire duration of baclup creation the backip store cre-
atesa cansistent snaghd of the sairce prtitions using
a single commit operation It then copies tle srapsiots

to archival storag in the baclground. We assune that

restores are frequent, so it is acceptabléo stop all

other activitywhile a resteoe is in pogress.

6.2 Backup Representation

Partition backups may be full or incremental A full
partition backup contains dl data chunks & the parti-
tion. An incremental ackup of a partition is created



with respect to g@revious srapstot, the base, ard con
tains thedata chunks tha were created, updated, or de-
allocated sine the base sapsiot. Backups do not con
tain map chunks sine chunk lacations in theuntrusted
stare are not needed. Chunks in abackup are repre-
sented like chunk vesions in thelog.

Creded enpty Basesngshd New smapshot

Partition P Partition Q Partition R
| O O » Current state
! ~ Partition P
_____________ >
Incremertal backup
__________________________ >
Full backup

Figure 8: Ful and increnental backips

A partition backup containsa backup deiptor, a &
guence of chunk vesions, and a backup signaure. The
backup descriptor contains the dllowing (illustrated
using gartition ids from Figure 8:

* id of saurce @rtition (P)

* id of partition snagha usedfor this kackup(R)

* id of base prtition snaghda (Q, if incremental)

* backup sd id (a random nurber assignel to the sd)

* number of partition backus in the lackupset

« partition cipher andhasher

« time ofbaclup creation

The repesentatio of partition backups is illustrated
below. Here, Hs denotes the system hash fundion, H,
denctes the prtition hash f@inction, Es denates sgtem
cipher using the systemkey, ard E, denotes the prti-
tion cipher using the artition key.
PartitionBackup ::=

Es(BackupDescriptor)

( Es( ChunkHeader) Ep(ChunkBody) )*

BackupSignature

Checksum

BackupSignature ::=
Es(Hs(BackupDescriptor Hp((Chunkld ChunkBody)*)))

The backup signdure binds thebackup desaiptor with
the chunks in thebackup and guaantees integrity of the
partition backup The unencrpted checksumallows an
externalapplication to verify that the lackupwas writ-
ten canpletely andsuccessflly.

6.3 Backup Restore

The backup storerestores a bacip by readirg a stream

of one or nore backip sets fom the arclival store. he

backupstae restoes ae partition at a tine, enforcing

the Pllowing canstraints:

« Incremental backips are restored ithe sane orderas
they were created, ith no missirg links in between

This is enforced by matching the lase grtition id in
the backup descriptor aginst the id of the prevous
restaed snaghda for the sare partition.

« If a partition backupis resteed, the renaining parti-
tion backups in the sam backupsetmust alsobe re-
stored. his is eriorced bymatching the number of
backups with a given set idagainstthe set size re-
corded n baclup degriptors

After readirg the ertire baclup stream the restored
partitions ae atomically committed to the chunk stare.
Backup redoresrequre approal from a tusted pro-
gram, which may deny frequent restaring or restaring of
old backips.

7 Object Store

The object sore adds sadty agpinst errors inapplica-
tion programs. It provides type-safe andtransactioal
access to a set objects. A object is tle wit of typed
data accessed ke application The object storeim-
plemens two-phase lockng onobjects ad breals dead-
locks wsing timeous. Trarsactiors acqure locks in ei-
ther shared or eglusive node. We chose ot to imple-
ment grarular or operatiodevel locks becase we
expectonly a few corcurrert trarsactiors. The obpct
storekeepsa cacte of freqiently-used or dirtyobjects.
Cacling dataat this lewel is bereficial becase tle data
is decryted, \alidated, ad unpickled.

The objectstore cold dore ore or nore pickled objecs
in each chunk. W chose to stae each bject in a dif-
ferent chunk tecause itesults in a sraller volume of
data that must be encrypted, hashed andwritten to the
log upon a commit. In addition, the inplenentation of
the cache is sipiified since nochunk can cotain loth
committed anduncanmitted objects. On the ther hand
staing each dject in a different chunk destroys inter-
object clustering and increases th database size @uo
per-chunk avethead(see Sectio 9.3). Becausewe ex-
pect nuch of the working set tobe cacted, the lack of
inter-object clustering is ntdmportant.

8 Coallection Store

The collecion dore provides aplications with indexes
on collectionsof objects. Acollectionis asetof objects
sharing one or nore indexes. Indexes can be dyami-
cally added ad renoved from eachcollection Collec-
tions ard indexes are tlenselhes represdad as olgcts.

The colecion store sippors functional indexeghat wse
keys extractedfrom objects ly deternministic functions
[Hwa94]. The use & functional indexes allows us to
avoid a separate data definition language for the data-
base schem Indexes are raintained autanatically as



objecs are pdatd. Indexes may be wsorted or rted,
which is possible becae tle obpcts are decpted.

