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Ab
�

stract  

So
�

me emerging applications require programs to main-
tain sensitive state o

�
n untrusted hosts. This paper pre-

sen� ts the architecture and implementation of a trusted 
d

�
atabase system, TDB, which leverages a small amount 

of�  trusted storage to protect a scalable amount of un-
tru

�
sted storage. The database is encrypted and validated 

against � a collision-resistant hash kept in trusted storage, 
s� o untrusted programs cannot read the database or mod-
if

	
y it undetectably. TDB integrates encryption and hash-

ing with a low-level data model, which protects data 
and�  metadata uniformly, unlike systems built on top of a 
co
 nventional database system. The implementation ex-
p� loits synergies between hashing and log-structured 
storag� e. Preliminary performance results show that 
TDB outperforms an off-the-shelf embedded database 
s� ystem, thus supporting the suitability of the TDB archi-
tectu

�
re. 

1 Introduction 

So
�

me emerging applications require trusted programs to 
run on untrusted hosts. For example, vendors of digital 
g� oods such as software and music need to control the 
u
 se of their goods according to their contracts with the 
con
 sumers. The contracts may be enforced by executing 
a tru� sted program on the consumer’s computer or play-
ing device  [SBV95, IBM00, Xer00].  

Of
�

ten, trusted programs need to maintain some sensi-
tiv

�
e, persistent state. For example, under a pay-per-use 

con
 tract, the program may verify and debit the con-
su� mer’s account. Or, under a limited-use trial, the pro-
g� ram may count and limit the number of times the good 
is 

	
used. The amount of such state may grow with the 

n� umber of vendors, goods, and the types of contracts. 
Furthermore, the sensitive nature of the state makes it 
desirable 

�
to protect it from both tampering and acciden-

tal corru
�

ption. Therefore, the state should be stored in a 
scalable an� d trusted database system. 

Altho
�

ugh a trusted program runs on the client, it could 
maintain its database on a trusted server for best secu-
rity� . However, this may require frequent communication 

b
�
etween the trusted program and the server, which is 

con
 straining for devices with poor connectivity. Ideally, 
con
 sumers should be able to use goods distributed on 
mass media or previously hoarded on their devices, 
ev� en when they are disconnected from the network. 
T

�
herefore, it is desirable to maintain the database on the 

client sid
 e. 

T
�

he party hosting the database storage has the opportu-
nity to alter its state for unauthorized benefits. For ex-
am� ple, a consumer could save a copy of the local data-
bas

�
e, purchase some goods, then r� eplay the saved copy, 

t
�
hus eliminating payments for the purchased goods. 

It is d
�

ifficult to secure a trusted program and its data-
b

�
ase because the hosting party ultimately controls the 

und
 erlying hardware and the operating system. How-
ev� er, a number of emerging trusted platforms provide a 
p� rocessing environment that runs o

�
nly trusted programs 

an� d resists reverse engineering and tampering.  Such 
platf� orms employ a hardware package containing a 
processor, m� emory, and tamper-detecting circuitry 
[SPW98, KK99, Wav99, Dal00], or various techniques 
f

�
or software protection [Coh93, Auc96, CTL98]. How-

ever, these p� latforms do not provide trusted persistent 
storag� e in bulk because it is difficult to prevent read and 
w� rite access to devices such as disk and flash memory 
from outside the trusted platform. 

T
�

his paper presents the architecture and implementation 
of�  a trusted database system, TDB. By “ trust” we mean 
secrecy�  (protection against reading from untrusted pro-
g� rams) and ta� mper detection (protection against writing 
from untrusted programs). An untrusted program cannot 
b

�
e prevented from tampering with the data, but such 

d
�
ata fails validation when a trusted program reads it. 

This enables the trusted program to reject the data and 
perh� aps refuse further operation. 

TDB may also be used to protect a database stored at an 
u
 ntrusted server. Such a database may be used by client 
d

�
evices that do not have enough local storage. In this 

case, th
 e user may have no incentive to tamper with the 
clien
 t device, so no explicit mechanisms may be re-
q� uired to provide a trusted platform on the client. 



1.1 Basic Trust Management 

T
�

DB leverages a trusted processing environment and a 
sm� all amount of trusted storage available on the plat-
form. It provides secrecy by encrypting data with a key 
h

�
idden in secret storage. It provides tamper detection by 

leveraging a small amount of tamper-resistant storage, 
as�  described below. 

