
How to Build a Trusted Database System on Untrusted Storage

Ume
�

sh Maheshwari Radek Vingralek William Shapiro

STAR Lab, InterTrust Technologies Corporation, Santa Clara, CA 95054
�

{umesh, rvingral, shapiro}@intertrust.com

Ab
�

stract

So
�

me emerging applications require programs to main-
tain sensitive state o

�
n untrusted hosts. This paper pre-

sen� ts the architecture and implementation of a trusted
d

�
atabase system, TDB, which leverages a small amount

of� trusted storage to protect a scalable amount of un-
tru

�
sted storage. The database is encrypted and validated

against � a collision-resistant hash kept in trusted storage,
s� o untrusted programs cannot read the database or mod-
if

	
y it undetectably. TDB integrates encryption and hash-

ing with a low-level data model, which protects data
and� metadata uniformly, unlike systems built on top of a
co
 nventional database system. The implementation ex-
p� loits synergies between hashing and log-structured
storag� e. Preliminary performance results show that
TDB outperforms an off-the-shelf embedded database
s� ystem, thus supporting the suitability of the TDB archi-
tectu

�
re.

1 Introduction

So
�

me emerging applications require trusted programs to
run on untrusted hosts. For example, vendors of digital
g� oods such as software and music need to control the
u
 se of their goods according to their contracts with the
con
 sumers. The contracts may be enforced by executing
a tru� sted program on the consumer’s computer or play-
ing device [SBV95, IBM00, Xer00].

Of
�

ten, trusted programs need to maintain some sensi-
tiv

�
e, persistent state. For example, under a pay-per-use

con
 tract, the program may verify and debit the con-
su� mer’s account. Or, under a limited-use trial, the pro-
g� ram may count and limit the number of times the good
is

	
used. The amount of such state may grow with the

n� umber of vendors, goods, and the types of contracts.
Furthermore, the sensitive nature of the state makes it
desirable

�
to protect it from both tampering and acciden-

tal corru
�

ption. Therefore, the state should be stored in a
scalable an� d trusted database system.

Altho
�

ugh a trusted program runs on the client, it could
maintain its database on a trusted server for best secu-
rity� . However, this may require frequent communication

b
�
etween the trusted program and the server, which is

con
 straining for devices with poor connectivity. Ideally,
con
 sumers should be able to use goods distributed on
mass media or previously hoarded on their devices,
ev� en when they are disconnected from the network.
T

�
herefore, it is desirable to maintain the database on the

client sid
 e.

T
�

he party hosting the database storage has the opportu-
nity to alter its state for unauthorized benefits. For ex-
am� ple, a consumer could save a copy of the local data-
bas

�
e, purchase some goods, then r� eplay the saved copy,

t
�
hus eliminating payments for the purchased goods.

It is d
�

ifficult to secure a trusted program and its data-
b

�
ase because the hosting party ultimately controls the

und
 erlying hardware and the operating system. How-
ev� er, a number of emerging trusted platforms provide a
p� rocessing environment that runs o

�
nly trusted programs

an� d resists reverse engineering and tampering. Such
platf� orms employ a hardware package containing a
processor, m� emory, and tamper-detecting circuitry
[SPW98, KK99, Wav99, Dal00], or various techniques
f

�
or software protection [Coh93, Auc96, CTL98]. How-

ever, these p� latforms do not provide trusted persistent
storag� e in bulk because it is difficult to prevent read and
w� rite access to devices such as disk and flash memory
from outside the trusted platform.

T
�

his paper presents the architecture and implementation
of� a trusted database system, TDB. By “ trust” we mean
secrecy� (protection against reading from untrusted pro-
g� rams) and ta� mper detection (protection against writing
from untrusted programs). An untrusted program cannot
b

�
e prevented from tampering with the data, but such

d
�
ata fails validation when a trusted program reads it.

This enables the trusted program to reject the data and
perh� aps refuse further operation.

TDB may also be used to protect a database stored at an
u
 ntrusted server. Such a database may be used by client
d

�
evices that do not have enough local storage. In this

case, th
 e user may have no incentive to tamper with the
clien
 t device, so no explicit mechanisms may be re-
q� uired to provide a trusted platform on the client.

1.1 Basic Trust Management

T
�

DB leverages a trusted processing environment and a
sm� all amount of trusted storage available on the plat-
form. It provides secrecy by encrypting data with a key
h

�
idden in secret storage. It provides tamper detection by

leveraging a small amount of tamper-resistant storage,
as� described below.

A
�

 common mechanism for validating data is to sign it
w� ith a secret key. However, signed data is vulnerable to
replay� attacks. The attack is easy because it does not
require understanding the data; it works even when the
data is en

�
crypted. TDB resists replay attack by storing a

co
 llision-resistant hash of the database in tamper-
resistant storage [MOV96]. When a trusted program
w� rites and reads database objects, TDB updates and
valid� ates the database hash efficiently by maintaining a
tr

�
ee of hash values over the objects, as suggested by

Merk
�

le [Mer80].

TDB provides an option to use a tamper-resistant
cou
 nter, which cannot be decremented, in place of ge-
n� eric tamper-resistant storage. After each database up-
date, T

�
DB increments the counter and generates a cer-

tif
�

icate containing the counter value and the database
h

�
ash. The certificate is signed with the secret key and

stored in� untrusted storage.

1.2 Storage Management

T
�

o protect the state from accidental corruption, TDB
prov� ides standard database-system services such as
crash
 atomicity, concurrent transactions, type checking,
pick� ling, cache management, and index maintenance.

One
�

might consider building a trusted database system
b

�
y layering cryptography on top of a conventional data-

base sy
�

stem. This layer could encrypt objects before
sto� ring them in the database and maintain a tree of hash
v� alues over them. This architecture is attractive because
it does not require building a new database system. Un-
fortunately, the layer would not protect the metadata
in

	
side the database system. An attack could effectively

del
�

ete an object by modifying the indexes. There could
be

�
some performance problems as well. For example,

the d
�

atabase system could not maintain ordered indexes
for range queries on encrypted data.

For th
�

ese reasons, TDB applies hashing and encryption
to

�
 a low-level data model, which protects data and

metadata uniformly. It also enables TDB to maintain
ordered i� ndexes on data.

To protect the sensitive state from media failures such
as d� isk crashes, TDB provides the ability to create
back

�
ups and to restore valid backups. An attacker might

fake a media failure and restore a backup to rollback the

state. T� o limit the extent of a rollback, it is desirable to
make frequent backups and disallow restoring old back-
up
 s. TDB facilitates this by providing incremental
back

�
ups [HMF99].

W

e discovered and exploited the synergy between the
f

�
unctions mentioned above and log-structured storage

sy� stems [RO91]. Log-structured systems have a com-
preh� ensive and hierarchical location map, because all
obj� ects are relocatable. Embedding the hash tree in the
location map allows an object to be validated as it is
located.

!
The checkpointing optimization defers and

con
 solidates the propagation of hash values up the tree.
Co

"
py-on-write using the location map provides cheap

sn� apshots, which enables incremental backups. Fur-
th

�
ermore, the absence of fixed object locations makes it

hard to link multiple updates to the same object, thus
resisting so� me traffic-monitoring attacks.

Preliminary performance results show that TDB outper-
f

�
orms a system that layers cryptography on top of an

o� ff-the-shelf database system. The database overhead is
dom

�
inated by I/O; encryption and hashing represent

o� nly 6% of the total overhead.

1.3 Outline

The rest of this paper is organized as follows. Section 2
specif� ies the infrastructure TDB requires and the ser-
v� ice it provides. Section 3 describes the overall archi-
tectu

�
re of TDB. Sections 4 and 5 describe the integra-

tio
�

n of encryption and hashing in a low-level data
model. Section 6 describes backup creation and re-
s� tores. Sections 7 and 8 briefly describe the construc-
tio

�
n of database functions over the low-level data

model. Section 9 gives preliminary performance results.
Sectio

�
n 10 describes potential extensions to TDB. Sec-

tio
�

n 11 compares TDB with related work. Section 12
d

�
raws some conclusions.

2
#

System Specification

T
�

his section specifies the infrastructure TDB requires
and� the service it provides to applications.

2.1 Required
#

Infrastructure

T
�

DB requires a trusted platform that provides the fol-
lowing, as shown in Figure 1:
• T

$
rusted processing environment, w% hich executes only

trusted
�

 programs and protects the volatile state of an
ex� ecuting program from being read or modified by
u
 ntrusted programs. The static image of a trusted
prog� ram need not be secret.

• Secret store
&

: a small amount (e.g., 16 bytes) of read-
on� ly persistent storage that can be read only by a
t

�
rusted program.

• Tamper-resistant store: a small amount (e.g., 16
b

�
ytes) of writable persistent storage that can be writ-

ten o
�

nly by a trusted program. Alternatively, the tam-
per-� resistant store may be a counter that cannot be
decrem
�

ented. In either case, we assume that the tam-
per-� resistant store can be updated atomically with re-
spect to crash� es.