9 Performance

In this sectio we describe preliminary performance
measuemnerts. First, we preseh the perbrmance on
chunk and backup stare operations kesed on severa
micro-berchmarks. Then we conpare the performance
an off-theshdf database systtm and TDB using a
highe-level benchmark.

9.1 Platform

Perfbormance was evaluated ona 450 MHz Pertium PC
with 128 MB of RAM, running theWindows NT 4.0
operating sygtem TDB is written in C++.

The wntrusted store a6 implenented as arNTFS file
on a hard disk with 9 ns awerag sekard 7200 rpm(4
ms average rtational latency. Using a rawdisk parti-
tion would be nore eficiert, bu we do not expectthe
users of TDB to provde ore. The total size ofTDB
caches ificludng the dject cacheand the chunkmap
cacte) was set to 4 Mbtes.

The tanmperresistah storewas enulated vith an NTFS
file on arother hard diskto awid interfererce with ac-
cesses tdhe untustedstae. This dsk has12 ms aver
age seek ard 5200 rpm(6 ns awerage rogtiona la
tercy). The access tira is sinllar to that for writing
EEFROM, 5 ms [Inf00].

We used cownterbased wlidation ard allowed the
count in the tamer+esistant ste tolag kehind thatin
untrustedstae by A, = 5. The tanper+esistanh storeis
flushed ony orce & Ay conmits. The wntrusted store is
flushed uponevery conmit and we setf, to 0.

9.2 Micro-benchmarks

This sectionpresets the perbrmance of basiccrypto-
graphic, disk, chunk stoe and backup stare operations.

9.21 Cryptographic and Disk Operations

Encryption: We wed 3DESIin CBC mode br the g/s-
tem partition, which has a reasuredbandwidth of 2.5
MB/s (0.4 us per bye). We sed DESin CBC mode br
other partitions; the measuredbandwidth is 7.2 MB/s
(0.14 us per bye). There are otér, more secuoe, alg-
rithms that run &ster than DES [MOVS].

Hashing: We used SHA1. The measued bawwidth is
21.1 MBSk (0.05 us per bye). Additionally, the ‘final-
ization’” of a heshvalue hes a fxed overhead of5 ps.

Store latency: While the disk specs prode awerage
latency the neasuredlatency varies videly based on
the msition o disk head Furthernore, thelatency of
the NTFS flush operaiton for files larger than512 byes
is dowbled becawse it wites fle metadata separately
We measuredwrite latenciesof 10 ms to 20 ms for
small filesard 25 msto 40 s otherwise. Therebre, we
shall focus onthe conputatioral overheadard derote
the latenciesof the untrustecindtanper—esistant ste
symbolically asl, ard I;.

Store bandwidth: The measuwed bawwidth, by, of
readng or writing the NTFS fle implementingthe un-
trusted dore \aeriesbetveen3.5 aml 4.7 MB&A.

9.22 Chunk Store Operations

We repeateceachoperationl0 tines awl found that the
conputatioral overheaddoes mt vary much, typically
deviating less than%.

Allocate chunk id: This operation does nd change the
persistenstate. he awrag latemy is 6 s.

Write chunks + commit: We committed sets 6 1 to
128 dwunks & sizes 128 byes to 16 KB per twunk,
which cowers the rarge we expect. The conputatioral
latency, measired wsing linear regession, is 132 us +
36 s per chunk +0.24 ps per byte of cumulative chunk
size. The fixed overhead comas largely from processig
the commit chunk (ickling, encrypting, hashing, etc.),
the per-chunk oserhead from processing the chunk
header and finalizing the chunk’s hash value, and the
perbyte owerhead fom ercryption and hashing the
chunkbodies The 1/O owerhead &1, + |/A: + 1/ b, per
byte, which usuallydominates the cmputational over-
head.

Read chunk: If the chunk dsciiptor is cached the

computaiond latency of reading a chunk is 4 ps +

0.18 ps per byte of chunk siz. The fixed overhead

comes largely from processing thechunk heder and

finalizing the hash, ard the perbyte overhead fom de-
cryption ard hashing. The I/O overheadis |, + 1b, per
byte. If the descriptor is ot cacted, the readoperation
reads in parentd map chunks upto one whose desaip-

tor is cached In our experiments, each @p chunk has
64 desriptorsard has a $ze of1.5 KB.

Write partition + commit: The canputational latency
of committing a rew partitionis 223 us. The conputa-

tional latercy of copying a partitionis 386 ps, regard-

less d the nunmber of chunks in thesaurce partition,

owing to our use ofthe copyon-write technique.



9.2.3 Backup Store Operations

We benchmarked only backup creation, we assune tha
baclkup restore pedrmance is rot critical.