A
�

 common mechanism for validating data is to sign it 
w� ith a secret key. However, signed data is vulnerable to 
replay�  attacks. The attack is easy because it does not 
require understanding the data; it works even when the 
data is en

�
crypted. TDB resists replay attack by storing a 

co
 llision-resistant hash of the database in tamper-
resistant storage [MOV96]. When a trusted program 
w� rites and reads database objects, TDB updates and 
valid� ates the database hash efficiently by maintaining a 
tr

�
ee of hash values over the objects, as suggested by 

Merk
�

le [Mer80].  

TDB provides an option to use a tamper-resistant 
cou
 nter, which cannot be decremented, in place of ge-
n� eric tamper-resistant storage. After each database up-
date, T

�
DB increments the counter and generates a cer-

tif
�

icate containing the counter value and the database 
h

�
ash. The certificate is signed with the secret key and 

stored in�  untrusted storage. 

1.2 Storage Management 

T
�

o protect the state from accidental corruption, TDB 
prov� ides standard database-system services such as 
crash
  atomicity, concurrent transactions, type checking, 
pick� ling, cache management, and index maintenance. 

One 
�

might consider building a trusted database system 
b

�
y layering cryptography on top of a conventional data-

base sy
�

stem. This layer could encrypt objects before 
sto� ring them in the database and maintain a tree of hash 
v� alues over them. This architecture is attractive because 
it does not require building a new database system. Un-
fortunately, the layer would not protect the metadata 
in

	
side the database system. An attack could effectively 

del
�

ete an object by modifying the indexes. There could 
be 

�
some performance problems as well. For example, 

the d
�

atabase system could not maintain ordered indexes 
for range queries on encrypted data.  

For th
�

ese reasons, TDB applies hashing and encryption 
to

�
 a low-level data model, which protects data and 

metadata uniformly. It also enables TDB to maintain 
ordered i� ndexes on data. 

To protect the sensitive state from media failures such 
as d� isk crashes, TDB provides the ability  to create 
back

�
ups and to restore valid backups. An attacker might 

fake a media failure and restore a backup to rollback the 

state. T� o limit the extent of a rollback, it is desirable to 
make frequent backups and disallow restoring old back-
up
 s. TDB facilitates this by providing incremental 
back

�
ups [HMF99]. 

W
 

e discovered and exploited the synergy between the 
f

�
unctions mentioned above and log-structured storage 

sy� stems [RO91]. Log-structured systems have a com-
preh� ensive and hierarchical location map, because all 
obj� ects are relocatable. Embedding the hash tree in the 
location map allows an object to be validated as it is 
located. 

!
The checkpointing optimization defers and 

con
 solidates the propagation of hash values up the tree. 
Co

"
py-on-write using the location map provides cheap 

sn� apshots, which enables incremental backups. Fur-
th

�
ermore, the absence of fixed object locations makes it 

hard to link multiple updates to the same object, thus 
resisting so� me traffic-monitoring attacks. 

Preliminary performance results show that TDB outper-
f

�
orms a system that layers cryptography on top of an 

o� ff-the-shelf database system. The database overhead is 
dom

�
inated by I/O; encryption and hashing represent 

o� nly 6% of the total overhead. 

1.3 Outline 

The rest of this paper is organized as follows. Section 2 
specif� ies the infrastructure TDB requires and the ser-
v� ice it provides. Section 3 describes the overall archi-
tectu

�
re of TDB. Sections 4 and 5 describe the integra-

tio
�

n of encryption and hashing in a low-level data 
model. Section 6 describes backup creation and re-
s� tores. Sections 7 and 8 briefly describe the construc-
tio

�
n of database functions over the low-level data 

model. Section 9 gives preliminary performance results. 
Sectio

�
n 10 describes potential extensions to TDB. Sec-

tio
�

n 11 compares TDB with related work. Section 12 
d

�
raws some conclusions. 

2 
#

System Specification 

T
�

his section specifies the infrastructure TDB requires 
and�  the service it provides to applications. 