Archival
store

Tamper resistant
store

Secret
store

CPU
Volatile
memory

Processing environment

Trusted platform

Authorized program Unauthorized program

Untrusted
store

Archival
store

Tamper resistant
store

Secret
store

CPU
Volatile
memory

Processing environment

Trusted platform

Authorized program Unauthorized program

Untrusted
store

Untrusted
store

Figure 1: The trusted platform

T
�

he trusted platform may be a hardware package such
as� the IBM secure cooprocessor [SPW98], which con-
tain

�
s a processor, battery-backed SRAM, DRAM, and

ROM.
'

The ROM firmware loads only trusted programs
using a
 hash supplied during the manufacturing process.
T

�
he battery-backed SRAM is zeroed if tampering is

detected, so it can
�

 serve as both secret and tamper-
resistant store.

T
�

he infrastructure also provides an u(ntrusted store to
hold the database. It is persistent, allows efficient ran-
d

�
om access, and can be read and written by any pro-

gr� am. This might be a disk, flash memory, or an un-
tru

�
sted storage server connected to the trusted platform.

An
�

ar) chival store is needed to recover from the failures
of� the untrusted store. It is also untrusted. It need not
prov� ide efficient random access to data, only input and
ou� tput streams. It might be a tape or an ftp server. We
assum� e its failures are independent of the untrusted
sto� re.

W

e assume that suitable steps are taken when tampering
is detected. The exact nature of such steps is outside the
s� cope of this paper.

2.2 Service
#

Provided

W

e list the functions of TDB below.

Trusted storage: TDB provides tamper-detection and
secrecy� for bulk data. This includes resistance to replay
attack� s and attacks on metadata.

Partitions: An application may need to protect different
t

�
ypes of data differently. For example, it may have no
need to encrypt some data or to validate other data.
TDB allows an application to create multiple logical
p� artitions, each protecting data with its own crypto-
gr� aphic parameters:
• a secret k� ey
• a ciph� er (an encryption algorithm), e.g., 3DES
• a co� llision-resistant hash function, e.g., SHA-1

Us
*

ing appropriate parameters avoids unnecessary time
an� d space overhead. Using different secret keys reduces
the lo

�
ss from the disclosure of a single key. This should

no� t be confused with a) ccess control among trusted par-
ties, w

�
hich may be provided in a higher layer, if needed.

At
+

omic updates: TDB can update multiple pieces of
data

�
atomically with respect to fail-stop crashes such as

pow� er failures.

Backups
,

: TDB can back up a consistent snapshot of a
set o� f partitions and restore a backup after validation.
B

-
ackups allow recovery from media corruption. TDB

prov� ides fast incremental
.

 backups, which contain only
ch
 anges made since a previous backup.

Concurrent transactions: TDB provides serializable
access � to data from concurrent transactions. Unlike
shar� ed databases or file servers, TDB is not designed
f

�
or simultaneous access by many users. Therefore, its

c
 oncurrency control is geared to low concurrency. It
em� ploys techniques for reducing latency, but lacks so-
p� histicated techniques for sustaining throughput.

Database size: TDB allows the database to scale with
g� radual performance degradation. It uses scalable data
stru� ctures and fetches data piecemeal on demand. How-
ev� er, it relies on a cacheable working set for perform-
an� ce because its log-structured storage may destroy
p� hysical clustering. Another limitation is its no-steal
bu

�
ffering of dirty data, which does not scale to transac-

tio
�

ns with many modifications [GR93].

Objects
/

: TDB stores abstract objects that the applica-
tio

�
n can access without explicitly invoking encryption,

va� lidation, and pickling. TDB pickles objects using
appl� ication-provided methods so the stored representa-
tion

�
 is compact and portable.

Collection and Indexes: TDB provides index mainte-
n� ance over collections0 of objects. A collection is a set

of� objects that share one or more indexes. An index
prov� ides scan, exact-match, and range iterators.

3
1

System Architecture

TDB is designed for use on personal computers as well
as sm� aller devices. The architecture is layered, so appli-
catio
 ns can trade off functionality for smaller code size.
In

�
 Figure 2, boxes represent modules and arrows repre-

sen� t dependencies between them. Dashed boxes repre-
sent inf� rastructural modules.

Object Store
abstract objects
concurrency control
object cache

Collection Store
object collections
functional indexes
scan, match, range queries

Backup Store
p2 artition backups
full/ incremental
validated restore

Chunk Store
untyped chunks
p2 artitions
encryption, hashing
par2 tition copies
atomic updates
re3 covery

Untrusted
Store
large size
any R/W
database

Tamper-resistant
Store
small size
trusted write, any read
hash/count

Secret
Store
small size
trusted read
secret key

Archival Store
large size
any stream R/W
ba

4
ckups

Object Store
abstract objects
concurrency control
object cache

Collection Store
object collections
functional indexes
scan, match, range queries

Backup Store
p2 artition backups
full/ incremental
validated restore

Chunk Store
untyped chunks
p2 artitions
encryption, hashing
par2 tition copies
atomic updates
re3 covery

Untrusted
Store
large size
any R/W
database

Tamper-resistant
Store
small size
trusted write, any read
hash/count

Secret
Store
small size
trusted read
secret key

Archival Store
large size
any stream R/W
ba

4
ckups

Fig
�

ure 2: System architecture

The chunk store prov� ides trusted storage for a set of
named chunks0 . A chunk is a variable-sized sequence of
b

�
ytes that is the unit of encryption and validation. (We

e� xpect chunk sizes between 100 bytes and 10 Kbytes.)
A

�
ll data and metadata from higher modules are stored

a� s chunks. Chunks are logically grouped into partitions
w� ith separate cryptographic parameters. Partitions can
b

�
e snapshot using the copy-on-write technique.

Chunks
"

are stored in the untrusted store. The chunk
s� tore supports atomic updates of multiple chunks in the
presen� ce of crashes. It hides logging and recovery from
higher modules. This architecture does not support logi-
c
 al logging, but the variable-sized chunks form a more
com
 pact log than fixed-sized pages.

Th
�

e backup s
5

tore creates and restores a set of partition
b

�
ackups. The chunk store and the backup store encapsu-

late secrecy
!

 and tamper-detection. This enables the
higher modules to provide database management with-
o� ut worrying about trust.

Th
�

e object store manages a set of named objects. It
sto� res pickled objects in chunks—one or more objects
p� er chunk. It keeps a cache of frequently-used or dirty
obj� ects. Caching data at this level is beneficial because
th

�
e data is decrypted, validated, and unpickled. The

obj� ect store also provides read transactional access to
obj� ects using read-write locking.

Th
�

e col0 lection store manages a set of named collections
of� objects. It updates the indexes on a collection as
needed. Collections and indexes are themselves repre-
sen� ted as objects.

This paper focuses on integrating trust with storage
management in the chunk store and the backup store. It
d

�
escribes higher modules briefly to show that the chunk

s� tore is able to support them, and to explain a high-level
p� erformance benchmark we use.

4 Chunk Store: Single Partition

To simplif y presentation, this section describes the
c
 hunk store as it would be in the absence of multiple
p� artitions. Section 5 describes multiple partitions.

4.1 Specif
6

ication

T
�

he chunk store manages a set of chunks named with
uniq
 ue ids. It provides the following operations:
• Allocate() returns ChunkId

Re
'

turns an unallocated chunk id.
• Write(chunkId, bytes)

Se
�

ts the state of chunkId to bytes, possibly of differ-
e� nt size than the previous state. Signals if chunkId is
n� ot allocated.

• Read(chunkId) returns Bytes
Re
'

turns the last written state of chunkId.
Signa
�

ls if chunkId is not written.
• Deallocate(chunkId)

D
7

eallocates chunkId.
Signa

�
ls if chunkId is not allocated.

Tamper Detection: In an idealized secret and tamper-
pr8 oof chunk store, the operations listed above would be
availab� le only to trusted programs. Since tampering
w� ith the untrusted store cannot be prevented, the chunk
s� tore provides tamper-d

9
etection instead. It behaves like

the tam
�

per-proof store, except its operations may signal
tam

�
per detection if the untrusted store is tampered with.

Cra
:

sh Atomicity and Durability: The write and deal-
locate operations are special cases of a commit0 opera-
tio

�
n. In general, a number of write and deallocate opera-

tio
�

ns may be grouped into a single commit, which is
ato� mic with respect to fail-stop crashes.

A
�

llocated but unwritten chunks are deallocated auto-
matically upon system restart. We have deliberately
sep� arated allocate and commit operations. An alterna-
tive

�
 is to allocate ids when new, unnamed chunks are

co
 mmitted. However, this alternative does not allow an
a� pplication to store a newly-allocated chunk id in an-
o� ther chunk during the same commit operation, which
m; ay be needed for data integrity. Systems that swizzle
ap� plication-provided references into persistent ids upon
co
 mmit do not face this problem. However, the chunk
sto� re does not interpret application data chunks.