Partition backup: We wed 512 bye chunks. The
conputatioral latercy to create anncremnenal backup
of a partitionis 675us + 9us per chunk in thebacked
up partition + 278 us per updated chunk. The fixed
overhead comes mostly from creating the artition
snapsot and procesing the backip deriptor ard sg-
nature. The overhead per chunk in thebacked up parti-
tion comes from diff-i ng the sngsha of the backed up
partition against the dse snaphd. The overheadper
updated chunk mmes from copying thechunk.

The size of a backip deternnes tte 1/O owerhead br
writing it. The $ze ofanincremnertal backup is 456B +
528 B per pdatd chunk, which may be significantly
less tlanthe size ofa full backup.

9.3 Space Overhead

The chunk desaiptor, header, and padding ald an over-
head of about 52 bytes for chunks @crypted using a 8-
byte block cipher. The additiond overhead per chunk
due tothe chunk rep is snall becausdhe fanout degree
of thetree is large (64). Obsdete chunk vesions in the
log adl additional overhead When cleaning in itk pe-
riods, the space tilization may be kept ashigh as90%
with rea®nable performance [BH®5].

9.4 Code Complexity

Figure 9gives the coplexity of TDB in terms of num
ber ofsemicolons in C++ code.

Modules emicolons

Collection gore 1,388
Object store 512
Backup dore 516
Chunk store 2,570
Conmon utilities 1,070
TOTAL 6,056

Figure 9: TDB code comlexity

9.5 Performance Comparison

In this sectionwe conpare tke perbrmance ofasystem
using dther TDB or an off-the-shdf embedded database
system which we shall call XDB. The XDB-based
systemlayers cryptography ontop of XDB. We corfig-

ured bothsystens to se the sane cryptograplic pa-
rameters, cach size, ad frequency of flushing the tam

per-resistant stee.

95.1 Workload

We measuwed thke perbrmance on a berchmark that

modek two operaitons related to vending digital goods

« Bind: A vendor birds three alterative corracts to a
digital good.

* Release: A corsumer rekagsthe diital good ®lect
ing ore ofthe three cotracts radomly.

The berthmark first creates 30 collectisrfor differert
object types. Each collection has ore to fur indexes.
The berhmark loads tle cacle bebre execuing an
experiment. The experiment corsists of 10 corsecuive
bind or release operations. Figure 10 gives thenunber
of database operatisexecued ineachexperiment.

read updde | ddete | add | commit
release 781 181 10 41 96
bind 1732 733 10| 220 292

Figure 10:Number of datbas operaitons.

9.5.2 Comparison Results

We repeated eactexperiment 10 times. Figure 11
shows the awerag times br the release ahbind ex
periments, the part spent in the dtabase sgtem andthe
part thered spentin commit, which is the najor over-
head.
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10000 +
ol
0+ T T T

XDB-release TDB-release  XDB-bind TDB-bind

runtime (ms)

m db-commit mdb-other O non-db
Figure 11: Rintime conparison

TDB outperformed XDB, primarily becasge of faster
commits, but alsoin the remaining databese werhead
We believe that XDB performs multiple disk writes at
commit.

The staed size of XDB dfter running therelease ex-
periment was 3.8 MB. The gored $ze of TDB was 4.0
MB, basedon 60% maximum log utilization.

9.5.3 TDB Performance Analysis

Here, ve aralyze the perbrmance of the releaseex
periment. Figure 12 breals down the TDB overhead by



modue. The time reported dr eachmodue excludes
nested calls to other reported modules. The figure gives
the awerag time (4), the stawlard devation (o), ard
percentage btotal (%6).

module ums) | oms) | %

DB TOTAL 4209 484 | 100
collection gore 162 0 4
object sore 85 0 2
chunkstore 61 1 1
encryption 157 1 4
hashing 93 5 2
untrusted store read 8 0 0
untrusted store write 3353 164 81
tamper-resistant store 229 46 6

Figure 12: DB runtime aralysis

The owerhead is dornmated bywrites tothe untrusted
store. The exeriment flushed the wntrusted store 96
timesarnd the tanper+esistamh store 19 tires. The ower-
headof writing to the tanper—esistant stee nmey vary
significartly depewling onthe devce aml the frequency
of flushes. There was ro checkpoint or log clearing
during the experiment. (In the bind experiment, log
clearing took a otal of 1030 ns.)

The owerhead ofercryption ard hashing is orly 6% of
the database @vhead. The efective bardwidths of
ercryption ard hashing are 6.5 MB¢ ard 20.6 MBS5,
which are close to th peakbardwidths reported inSec-
tion9.2.1.

10 Potential Extensions

The current design d TDB has anunber of limitations.
Below we describe extensims toaddress them

Untruged gorage on srvers: TDB may be wsed b pro-
tect a database stored atwmtrusted serer. This appli-
cation of TDB may benefit from additional gotimiza-
tions fa reducing nework roundHrips to the untrusted
sener, sich as batchng reads ad writes.