2.1 Required 
#

Infrastructure 

T
�

DB requires a trusted platform that provides the fol-
lowing, as shown in Figure 1: 
• T

$
rusted processing environment, w% hich executes only 

trusted
�

 programs and protects the volatile state of an 
ex� ecuting program from being read or modified by 
u
 ntrusted programs. The static image of a trusted 
prog� ram need not be secret. 



• Secret store
&

: a small  amount (e.g., 16 bytes) of read-
on� ly persistent storage that can be read only by a 
t

�
rusted program. 

• Tamper-resistant store: a small amount (e.g., 16 
b

�
ytes) of writable persistent storage that can be writ-

ten o
�

nly by a trusted program. Alternatively, the tam-
per-� resistant store may be a counter that cannot be 
decrem
�

ented. In either case, we assume that the tam-
per-� resistant store can be updated atomically with re-
spect to crash� es. 
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Figure 1: The trusted platform 

T
�

he trusted platform may be a hardware package such 
as�  the IBM secure cooprocessor [SPW98], which con-
tain

�
s a processor, battery-backed SRAM, DRAM, and 

ROM. 
'

The ROM firmware loads only trusted programs 
using a
  hash supplied during the manufacturing process. 
T

�
he battery-backed SRAM is zeroed if tampering is 

detected, so it can
�

 serve as both secret and tamper-
resistant store.  

T
�

he infrastructure also provides an u( ntrusted store to 
hold the database. It is persistent, allows efficient ran-
d

�
om access, and can be read and written by any pro-

gr� am. This might be a disk, flash memory, or an un-
tru

�
sted storage server connected to the trusted platform.  

An 
�

ar) chival store is needed to recover from the failures 
of�  the untrusted store. It is also untrusted. It need not 
prov� ide efficient random access to data, only input and 
ou� tput streams. It might be a tape or an ftp server. We 
assum� e its failures are independent of the untrusted 
sto� re. 

W
 

e assume that suitable steps are taken when tampering 
is detected. The exact nature of such steps is outside the 
s� cope of this paper. 

 

2.2 Service 
#

Provided 

W
 

e list the functions of TDB below. 

Trusted storage: TDB provides tamper-detection and 
secrecy�  for bulk data. This includes resistance to replay 
attack� s and attacks on metadata. 

Partitions: An application may need to protect different 
t

�
ypes of data differently. For example, it may have no 
need to encrypt some data or to validate other data. 
TDB allows an application to create multiple logical 
p� artitions, each protecting data with its own crypto-
gr� aphic parameters: 
• a secret k� ey 
• a ciph� er (an encryption algorithm), e.g., 3DES 
• a co� llision-resistant hash function, e.g., SHA-1 

Us
*

ing appropriate parameters avoids unnecessary time 
an� d space overhead. Using different secret keys reduces 
the lo

�
ss from the disclosure of a single key. This should 

no� t be confused with a) ccess control among trusted par-
ties, w

�
hich may be provided in a higher layer, if needed. 

At
+

omic updates: TDB can update multiple pieces of 
data 

�
atomically with respect to fail-stop crashes such as 

pow� er failures. 

Backups
,

: TDB can back up a consistent snapshot of a 
set o� f partitions and restore a backup after validation. 
B

-
ackups allow recovery from media corruption. TDB 

prov� ides fast incremental
.

 backups, which contain only 
ch
 anges made since a previous backup. 

Concurrent transactions: TDB provides serializable 
access � to data from concurrent transactions. Unlike 
shar� ed databases or file servers, TDB is not designed 
f

�
or simultaneous access by many users. Therefore, its 

c
 oncurrency control is geared to low concurrency. It 
em� ploys techniques for reducing latency, but lacks so-
p� histicated techniques for sustaining throughput. 

Database size: TDB allows the database to scale with 
g� radual performance degradation. It uses scalable data 
stru� ctures and fetches data piecemeal on demand. How-
ev� er, it relies on a cacheable working set for perform-
an� ce because its log-structured storage may destroy 
p� hysical clustering. Another limitation is its no-steal 
bu

�
ffering of dirty data, which does not scale to transac-

tio
�

ns with many modifications [GR93]. 

Objects
/

: TDB stores abstract objects that the applica-
tio

�
n can access without explicitly  invoking encryption, 

va� lidation, and pickling. TDB pickles objects using 
appl� ication-provided methods so the stored representa-
tion

�
 is compact and portable. 