Concurrency Control:
:

Operation
�

s are executed in a
se� rializable manner. However, the chunk store is un-
aw� are of transactions. Allocate, read, and commit op-
eratio� ns from different transactions may be interleaved.

4.2 Implementation Overview

This section gives an overview of the implementation;
sub� sequent sections give further detail.

The chunk store writes chunks by appending them to a
log in the untrusted store. As in other log-structured
sy� stems, chunks do not have static versions outside the
log [RO91]. When a chunk is written or deallocated, its
prev� ious version in the log, if any, becomes obsolete.

T
�

he chunk store uses a chunk map0 to locate and validate
the

�
 current versions of chunks. To scale to a large num-

b
�
er of chunks, the chunk map is itself organized as a

tr
�

ee of chunks. Updates to the chunk map are buffered
an� d written to the log occasionally. Updates lost upon a
crash
 are recovered from the log.

Se
�

crecy is provided by encrypting chunks with the key
in

	
 the secret store. Tamper-detection is provided by

creatin
 g a path of has
<

h links from the tamper-resistant
sto� re to every current chunk version. We say there is a
ha

�
sh link from data x= to y> if x= contains a hash of some

d
�
ata that includes y> . If x= is linked to y> via one or more

links
!

using a collision-resistant hash function, it is com-
p� utationally hard to change y> without changing x= or
break
�

ing a hash link [Mer80]. The hash links are em-
b
�
edded in the chunk map and the log.

Se
�

rializability of operations is provided through mutual
e� xclusion, which does not overlap I/O and computation,
bu
�

t is simple and acceptable when concurrency is low.

4.3 Chunk
6

Map

T
�

he chunk map maps a chunk id to a chunk des0 criptor, %

w� hich contains the following information:
• sta� tus of chunk id: unallocated, unwritten, or written
• if

	
 written, current location in the untrusted store

• if written, expected hash value of chunk

Figur
�

e 3 shows the tree structure of the chunk map. The
leaves are the chunks created by the applications of the
c
 hunk store; we call them dat

9
a c
 hunks. (These include

c
 hunks containing metadata of higher modules, for ex-
am� ple, the indexing data of the collection store.) Each
inte

	
rnal chunk, called a map chunk? , stores a f% ixed-size

vecto� r of chunk descriptors. In the figure, each shaded
slo� t is a chunk descriptor, and an arrow links the chunk
c
 ontaining the descriptor to the chunk described by the
d

�
escriptor. The chunk at the top contains the descriptor

o� f the root map chunk and some additional metadata
need� ed to manage the tree; we call it the l

@
eader c
 hunk.

The descriptor of the leader chunk is retrieved at
sta� rtup, as described later. The chunk store interprets
m; ap and leader chunks, but not data chunks.

3.1

2.1

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

leader chunk

map chunks

data chunks

2.2 2.3

L.
A

L

Figur
�

e 3: The chunk map

For u
�

niformity of access and storage management, non-
d

�
ata chunks are also named using chunk ids. The id of a

c
 hunk encodes its p8 osition in the tree. The position
c
 omprises the height of the chunk in the tree and its
rank from the left among the chunks at that height. In
the

�
 figure, chunk ids are denoted as “hei

<
ght.rank”. As

the
�

 tree grows, new chunks are added to the right and to
the

�
top, which preserves the positions of existing

c
 hunks. (The position of the leader does change, so it is
g� iven a reserved id instead.) Besides unifying access to
c
 hunks, this approach enables id-based navigation of
the m

�
ap without storing ids in the map explicitly .

4.4 Allocate Operation

Ids of deallocated data chunks are reused to keep the
chunk m
 ap compact and conserve id space. Deallocated
id

	
s are linked through a free list embedded in the de-

scriptors. T� he head of the list is stored in the leader.

As mentioned, id allocation is not persistent until the
c
 hunk is written (committed). Upon system restart,
c
 hunk ids that were previously allocated but not written
are m� ade available in the free list for re-allocation.

4.5 Read Operation

G
B

iven a chunk id c0 , its state m% ay be located and vali-
dat

�
ed by traversing the path of descriptors from the

leader to c0 . For each descriptor in the path, the chunk
state is f� ound as follows. The encrypted state is read
f

�
rom the location stored in the descriptor. It is de-

cry
 pted using the secret key. The decrypted state is
h

�
ashed. If the computed hash does not match that stored

in the d
	

escriptor, tamper detection is signaled.

For better performance, the chunk map keeps a cache of
d

�
escriptors indexed by chunk ids. Also, the leader

chunk is p
 inned in the cache. The cached data is de-
cry
 pted, validated, and unpickled.

If
�

 the descriptor for c0 is not in cache, the read operation
looks for the descriptor of c0 ’s parent chunk. Thus, the
read operation� proceeds bot

5
tom up until it finds a de-

scriptor in� the cache. Then it traverses the path back
dow

�
n to c0 , r% eading and validating each chunk in the

path� . This approach exploits the validated cache to
avo� id validating the entire path from the leader to the
sp� ecified chunk.

4.6 Com
6

mit Operation

T
�

he commit operation hashes and encrypts each chunk
to

�
 be written, and writes the encrypted state to the log in

the
�

 untrusted store. We refer to the set of chunks written
as th� e co0 mmit set.

W

hen a chunk c0 is written or deallocated, its descriptor
is

	
updated to reflect its new location, hash, or status.

Co
"

nceptually, this changes c0 ’s parent chunk d
9
; if d

9
 were

also� written out, its descriptor would be updated, and so
o� n up to the leader, whose descriptor would be written
to

�
 the tamper-resistant store. Instead, to save time and

log space, the chunk store updates c0 ’s descriptor in
cach
 e and marks it as dirty so it is not evicted. The bot-
tom

�
-up search during reads ensures that the stale de-

s� criptor stored in d
9
 is not used.

4.7 Checkpoint
6

W

hen the cache becomes too large because of dirty
d

�
escriptors, all map chunks containing dirty descriptors

and� their ancestors up to the leader are written to the
log

!
. This is done as a special commit operation called a

checkpoint0 . In practice, checkpoints happen infre-
qu� ently compared to regular commits. Other log-
stru� ctured systems use similar checkpoints to defer and

co
 nsolidate updates to the location map [RO91]. The
c
 hunk store extends the optimization to propagating
ha

�
sh values up the chunk map.

The leader is written last during a checkpoint. We refer
to

�
 the part of the log written before the leader as the

checkpointed log0 and the part including and after the
leader as the residual log. Figure 4 shows a simple ex-
a� mple, where the log tail contains some data chunks,
p� ossibly written in multiple commits, a checkpoint con-
ta

�
ining the affected map chunks and the leader chunk,

a� nd some more data chunks. Arrows link chunks as in
Figure 3.

1.51.4 3.
C

1 L.L1.1 2.2 2.1...D

checkpoint

1.1

checkpointed log residual log

1.71.3 1.51.1

Figur
�

e 4: Checkpointing the chunk map

4.8 Recovery
6

A c
�

rash loses buffered updates to the chunk map, but
th

�
ey are recovered upon system restart by rolling for-

w� ard through the residual log. Section 4.9 describes
h

�
ow the log is represented so the recovery procedure

may find the sequence of chunks in the residual log.

Fo
�

r each chunk in the residual log, the recovery proce-
du

�
re computes the descriptor based on its location and

hash, and puts the descriptor in the chunk-map cache.
T

�
his procedure requires additional support from the

c
 ommit operation to redo chunk deallocations and to
va� lidate the chunks in the residual log. This is described
in the next tw

	
o sections.

4.8.1 Chunk Deallocation

Fo
�

r each chunk to be deallocated, the commit operation
w� rites a deal

9
locate chunk to the log, which contains the

id
	

 of the deallocated chunk.

Deallocate chunks are instances of unnamed chunks(:
the

�
y do not have chunk ids or positions in the chunk

m; ap. This is acceptable because they are used solely for
recovery from the residual log and are always obsolete
in

	
 the checkpointed log.

Like
E

 other chunks, unnamed chunks are encrypted with
th

�
e secret key. They are also protected against tamper-

in
	

g, as described in the next section. Otherwise, an at-

ta
�

ck could cause a chunk to be un-deallocated. Or, an
a� ttack could replay the deallocation of a chunk id after
it was re-allocated.

4.8.2 Validation of Residual Log

Altho
�

ugh checkpointing defers the propagation of hash
values up� the chunk map, each commit operation must
still � update the tamper-resistant store to reflect the new
state � of the database. If the tamper-resistant store kept
th

�
e hash of the leader and were updated only at check-

poi� nts, the system would be unable to detect tampering
w� ith the residual log after a crash. We have imple-
m; ented two approaches for maintaining up-to-date vali-
d

�
ation information in the tamper-resistant store.