Truged pagng. The curent design assines that the
entireruntime, volatile state ¢ a trustedorogramis pro-
tectedby the trusted processigervironmert. TDB lim-
its its wlatile state lg controlling its cacle size, bt this
limit is na hard Therebre, sane volatile state may
have to be paged out to untrusted $orage. This problem
may be sdved by using apage fault handler to stare
encrypted and validated pages in thechunk stae.

Stal buffer managementCurrertly, modified objecs
must remain in the cacle wtil their trarsaction com-
mits, which may degade tle secuty ard performance
of large transactios. Evicting drty objects would re-
quire writing themto the lay. This requires additional
supportin the chunk stae.

Logical logging. Logical logging nay reduce the vol-
ume d data that nust be encrypted, hashegdandwritten
to the untrusted stae. The chunk stae uses logical log-
ging for sone operatios (for exanple, deallocatiorof
chunks) but it does nd alow highe modules to specify
operations that shold be loggedlogically.

11 Reated Work

There are rany systens aimed atproviding secuie stor-
age. TDB differs from most of them becase of its
unique trust nodel.

In arother paperat this corfererce, Fuet al. describe a
readenly file systemthat may be storedin untrusted
servers[FKMOQ]. A hash tree B enbedded i the inode
hierarcly. The trusted creator sigs the root hash with
the time o update andexgration. This systemis not
desgned to handle freqent updaes or ypdats to indi-
vidual file blocks in the untrusted serer.

Techiques for secuing aulit logs stored onwealy-

protected bsts are sitable for secuing appem-only

data that is readinfrequently and seqientially by a
trusted conputer [BY97, SK98]. They enploy a linear
chain of hash values irstead ofa tree. Wen the data
needs to be read, it iglidated byreconputing the hash
over the erire log These techiquesarenot sutablefor

a database syemsich asours, which requires frequent

ard rardomreadwrite access to data.

Blum et al. corsidered tke problemof secuing various
data structures in untiusted memory using ahash tree
rooted n a snall anount of trusted memory [BEG+91].
This work doesnot addres storage management for
persistent dta.

Sone systens provde secve storag bydispersing data
onto multiple heosts, vith the exgctation that atieasta
certain faction of them (for exanple, two-thirds) will
be tonest. The data ray be replicatedasis for time
efficiency [CL99], or it might be ermoded to redce tre
cumulative gpace oerhead [Rab89, Kra93,GGJ+97].
Readrequestsare broadcast to allashines anl the data
retuned is error corrected.his approactprovidesre-
covery from tanpering, na merely tanper detection.
However, it relies @ more trustedresairces than are
availableto TDB. The expectationof anhonest quorum
is based on the assumtion that, unér namal opera-
tion, the hats are wakly protectedbut nat hostile, so



the dfficulty for a hastile party to take aer k hosts in-
creases sigficartly with k.

Our use of log-structured storag bulds on a previous
work on log-strictured storag  systens  [RO91,
JKH93]. The Shadows daba® systemis log sructured
ard provides snapsots [YI094]. Oterwise, here las
been little interest in Ig-structureddatabese systens,
pertaps becase ofthe reed to lkeeplarge setsof data
physically clustered or to kep tke log conpact using
logical logging.

12 Conclusions

We have pesented trusteddatabase sgtemthatlever-
ages a trusted processip ervironmert ard a snall
anmount of trusted storag to exerd tanmper-detection
ard secrecyto a scalable amunt of untrusted storag.
The arclitecture integrates earyption ard hashing with
a low-level data nodel, which protects @éta andmeta-
data uniformly. The model is powerful enough tosup

port higherlevel database finctions such as transac-

tions, backups, and indexing.

We found that Iay-structuredstaage is vell suitedfor
building sucha system The implenentation is sinpli-
fied by enbeddirg a hesh treein the conprebensive
location map that is central tolog-structuredsystens:
objects carbe \dlidated as thy are located. fie check
pointing aotimization defers and consdidates the
propagtion of hashvalues p the tree. Bcawse pdates

arenot made inplace, a sapstot of the database state

can le createdusing c@y-on-write, which facilitates
increnertal backips.

We measued thke perbrmance of TDB using micro-
benchmarks @ well as a high-level workload. The data-
base oerhead vas doninated bywritesto the untrusted
store ard the tanper+esistah store, vhich may vary
significartly bad on the types of devces used. The
overheadof ercryption and hashing was orly 6% ofthe
total. On this workload, TDB outperformed a system
that layers cryptography on an off-the-shdf embedded
datba® system while also providing more protecion.
This supportsthe siitability of the TDB architecture.
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