Collection and Indexes: TDB provides index mainte-
n� ance over collections0  of objects. A collection is a set 



of�  objects that share one or more indexes. An index 
prov� ides scan, exact-match, and range iterators. 

3 
1

System Architecture 

TDB is designed for use on personal computers as well 
as sm� aller devices. The architecture is layered, so appli-
catio
 ns can trade off functionality for smaller code size. 
In

�
 Figure 2, boxes represent modules and arrows repre-

sen� t dependencies between them. Dashed boxes repre-
sent inf� rastructural modules. 
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Fig
�

ure 2: System architecture 

The chunk store prov� ides trusted storage for a set of 
named chunks0 . A chunk is a variable-sized sequence of 
b

�
ytes that is the unit of encryption and validation. (We 

e� xpect chunk sizes between 100 bytes and 10 Kbytes.) 
A

�
ll data and metadata from higher modules are stored 

a� s chunks. Chunks are logically grouped into partitions 
w� ith separate cryptographic parameters. Partitions can 
b

�
e snapshot using the copy-on-write technique.  

Chunks 
"

are stored in the untrusted store. The chunk 
s� tore supports atomic updates of multiple chunks in the 
presen� ce of crashes. It hides logging and recovery from 
higher modules. This architecture does not support logi-
c
 al logging, but the variable-sized chunks form a more 
com
 pact log than fixed-sized pages. 

Th
�

e backup s
5

tore creates and restores a set of partition 
b

�
ackups. The chunk store and the backup store encapsu-

late secrecy
!

 and tamper-detection. This enables the 
higher modules to provide database management with-
o� ut worrying about trust. 

Th
�

e object store manages a set of named objects. It 
sto� res pickled objects in chunks—one or more objects 
p� er chunk. It keeps a cache of frequently-used or dirty 
obj� ects. Caching data at this level is beneficial because 
th

�
e data is decrypted, validated, and unpickled. The 

obj� ect store also provides read transactional access to 
obj� ects using read-write locking. 

Th
�

e col0 lection store manages a set of named collections 
of�  objects. It updates the indexes on a collection as 
needed. Collections and indexes are themselves repre-
sen� ted as objects. 

This paper focuses on integrating trust with storage 
management in the chunk store and the backup store. It 
d

�
escribes higher modules briefly to show that the chunk 

s� tore is able to support them, and to explain a high-level 
p� erformance benchmark we use. 

4 Chunk Store: Single Partition 

To simplif y presentation, this section describes the 
c
 hunk store as it would be in the absence of multiple 
p� artitions. Section 5 describes multiple partitions.  

4.1 Specif
6

ication 

T
�

he chunk store manages a set of chunks named with 
uniq
 ue ids. It provides the following operations:  
• Allocate() returns ChunkId 

Re
'

turns an unallocated chunk id. 
• Write(chunkId, bytes) 

Se
�

ts the state of chunkId to bytes, possibly of differ-
e� nt size than the previous state. Signals if chunkId is 
n� ot allocated. 

• Read(chunkId) returns Bytes 
Re
'

turns the last written state of chunkId. 
Signa
�

ls if chunkId is not written. 
• Deallocate(chunkId) 

D
7

eallocates chunkId. 
Signa

�
ls if chunkId is not allocated. 

Tamper Detection: In an idealized secret and tamper-
pr8 oof chunk store, the operations listed above would be 
availab� le only to trusted programs. Since tampering 
w� ith the untrusted store cannot be prevented, the chunk 
s� tore provides tamper-d

9
etection instead. It behaves like 

the tam
�

per-proof store, except its operations may signal 
tam

�
per detection if the untrusted store is tampered with. 



Cra
:

sh Atomicity and Durability: The write and deal-
locate operations are special cases of a commit0  opera-
tio

�
n. In general, a number of write and deallocate opera-

tio
�

ns may be grouped into a single commit, which is 
ato� mic with respect to fail-stop crashes.  

A
�

llocated but unwritten chunks are deallocated auto-
matically upon system restart. We have deliberately 
sep� arated allocate and commit operations. An alterna-
tive

�
 is to allocate ids when new, unnamed chunks are 

co
 mmitted. However, this alternative does not allow an 
a� pplication to store a newly-allocated chunk id in an-
o� ther chunk during the same commit operation, which 
m; ay be needed for data integrity. Systems that swizzle 
ap� plication-provided references into persistent ids upon 
co
 mmit do not face this problem. However, the chunk 
sto� re does not interpret application data chunks. 