4.8.2.1 Direct Hash Validation

T
�

he chunk store maintains a sequential ha
�

sh of the re-
sid� ual log. The log hash is stored in the tamper-resistant
store � and updated after every commit. Upon recovery,
the

�
hash in the tamper-resistant store is matched against

th
�

e hash computed over the residual log. This approach
is illustrated

	
 in Figure 5.

1.5
F

1.4
F

3.1
G

L.L
H

1.
F

1 2.
I

2 2.1
I

...J

checkpointed log residual log

1.7
F

1.3
F

1.
F

1 1.5
F

1.
F

1

ha
K

sh

T.R. store

1.5
F

1.4
F

3.1
G

L.L
H

1.
F

1 2.
I

2 2.1
I

...J

checkpointed log residual log

1.7
F

1.3
F

1.
F

1 1.5
F

1.
F

1

ha
K

sh

T.R. store

Fig
�

ure 5: Tamper-resistant store contains database hash

A
�

 commit operation waits until the commit set is written
to

�
 the untrusted store reliably before it updates the hash

in
	

 the tamper-resistant store. Otherwise, a crash could
leav

!
e the tamper-resistant store updated when the un-

trusted
�

 store is not, and cause validation to fail upon
reco� very. The update to the tamper-resistant store is the
real commit point: If there is a crash during this update,
the p

�
revious value stored in the tamper-resistant store is

recov� ered, and the last commit set in the untrusted store
is ignored. The commit operation returns after the tam-
per-� resistant store is updated reliably.

Direct hash validation creates paths of hash links from
the

�
 tamper-resistant store to all current chunk ver-

sio� ns—in both the residual log and the checkpointed
log. This is true because the tamper-resistant store is
d

�
irectly linked to all chunks in the residual log, which

in
	

cludes the leader from the last checkpoint, and the
leader is linked through the chunk map to all current
c
 hunk versions in the checkpointed log. Note that all
unna
 med chunks in the residual log are linked as well.
U

*
nnamed chunks in the checkpointed log are not linked,

w� hich is not a weakness because all such chunks are
obs� olete.

4.8.2.2 Counter-based validation

In this approach, upon each commit, a sequential hash
o� f the commit set is stored in an unnamed chunk added
to

�
 the log, called the commi0 t chunk. The commit chunk

is
	

signed with the secret key. (The signature need not be
p� ublicly verifiable, so it may be based on symmetric-
key encryption [MOV96].) An attack cannot insert an
arb� itrary commit set into the residual log because it will
be u

�
nable to create an appropriately signed commit

c
 hunk. Replays of old commit sets are resisted by add-
ing

	
a count to the commit chunk that is incremented

af� ter every commit. Deletion of commit sets at the tail
o� f the log is resisted by storing the current commit
cou
 nt in the tamper-resistant store. This approach is
illustrated in Figure 6.

c.L c.
73 1.

M
31.1

M c.L c.
74

hash
hash

1.
M

51.4
M

3.1
N

L.
O

L1.
M

1 2.2
P

2.
P

1..Q . 1.
M

7 1.
M

51.1
M c.L c.

75

hash

T.R. store
count = 75

secret key

c.L c.
72

sign

checkpointed log residual log

c.L c.
73 1.

M
31.1

M c.L c.
74

hash
hash

1.
M

51.4
M

3.1
N

L.
O

L1.
M

1 2.2
P

2.
P

1..Q . 1.
M

7 1.
M

51.1
M c.L c.

75

hash

T.R. store
count = 75

secret key

c.L c.
72

sign

checkpointed log residual log

Figure 6: Tamper-resistant store contains commit count

A checkpoint is followed by a commit chunk containing
the

�
 hash of the leader chunk, as if the leader were the

o� nly chunk in the commit set. The recovery procedure
ch
 ecks that the hash of each commit set in the residual
lo

!
g matches that stored in the commit chunk, and that

the
�

 counts stored in the commit chunks form a se-
qu� ence. Finally, the procedure compares the count in
the

�
 last commit chunk with that in the tamper-resistant

store. T� he hash-links created in this approach are simi-
lar to

!
 those in direct hash validation, except that the

c
 ommit chunks are signed and linked from the tamper-
r� esistant store through a sequence of numbers.

Co
"

unter-based validation has several advantages. First,
th

�
e tamper-resistant counter is a weaker requirement

th
�

an a generic tamper-resistant store. Provided the

cou
 nter cannot be decremented by any) program, it does
no� t need additional protection against untrusted pro-
gram� s. There is little incentive for untrusted programs
to in

�
crement the counter because they would not be able

to
�

 sign a commit chunk with the increased count.

Seco
�

nd, the commit count allows the system to tolerate
b

�
ounded discrepancies between the tamper-resistant

store an� d the untrusted store, if desired. For example,
the sy

�
stem might allow the count in the tamper-resistant

sto� re, t� , to% be a little behind the last count in the un-
trusted

�
 store, u(. This trades off security for perform-

an� ce. The security risk is that an attack might delete
co
 mmit sets t� +R 1 through u(. The performance gain is that
a co� mmit operation need not wait for updating the count
in the tam

	
per-resistant store, provided (u(-t�)

S
is smaller

than so
�

me threshold ∆
T

utU . This is useful if the tamper-
r� esistant store has high update latency. The system
might also allow t� to leap ahead) of u(by another thresh-
ol� d ∆tuV . This admits situations where the untrusted store
is w

	
ritten lazily (e.g., IDE disk controllers often flush

th
�

eir cache lazily) and the tamper-resistant store might
be u

�
pdated before the untrusted store. The only security

risk is the deletion of at most ∆tu V co
 mmit sets from the
tail o

�
f the log.

A
�

 drawback of counter-based validation is that tamper
d

�
etection relies on the secrecy� of the key used to sign

the
�

 commit chunk. Therefore, if a database system
needed to provide tamper-detection but not secrecy, it
w� ould still need a secret store.

4.9 Log Representation

This section describes the structure of the data written
to

�
 the log. The log consists of a sequence of chunks; we

refer to the representation of a chunk in the log as a
versioW n.

4.9.1 Chunk
X

Versions

Chunk ve
"

rsions are read for three different functions:
• Re

'
ad operation, which uses the chunk id and the de-

s� criptor to read the current version.
• Log cleaning, which reads a seg� ment of the check-

p� ointed log sequentially.
• Recovery, which reads the residual log sequentially.

T
�

o enable sequential reading, the log contains informa-
tio

�
n to identify and demarcate chunks. Each chunk ver-

s� ion comprises a header followed by a body. The header
c
 ontains the chunk id and the size of the chunk state.
The header of an unnamed chunk contains a reserved id.
Bot

-
h the header and the body are encrypted with the

secret k� ey. Similarly, the hash of the residual log or a
com
 mit set covers both headers and bodies.

4.9.2 Head of Residual Log

T
�

he recovery procedure needs to locate the head and the
tail o

�
f the residual log. The head of the residual log is

th
�

e leader. Its location is stored in a fixed place, as in
oth� er log-structured storage systems. It need not be kept
in tamper-resistant store: With direct hash validation,
tam

�
pering with this state will change the computed hash

o� f the residual log. With counter-based validation, it is
possible f� or an attack to change the location to the be-
g� inning of another commit set. Therefore, the recovery
p� rocedure checks that the chunk at the stored location is
th

�
e leader.

B
-

ecause the location of the leader is updated infre-
q� uently—upon each checkpoint—storing it at a fixed
lo

!
cation outside the log does not degrade performance.

T
�

his location is written after the writes to the untrusted
store an� d the tamper-resistant store have finished. Its
u
 pdate marks the completion of the checkpoint. If there
is a crash before this update, the recovery procedure
ignores the checkpoint at the tail of the log.

4.9.3 Tail of Residual Log

W

ith direct hash validation, the location of the log tail
may be stored in the tamper-resistant store along with
th

�
e database hash. This works well because the write to

the tam
�

per-resistant store is the true commit point.

W

ith counter-based validation, it is possible to infer the
lo

!
cation of the tail from the log itself, as in conventional

d
�
atabases [GR93]. The last commit set in the log may

have been corrupted in a crash. The hash stored in a
c
 ommit chunk serves well as a checksum for the commit
set. T� he recovery procedure stops when the hash of a
co
 mmit set does not match the hash stored in the com-
m; it chunk.

4.9.4 Segments

T
�

he untrusted store is divided into fixed-size segments
to

�
aid cleaning, as in Sprite LFS [RO91]. The segment

size � is chosen for efficient reading and writing by the
cl
 eaner, e.g., on the order of 100 KB for disk-based
sto� rage. A segment is expected to contain many chunk
ver� sions. The size of a chunk version cannot exceed the
segm� ent size. A commit set may span multiple seg-
me; nts.

T
�

he log is represented as a sequence of potentially non-
adj� acent segments. Since the recovery procedure needs
to

�
 read the residual log sequentially, segments in the

residual log contain an unnamed nextY -segment chunk at
th

�
e end, which contains the location of the next seg-

me; nt.

4.9.5 Log Cleaning

T
�

he log cleaner reclaims the storage of obsolete chunk
v� ersions and compacts the storage to create empty seg-
ments. It selects a segment to clean and determines
w� hether each chunk version is current by using the
c
 hunk id in the header to find the current location in the
c
 hunk map. It then commits the set of current chunks,
w� hich rewrites them to the end of the log [BHS95].

The set of steps from selecting a segment to committing
the

�
 current chunks happens atomically with respect to

ex� ternally invoked operations. The cleaner may be in-
v� oked synchronously when space is low, but it is mostly
invo

	
ked asynchronously during idle periods.

The cleaner does not clean segments in the residual log,
becau

�
se that would destroy the sequencing of the resid-

u
 al log. This also resolves what the cleaner should do
w� ith unnamed chunks, because they are always obsolete
in

	
 the checkpointed log. For performance reasons, the

cleaner selects segm
 ents with low utilization. Details on
the utilizatio

�
n metric and the maintenance of this infor-

m; ation are beyond the scope of this paper.

The cleaner need not validate the chunks read from the
segm� ent provided the commit operation for rewriting
c
 urrent chunks does notY update the hash values stored in
c
 hunk descriptors. If the hashes are recomputed and
u
 pdated, as they would be in a regular commit, the
c
 leaner must validate the current chunks; otherwise, the
c
 leaner might launder chunks modified by an attack.
B

-
ecause of its simplicity, we have implemented the sec-

on� d, less efficient, approach.

5 Chunk Store: Multiple Partitions

T
�

his section describes extensions to the chunk store that
p� rovide multiple partitions and partition copies. Multi-
p� le partitions enable the use of different cryptographic
p� arameters for different types of data. Partition copies
en� able fast backups.

5.1 Specification

The chunk store manages a set of named partitions, each
c
 ontaining a set of named chunks. A chunk id comprises
the

�
 chunk position, as before, and the id of the contain-

ing partition. (A chunk in one partition may have the
sa� me position as another chunk in another partition.)
T

�
he chunks in a partition are protected with the parame-

ters asso
�

ciated with it.

The following partition operations are provided:
• Alloc

Z
ate() returns PartitionId

Returns an unallo
'

cated partition id.
• Write(partitionId, secretKey, cipher, hashFunction)

Sets the state o
�

f partitionId to an empty partition with
th
�

e specified cryptographic parameters.
• Write(partitionId, sourcePId)

Co
"

pies the current state of sourcePId to partitionId.
E

[
ach chunk in sourcePId is logically duplicated in

p� artitionId at the same position.
• Diff(oldPId, newPId) returns set<ChunkPosition>

Re
'

turns a set containing chunk positions whose state
is different in newPId and oldPId.

• Deallocate(partitionId)
Deallo

7
cates partitionId and all of its copies, and all

c
 hunks in these partitions.

Fur
�

thermore, the chunk allocate operation requires the
id of the partition in which the chunk is to be created. A
co
 mmit operation may include a number of write and
d

�
eallocate operations on both partitions and chunks.

This makes it possible, for example, to store the id of a
ne� wly-written partition into a chunk in an existing parti-
tio

�
n in one atomic step.

The next few sections describe how the extended speci-
f

�
ication is implemented.

5.2 Multi-partition Chunk Map

Figur
�

e 7 shows the structure of the multi-partition chunk
map. Each written partition has a pos8 ition map, w% hich
maps a chunk position in the partition to a descriptor.
T

�
his map is like the single-partition map described in

Se
�

ction 4.3. The map chunks in the position map of
p� artition P

\
 belong to P

\
: their partition id is P

\
 and they

are protected u� sing P
\

’s cryptographic parameters. In the
figure, chunk ids are denoted as p8 artition:position.

system leader

p]

osition m
ap]

p^

ar_ tition m
ap^

partition
leader

L:L.L

S:
`

1.1 S:1.2 S:1.3

S:
`

2.1 S:2.2

1:3.1

1:
a

2.1 1:2.2

S:
`

3.1

1:1.1 1:1.2 1:1.3 1:1.4

2:
b

3.1

2:
b

2.1 2:2.2

2:1.1 2:1.2 2:1.3 2:1.4

3:
c

3.1

3:
c

2.1 3:2.2

3:
c

1.1 3:1.2 3:1.3

Partition 1 Partition 2 Partition 3

system leader

p]

osition m
ap]

p^

ar_ tition m
ap^

partition
leader

L:L.L

S:
`

1.1 S:1.2 S:1.3

S:
`

2.1 S:2.2

1:3.1

1:
a

2.1 1:2.2

S:
`

3.1

1:1.1 1:1.2 1:1.3 1:1.4

2:
b

3.1

2:
b

2.1 2:2.2

2:1.1 2:1.2 2:1.3 2:1.4

3:
c

3.1

3:
c

2.1 3:2.2

3:
c

1.1 3:1.2 3:1.3

Partition 1 Partition 2 Partition 3

Figur
�

e 7: Multi-partition chunk map

The leader chunk for a partition contains information
need� ed to manage the position map, as before, and the
cry
 ptographic parameters of the partition, including the
secret k� ey. The p8 artition map at the top maps a partition
id

	
 to the partition leader. This map is managed like the

p� osition map of a special partition, called the system�
p� artition, which has a reserved id denoted S

&
 in the fig-

ur
 e. The partition leaders are the data chunks of the
sy� stem partition and are protected using the crypto-
grap� hic parameters of the system partition. Many parti-
tio

�
n operations such as allocating a partition id or read-

ing a partition leader translate into chunk-level opera-
tio

�
ns on the system partition.

Chunks in the
"

 system partition and the system leader are
protected � using a fixed cipher and hash function that are
con
 sidered secure, such as 3DES and SHA-1 [MOV96].
They are encrypted with the key in the secret store.
T

�
hus, secrecy is provided be creating a path of ci0 pher

lin
@

ks from the secret store to every current chunk ver-
sion� . We say that there is a cipher link from one piece
o� f data to another if the second is encrypted using a key
sto� red in the first.

5.3 Partition Copies and Diffs

To copy a partition P to Q
d

,% the chunk store copies the
con
 tents of P

\
’s leader to Q

d
’s leader. Thus, Q

d
 and P

\

sha� re both map and data chunks, and Q
d

 inherits the
cry
 ptographic parameters of P

\
. Thus, partition copies

are ch� eap in space and time.

W

hen chunks in P are updated, the position map for P
is up
	

dated, but that for Q
d

 continues to point to the
c
 hunk versions at the time of copying. The chunks of Q

d

can
 also be modified independently of P
\

, b% ut the com-
m; on use is to create a read-only copy, called a s� napshot.

The chunk store diffs two partitions by traversing their
p� osition maps and comparing the descriptors of the cor-
responding chunks. Commonly, diffs are performed
b

�
etween two snapshots of the same partition.

5.4 Log Representation

A commit set may contain chunks from different parti-
tio

�
ns. A chunk body

�
 is encrypted with the secret key

a� nd cipher of its partition. However, chunk headers are
en� crypted with the system key and cipher, so that clean-
in

	
g and recovery may decrypt the header without know-

ing the partition id of the chunk.

T
�

he system leader is the head of the residual log, so it is
linked from the tamper-resistant store. The residual log
is

	
hashed using the system hash function. Thus, each

c
 hunk in a commit set is hashed twice: once with its
p� artition-specific hash function to update the chunk

des
�

criptor, and once with the system hash function to
up
 date the log hash. In principle, the log hash could be
c
 omputed over the partition-specific hashes of chunk
bodies

�
. However, a weak partition hash function could

th
�

en invalidate the use of the log hash as a checksum for
recov� ery (see Section 5.4). For simplicity, and because
hashing is relatively fast, we chose to keep the hashes
sep� arate.

5.5 Cleaning and Recovery

Che
"

cking whether a chunk version is current is compli-
c
 ated by partition copies. A chunk header contains the
id

	
 of the partition P

\
 to which it belonged when the

c
 hunk was written. Even if the version is obsolete in P, %

it may be current in some direct or indirect copy of P.
T

�
herefore, each partition leader stores the ids of its di-

rect copies and the cleaner checks for current-ness in
th

�
e copies, recursively. The process would be more

co
 mplex had it not been that the deallocation of a parti-
tio

�
n deallocates the partition’s copies as well.

S
�

uppose the cleaner rewrites a chunk ve
�

rsion identified
as � P:x that is current only in partitions Q

d
 and R. The

com
 mit procedure updates the descriptors for Q:x
d

 and
R:x

e
 in the cache. Further, in order that the recovery pro-

c
 edure is able to identify the chunk correctly, the
c
 leaner appends an unnamed cl0 eaner chunk, w% hich
sp� ecifies that the chunk is current in both Q

d
 and R

e
.

6 Backup Store

The backup store creates and restores backup s
5

ets. A
back

�
up set consists of one or more p8 artition backups.

T
�

he backup store creates backup sets by streaming
b

�
ackups of individual partitions to the archival store and

resto� res them by replacing partitions with the backu
ps read f� rom the archival store.

6.1 Backup Consistency

T
�

he backup store guarantees consistency of backup
c
 reation and restore with respect to other chunk store
o� perations. Instead of locking each partition for the en-
tire

�
duration of backup creation, the backup store cre-

ates � a consistent snapshot of the source partitions using
a � single commit operation. It then copies the snapshots
to

�
archival storage in the background. We assume that

restores are in� frequent, so it is acceptable to stop all
o� ther activity while a restore is in progress.

6.2 Backup Representation

P
f

artition backups may be fu
g

ll or incrementalh . A full
p� artition backup contains all data chunks of the parti-
tio

�
n. An incremental backup of a partition is created

w� ith respect to a previous snapshot, the bas
5

e, an% d con-
ta

�
ins the data chunks that were created, updated, or de-

allocated sin� ce the base snapshot. Backups do not con-
ta

�
in map chunks since chunk locations in the untrusted

sto� re are not needed. Chunks in a backup are repre-
se� nted like chunk versions in the log.

Current state
Partition P

Created empty
Partition P

Base snapshot
Partition Q

New snapshot
Partition R

Incremental backup

Full backup

Current state
Partition P

Created empty
Partition P

Base snapshot
Partition Q

New snapshot
Partition R

Incremental backup

Full backup

Figure 8: Full and incremental backups

A partition backup contains a backup des
5

criptor, a s% e-
q� uence of chunk versions, and a backup signature. The
b

�
ackup descriptor contains the following (illustrated

using p
 artition ids from Figure 8):
• id

	
 of source partition (P

\
)
S

• id of partition snapshot used for this backup (R)
S

• id
	

 of base partition snapshot (Q
d

, if% incremental)
• b

�
ackup set id (a random number assigned to the set)

• num� ber of partition backups in the backup set
• p� artition cipher and hasher
• tim

�
e of backup creation

T
�

he representation of partition backups is illustrated
bel

�
ow. Here, Hsi denotes the system hash function, Hpj

d
�
enotes the partition hash function, E

k
si denotes system

ciph
 er using the system key, and Epj denotes the parti-
tio

�
n cipher using the partition key.

PartitionBackup ::=
Esl (Bac

m
kupDescriptor)

(E
m

sl (ChunkHeader) Epn (ChunkBody))*
BackupSignature
o

C
p

hecksum

BackupSignature ::=
o

Esl (H
m

sl (Bac
m

kupDescriptor Hpn ((ChunkId ChunkBody
m

)*)))

T
�

he backup signature binds the backup descriptor with
the

�
 chunks in the backup and guarantees integrity of the

p� artition backup. The unencrypted checksum allows an
external � application to verify that the backup was writ-
ten co

�
mpletely and successfully.

6.3 Backup Restore

The backup store restores a backup by reading a stream
of� one or more backup sets from the archival store. The
b

�
ackup store restores one partition at a time, enforcing

the f
�

ollowing constraints:
• In

�
cremental backups are restored in the same order as

th
�

ey were created, with no missing links in between.

This is enforced by matching the base partition id in
th

�
e backup descriptor against the id of the previous

resto� red snapshot for the same partition.
• If a partition backup is restored, the remaining parti-

tio
�

n backups in the same backup set must also be re-
stored. T� his is enforced by matching the number of
b

�
ackups with a given set id against the set size re-

corded i
 n backup descriptors.

After reading the entire backup stream, the restored
p� artitions are atomically committed to the chunk store.
Backup restores require approval from a trusted pro-
gr� am, which may deny frequent restoring or restoring of
ol� d backups.

7
q

Object Store

Th
�

e objh ect store adds safety against errors in applica-
tio

�
n programs. It provides type-safe and transactional

access to a set of� objects. An object is the unit of typed
data accessed by

�
 the application. The object store im-

plem� ents two-phase locking on objects and breaks dead-
lock

!
s using timeouts. Transactions acquire locks in ei-

th
�

er shared or exclusive mode. We chose not to imple-
m; ent granular or operation-level locks because we
ex� pect only a few concurrent transactions. The object
store � keeps a cache of frequently-used or dirty objects.
C

"
aching data at this level is beneficial because the data

is decrypted, validated, and unpickled.

The object store could store one or more pickled objects
in each chunk. W

	
e chose to store each object in a dif-

ferent chunk because it results in a smaller volume of
d

�
ata that must be encrypted, hashed, and written to the

lo
!

g upon a commit. In addition, the implementation of
the cache is sim

�
plif ied since no chunk can contain both

co
 mmitted and uncommitted objects. On the other hand,
sto� ring each object in a different chunk destroys inter-
obj� ect clustering and increases the database size due to
p� er-chunk overhead (see Section 9.3). Because we ex-
pect m� uch of the working set to be cached, the lack of
inter-

	
object clustering is not important.

8 Collection Store

Th
�

e col0 lection store provides applications with indexes
on� collections0 of objects. A collection is a set of objects
s� haring one or more indexes. Indexes can be dynami-
cally
 added and removed from each collection. Collec-
tion

�
s and indexes are themselves represented as objects.

T
�

he collection store supports functional indexes
g

 th
�

at use
keys extracted from objects by deterministic functions
[Hwa94]. The use of functional indexes allows us to
a� void a separate data definition language for the data-
b

�
ase schema. Indexes are maintained automatically as

object� s are updated. Indexes may be unsorted or sorted,
w� hich is possible because the objects are decrypted.

9 Performance

In this section we describe preliminary performance
m; easurements. First, we present the performance on
c
 hunk and backup store operations based on several
m; icro-benchmarks. Then we compare the performance
a� n off-the-shelf database system and TDB using a
higher-level benchmark.

9.1 Platform

Performance was evaluated on a 450 MHz Pentium PC
w� ith 128 MB of RAM, running the
 Windows NT 4.0
o� perating system. TDB is written in C++.

The untrusted store was implemented as an NTFS file
on� a hard disk with 9 ms average seek and 7200 rpm (4
ms average rotational latency). Using a raw disk parti-
tion

�
 would be more efficient, but we do not expect the

u
 sers of TDB to provide one. The total size of TDB
caches (
 including the object cache and the chunk-map
cach
 e) was set to 4 Mbytes.

The tamper-resistant store was emulated with an NTFS
file on another hard disk to avoid interference with ac-
cesses to
 the untrusted store. This disk has 12 ms aver-
ag� e seek and 5200 rpm (6 ms average rotational la-
ten

�
cy). The access time is similar to that for writing

EEP
[

ROM, 5 ms [Inf00].

W

e used counter-based validation and allowed the
co
 unt in the tamper-resistant store to lag behind that in
untr
 usted store by ∆utU = 5. The tamper-resistant store is
f

�
lushed only once is ∆

T
ut U com
 mits. The untrusted store is

flushed upon every commit and we set ∆tuV to 0.

9.2 Micro-benchmarks

This section presents the performance of basic crypto-
gr� aphic, disk, chunk store and backup store operations.

9.2.1
r

Cryptographic and Disk Operations

Encryption: We u

sed 3DES in CBC mode for the sys-
tem

�
 partition, which has a measured bandwidth of 2.5

MB/s
�

 (0.4 µs s� per byte). We used DES in CBC mode for
o� ther partitions; the measured bandwidth is 7.2 MB/s
(0.14

t
µs s per by� te). There are other, more secure, algo-

rithms that run faster than DES [MOV96].

Hashing: W

e used SHA-1. The measured bandwidth is
21.1 MB/

u
s (0.05 µs s� per byte). Additionally, the “final-

ization” of a hash value has a fixed overhead of 5 µs s.�

St
v

ore latency: While the disk specs provide average
latency, the measured latency varies widely based on
the p

�
osition of disk head. Furthermore, the latency of

t
�
he NTFS flush operation for files larger than 512 bytes
is

	
doubled because it writes file metadata separately.

W

e measured write latencies of 10 ms to 20 ms for
s� mall files and 25 ms to 40 ms otherwise. Therefore, we
sh� all focus on the computational overhead and denote
the

�
latencies of the untrusted and tamper-resistant store

sy� mbolically as l
@
uU and l

@
tV .

St
v

ore bandwidth: T
�

he measured bandwidth, b
5

uU , of%
reading or writing the NTFS file implementing the un-
t

�
rusted store varies between 3.5 and 4.7 MB/s.

9.2.2
r

Chunk Store Operations

W

e repeated each operation 10 times and found that the
com
 putational overhead does not vary much, typically
d

�
eviating less than 2%.

Allocate chunk id: This operation does not change the
persisten� t state. The average latency is 6 µs s.�

Writ
w

e chunks + commit: We committed sets of 1 to
128 chunks of sizes 128 bytes to 16 KB per chunk,
w� hich covers the range we expect. The computational
latency, measured using linear regression, is 132 µs s + �

36
x

µs s p� er chunk + 0.24 µs s p� er byte of cumulative chunk
size. T� he fixed overhead comes largely from processing
the

�
 commit chunk (pickling, encrypting, hashing, etc.),

the
�

 per-chunk overhead from processing the chunk
header and finalizing the chunk’s hash value, and the
per-� byte overhead from encryption and hashing the
c
 hunk bodi

�
es. The I/O overhead is l

@
uU + l

@
tV /

y
∆utU + 1/ buU per

b
�
yte, which usually dominates the computational over-

h
�
ead.

Read chunk: If the chunk descriptor is cached, the
c
 omputational latency of reading a chunk is 47 µs s + �

0.18
z

µs s p� er byte of chunk size. The fixed overhead
c
 omes largely from processing the chunk header and
f

�
inalizing the hash, and the per-byte overhead from de-

cry
 ption and hashing. The I/O overhead is l
@
uU + 1/b

5
uU per

by
�

te. If the descriptor is not cached, the read operation
r� eads in parental map chunks up to one whose descrip-
to

�
r is cached. In our experiments, each map chunk has

64 des
{

criptors and has a size of 1.5 KB.

Write pa
w

rtition + commit: T
�

he computational latency
of� committing a new partition is 223 µs s. T� he computa-
tion

�
al latency of copying a partition is 386 µs s� , regard-

le
!

ss of the number of chunks in the source partition,
ow� ing to our use of the copy-on-write technique.

9.2.3
r

Backup Store Operations

W

e benchmarked only backup creation, we assume that
back

�
up restore performance is not critical.

Partition backup: We used 512 byte chunks. The
com
 putational latency to create an incremental backup
of� a partition is 675 µs s + 9� µs s p� er chunk in the backed
u
 p partition + 278 µs s � per updated chunk. The fixed
o� verhead comes mostly from creating the partition
s� napshot and processing the backup descriptor and sig-
na� ture. The overhead per chunk in the backed up parti-
t

�
ion comes from diff-i ng the snapshot of the backed up
p� artition against the base snapshot. The overhead per
up
 dated chunk comes from copying the chunk.

The size of a backup determines the I/O overhead for
w� riting it. The size of an incremental backup is 456 B +
528 B per u

|
pdated chunk,

�
 which may be significantly

less than the size of a full backup.

9.3 Space Overhead

The chunk descriptor, header, and padding add an over-
he

�
ad of about 52 bytes for chunks encrypted using an 8-

b
�
yte block cipher. The additional overhead per chunk

d
�
ue to the chunk map is small because the fanout degree

o� f the tree is large (64). Obsolete chunk versions in the
log add additional overhead. When cleaning in idle pe-
rio� ds, the space utilization may be kept as high as 90%
w� ith reasonable performance [BHS95].

9.4 Code Complexity

Figure 9
�

 gives the complexity of TDB in terms of num-
ber of

�
 semicolons in C++ code.

M

}
odule s emicolons

C
~

ollection store 1,388
O
�

bject store 512
B
�

ackup store 516
C
~

hunk store 2,570
Com
~

mon utilities 1,070
TOTAL 6,056

Figure 9: TDB code complexity

9.5 Performance Comparison

In this section, we compare the performance of a system
usi
 ng either TDB or an off-the-shelf embedded database
sy� stem, which we shall call XDB. The XDB-based
sy� stem layers cryptography on top of XDB. We config-
u
 red both systems to use the same cryptographic pa-
rameters, cache size, and frequency of flushing the tam-
p� er-resistant store.

9.5.1 Workload
r

W

e measured the performance on a benchmark that
models two operations related to vending digital goods:
• Bind: A vendor binds three alternative contracts to a

di
�

gital good.
• Release: A consumer releases the digital good select-

in
	

g one of the three contracts randomly.

The benchmark first creates 30 collections for different
obj� ect types. Each collection has one to four indexes.
T

�
he benchmark loads the cache before executing an

ex� periment. The experiment consists of 10 consecutive
b

�
ind or release operations. Figure 10 gives the number

of� database operations executed in each experiment.

 r� ead update delete add commit
release 781 181 10 41 96

bind 1732 733 10 220 292

Figure 10: Number of database operations.

9.5.2 Comparison
r

Results

W

e repeated each experiment 10 times. Figure 11
sh� ows the average times for the release and bind ex-
p� eriments, the part spent in the database system, and the
p� art thereof spent in commit, which is the major over-
h

�
ead.

0
�

500
�

0

10000

15000

2000
�

0

2500
�

0

3000
�

0

3500
�

0

4000
�

0

4500
�

0

X
�

DB-release TDB-release XDB-bind TDB-bind

ru
n

ti
m

e
(m

s)

db
�

-commit db
�

-other non-db

Fig
�

ure 11: Runtime comparison

TDB outperformed XDB, primarily because of faster
co
 mmits, but also in the remaining database overhead.
W

e believe that XDB performs multiple disk writes at

co
 mmit.

T
�

he stored size of XDB after running the release ex-
peri� ment was 3.8 MB. The stored size of TDB was 4.0
MB, based on 60% maximum log utilization.

9.5.3
r

TDB Performance Analysis

Here, we analyze the performance of the release ex-
peri� ment. Figure 12 breaks down the TDB overhead by

module. The time reported for each module excludes
ne� sted calls to other reported modules. The figure gives
th

�
e average time (µ�),

S
the standard deviation (σ), an

S
d

p� ercentage of total (%).

module µ� (ms) σ(

�
ms) %

�

DB TOTAL 4209 484 100

collection store 162 0 4

object store 85 0 2

chunk store 61 1 1

encryption 157 1 4

hashing 93 5 2

untrusted store read 8 0 0

untrusted store write 3353 164 81

tamper-resistant store 229 46 6

Figure 12: TDB runtime analysis

T
�

he overhead is dominated by writes to the untrusted
store. T� he experiment flushed the untrusted store 96
tim

�
es and the tamper-resistant store 19 times. The over-

head
�

 of writing to the tamper-resistant store may vary
sig� nificantly depending on the device and the frequency
of� flushes. There was no checkpoint or log cleaning
d

�
uring the experiment. (In the bind experiment, log

cl
 eaning took a total of 1030 ms.)

T
�

he overhead of encryption and hashing is only 6% of
th

�
e database overhead. The effective bandwidths of

en� cryption and hashing are 6.5 MB/s and 20.6 MB/s,
w� hich are close to the peak bandwidths reported in Sec-
t

�
ion 9.2.1.

10 Potential Extensions

The current design of TDB has a number of limitations.
B

-
elow we describe extensions to address them.

Untrusted storage on servers: TDB may be used to pro-
tect a database stored at an

�
 untrusted server. This appli-

catio
 n of TDB may benefit from additional optimiza-
tio

�
ns for reducing network round-trips to the untrusted

serv� er, such as batching reads and writes.

T
$

rusted paging. The current design assumes that the
entire � runtime, volatile state of a trusted program is pro-
tected

�
by the trusted processing environment. TDB lim-

its its volatile state by controlling its cache size, but this
limit is not hard. Therefore, some volatile state may
h

�
ave to be paged out to untrusted storage. This problem

may be solved by using a page fault handler to store
e� ncrypted and validated pages in the chunk store.

St
&

eal buffer management. Currently, modified objects
must remain in the cache until their transaction com-
m; its, which may degrade the security and performance
o� f large transactions. Evicting dirty objects would re-
q� uire writing them to the log. This requires additional
s� upport in the chunk sto

�
re.

Logical logging. Logical logging may reduce the vol-
um
 e of data that must be encrypted, hashed, and written
to

�
 the untrusted store. The chunk store uses logical log-

g� ing for some operations (for example, deallocation of
c
 hunks), but it does not allow higher modules to specify
o� perations that should be logged logically.

11 Related Work

There are many systems aimed at providing secure stor-
ag� e. TDB differs from most of them because of its
uniq
 ue trust model.

In
�

 another paper at this conference, Fu et al. describe a
read-only file system that may be stored in untrusted
s� ervers [FKM00]. A hash tree is embedded in the inode
h

�
ierarchy. The trusted creator signs the root hash with

the tim
�

e of update and expiration. This system is not
des

�
igned to handle frequent updates or updates to indi-

v� idual file blocks in the untrusted server.

Techniques for securing audit logs stored on weakly-
protected h� osts are suitable for securing append-only
d

�
ata that is read infrequently and sequentially by a

tru
�

sted computer [BY97, SK98]. They employ a linear
ch
 ain of hash values instead of a tree. When the data
needs to be read, it is validated by recomputing the hash
ov� er the entire log. These techniques are not suitable for
a database sy� stem such as ours, which requires frequent
an� d random read-write access to data.

B
-

lum et al. considered the problem of securing various
d

�
ata structures in untrusted memory using a hash tree

rooted in a small amount of trusted memory [BEG+91].
T

�
his work does not address storage management for

p� ersistent data.

Som
�

e systems provide secure storage by dispersing data
o� nto multiple hosts, with the expectation that at least a
certain f
 raction of them (for example, two-thirds) will
be h

�
onest. The data may be replicated as-is for time

ef� ficiency [CL99], or it might be encoded to reduce the
cu
 mulative space overhead [Rab89, Kra93, GGJ+97].
R

'
ead requests are broadcast to all machines and the data

returned is error corrected. This approach provides re-
covery0 from tampering, not merely tamper detection.
Ho

�
wever, it relies on more trusted resources than are

av� ailable to TDB. The expectation of an honest quorum
is

	
based on the assumption that, under normal opera-

tio
�

n, the hosts are weakly protected but not hostile, so

the d
�

ifficulty for a hostile party to take over k
�
 hosts in-

creases sig
 nificantly with k
�
.

Ou
�

r use of log-structured storage builds on a previous
w� ork on log-structured storage systems [RO91,
JKH93]. T

�
he Shadows database system is log structured

an� d provides snapshots [Ylo94]. Otherwise, there has
b

�
een little interest in log-structured database systems,

perh� aps because of the need to keep large sets of data
ph� ysically clustered or to keep the log compact using
lo

!
gical logging.

12 Conclusions

W

e have presented a trusted database system that lever-
ag� es a trusted processing environment and a small
am� ount of trusted storage to extend tamper-detection
an� d secrecy to a scalable amount of untrusted storage.
The architecture integrates encryption and hashing with
a � low-level data model, which protects data and meta-
d

�
ata uniformly. The model is powerful enough to sup-

p� ort higher-level database functions such as transac-
tio

�
ns, backups, and indexing.

W

e found that log-structured storage is well suited for
b

�
uilding such a system. The implementation is simpli-

f
�
ied by embedding a hash tree in the comprehensive

location map that is central to log-structured systems:
obj� ects can be validated as they are located. The check-
p� ointing optimization defers and consolidates the
propag� ation of hash values up the tree. Because updates
are � not made in place, a snapshot of the database state
can b
 e created using copy-on-write, which facilitates
incremental backups.

W

e measured the performance of TDB using micro-
b

�
enchmarks as well as a high-level workload. The data-

base ov
�

erhead was dominated by writes to the untrusted
store � and the tamper-resistant store, which may vary
s� ignificantly based on the types of devices used. The
ov� erhead of encryption and hashing was only 6% of the
to

�
tal. On this workload, TDB outperformed a system

t
�
hat layers cryptography on an off-the-shelf embedded
dat

�
abase system, while also providing more protection.

This supports the suitability of the TDB architecture.

A
�

cknowledgements

Olin Sib
�

ert and Susan Owicki motivated us to work on
t

�
his problem. Various members of STAR Lab and In-
terT

�
rust provided useful comments and help with per-

f
�
ormance measurement. Our shepherd, Frans Kaashoek,

guid� ed us in improving the presentation.

References

[Auc96] D. Aucsmith. Tamper resistant software: an
im

	
plementation. In Pr

\
oc. International Workshop on

Information Hiding, % Lecture Notes in Computer Sci-
en� ce, Vol. 1174, Cambridge, UK, 1996, pp. 317-333.

[BEG+91] M. Blum, W. Evans, P. Gemmel, S. Kannan,
an� d M. Naor. Checking the correctness of memories. In
Pr

\
oc. IEEE Conf. on Foundations of Computer Science, %

S
�

an Juan, Puerto Rico, 1991, pp. 90-99.

[BHS95] T. Blackwell, J. Harris, and M. Seltzer. Heu-
ristic � cleaning algorithms in log-structured file systems.
In Proc. USENIX Technical Conference, New% Orleans,
L

E
A, 1995, pp. 249-264.

[BY97] M. Bellare and B. Yee. Forward integrity for
secu� re audit logs. Technical Report, C% omputer Science
a� nd Engineering Department, University of Califo rnia at
S

�
an Diego, 1997.

[Coh93] F. Cohen. Operating system protection through
prog� ram evolution. In Computers & Security, 12(6),
Oxford

/
, 1993. %

[CL99] M. Castro and B. Liskov. Practical byzantine
fault tolerance. In Proc. Symposium on Operating Sys-
t� ems Design and Implementation, New% Orleans, LA,
1999, pp. 173-186.

[CTL98] C. Collberg, C. Thomborson, and D. Low.
Manuf

�
acturing cheap, resilient, and stealthy opaque

c
 onstructs. In Proc. ACM Principles of Programming
Languages, S% an Diego, CA, 1998, pp. 184-196.

[Dal00] Dallas Semiconductor secure microcontroller
family,
h

�
ttp://www.dalsemi.com/products/micros/secure.html,

August
�

2000.
u

[FKM00] K. Fu, F. Kaashoek, and D. Mazieres. Fast
an� d secure distributed read-only file system. To appear
in Proc. Symposium on Operating Systems Design and
Imp

�
lementation, S% an Diego, CA, 2000.

[GGJ+97] J. Garay, R. Gennaro, C. Jutla, and T. Rabin.
S

�
ecure distributed storage and retrieval. In Proc. Intl.

Workshop on Distributed Algorithms, Berlin% , Germany,
1997, pp. 275-289.

[GR93] J. Gray and A. Reuter. Transaction processing:
concept0 s and techniques. Morgan Kaufmann Publish-
ers� , 1993.

[HMF+99] N. Hutchinson, S. Manley, M. Federwisch,
G. Harris

B
, % D. Hitz, S. Kleiman, S. O’Malley. Logical vs.

ph� ysical file backup. In Proc. Symp. on Operating Sys-
t� em Design and Implementation, New% Orleans, LA,
1999, pp. 239-249.

[Hwa94] D. Hwang. Function-based indexing for ob-
ject

�
-oriented databases. Ph

\
D thesis, Mas% sachusetts In-

s� titute of Technology, 1994.

[Inf00] Infineon Technologies. Eurochip II—SLE 5536,
h

�
ttp://www.infineon.com/cgi/ecrm.dl

!
l/ecrm/scripts/prod

_ov.jsp?oid=14702&cat_oid=-8233, August
 2000.

[Int00] InterTrust Technologies Corp. Digital rights
management. http://www.intertrust.com/de/index.html,
August

�
2000.

u

[IBM00] IBM. Cryptolope technology,
http://www.software.ibm.com/security/cryptolope, Au-
g� ust 2000.

[JKH93] W. Jonge, M. F. Kaashoek, W. Hsieh. The
logical disk: a new approach to improving file systems.
In

�
 Pr

\
oc. ACM Symposium on Operating Systems Prin-

ciples0 , A% sheville, NC, 1993, pp. 15-28.

[KK99] O. Kommerling and M. Kuhn. Design princi-
ples f� or tamper-resistant smartcard processors. In Proc.
USENIX Workshop on Smartcard Technology, C% hicago,
IL

�
, 1999.

[Kra93] H. Krawczyk. Distributed fingerprints and se-
cure inf
 ormation dispersal. In Pr

\
oc. ACM Symp. on

Pr
\

inciples of Distributed Computing, Ith% aca, NY, 1993,
pp. 207-� 218.

[Mer80] R. Merkle. Protocols for public key cryptosys-
tem

�
s. In Proc. IEEE Symposium on Security and Pri-

vacyW , Oak% land, CA, 1980, pp. 122-134.

[MOV96] A. Menezes, P. van Oorschot, and S.
V

�
anstone. Handbook of applied cryptography. CRC

Pres
f

s, 1996.

[Rab89] T. Rabin. Efficient dispersal of information for
security� , load balancing, and fault tolerance. Jour

�
nal of

th� e ACM, 36(2), 1989, pp. 335-% 348.

[RO91] M. Rosenblum and J. Ousterhout. The design
an� d implementation of a log-structured file system. In
Pr

\
oc. ACM Symposium on Operating Systems Princi-

pl8 es, Paci% fic Grove, CA, 1991, pp. 1-15.

[SBV95] O. Sibert, D. Bernstein, and D. Van Wie.
DigiBox: a self protecting container for information
com
 merce. In Proc. USENIX Conference on Electronic
Commerce, New% York, NY, 1995, pp. 171-186.

[SK98] B. Schneier and J. Kelsey. Cryptographic sup-
port f� or secure logs on untrusted machines. In Proc.
USENIX Security Symposium, S% an Antonio, TX, 1998,
pp. 52-� 62.

[SPW98] S. Smith, E. Palmer, and S. Weingart. Using a
h
�
igh-performance, programmable secure coprocessor.

In Proc. Intl. Conf. on Financial Cryptography, A% n-
g� uilla, British West Indies, 1998.

[Wav99] Wave Systems Corp. The Embassy e-
com
 merce system.
h
�
ttp://www.wave.com/technology/Embassywhitepaper.p

d
�
f, August 2000.

[Xer00] ContentGuard, Rights management from
Xerox, http://www.contentguard.com, August
 2000.

[Yl o94] T. Ylonen. Shadow paging is feasible. Licenti-
ate’s thesis) , Hel% sinki University of Technology, 1994.