Concurrency Control: 
:

Operation
�

s are executed in a 
se� rializable manner. However, the chunk store is un-
aw� are of transactions. Allocate, read, and commit op-
eratio� ns from different transactions may be interleaved. 

4.2 Implementation Overview 

This section gives an overview of the implementation; 
sub� sequent sections give further detail.  

The chunk store writes chunks by appending them to a 
log in the untrusted store. As in other log-structured 
sy� stems, chunks do not have static versions outside the 
log [RO91]. When a chunk is written or deallocated, its 
prev� ious version in the log, if any, becomes obsolete. 

T
�

he chunk store uses a chunk map0  to locate and validate 
the

�
 current versions of chunks. To scale to a large num-

b
�
er of chunks, the chunk map is itself organized as a 

tr
�

ee of chunks. Updates to the chunk map are buffered 
an� d written to the log occasionally. Updates lost upon a 
crash
  are recovered from the log.  

Se
�

crecy is provided by encrypting chunks with the key 
in

	
 the secret store. Tamper-detection is provided by 

creatin
 g a path of has
<

h links from the tamper-resistant 
sto� re to every current chunk version. We say there is a 
ha

�
sh link from data x=  to y>  if x=  contains a hash of some 

d
�
ata that includes y> . If x=  is linked to y>  via one or more 

links 
!

using a collision-resistant hash function, it is com-
p� utationally hard to change y>  without changing x=  or 
break
�

ing a hash link [Mer80]. The hash links are em-
b
�
edded in the chunk map and the log. 

Se
�

rializability  of operations is provided through mutual 
e� xclusion, which does not overlap I/O and computation, 
bu
�

t is simple and acceptable when concurrency is low. 

4.3 Chunk 
6

Map 

T
�

he chunk map maps a chunk id to a chunk des0 criptor, %

w� hich contains the following information: 
• sta� tus of chunk id: unallocated, unwritten, or written 
• if

	
 written, current location in the untrusted store 

• if written, expected hash value of chunk 

Figur
�

e 3 shows the tree structure of the chunk map. The 
leaves are the chunks created by the applications of the 
c
 hunk store; we call them dat

9
a c
 hunks. (These include 

c
 hunks containing metadata of higher modules, for ex-
am� ple, the indexing data of the collection store.) Each 
inte

	
rnal chunk, called a map chunk? , stores a f% ixed-size 

vecto� r of chunk descriptors. In the figure, each shaded 
slo� t is a chunk descriptor, and an arrow links the chunk 
c
 ontaining the descriptor to the chunk described by the 
d

�
escriptor. The chunk at the top contains the descriptor 

o� f the root map chunk and some additional metadata 
need� ed to manage the tree; we call it the l

@
eader c
 hunk. 

The descriptor of the leader chunk is retrieved at 
sta� rtup, as described later. The chunk store interprets 
m; ap and leader chunks, but not data chunks. 

3.1

2.1

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

leader chunk

map chunks

data chunks

2.2 2.3

L.
A

L

 

Figur
�

e 3: The chunk map 

For u
�

niformity of access and storage management, non-
d

�
ata chunks are also named using chunk ids. The id of a 

c
 hunk encodes its p8 osition in the tree. The position 
c
 omprises the height of the chunk in the tree and its 
rank from the left among the chunks at that height. In 
the

�
 figure, chunk ids are denoted as “hei

<
ght.rank”. As 

the
�

 tree grows, new chunks are added to the right and to 
the 

�
top, which preserves the positions of existing 

c
 hunks. (The position of the leader does change, so it is 
g� iven a reserved id instead.) Besides unifying access to 
c
 hunks, this approach enables id-based navigation of 
the m

�
ap without storing ids in the map explicitly . 

4.4 Allocate Operation 

Ids of deallocated data chunks are reused to keep the 
chunk m
 ap compact and conserve id space. Deallocated 
id

	
s are linked through a free list embedded in the de-

scriptors. T� he head of the list is stored in the leader.  



As mentioned, id allocation is not persistent until the 
c
 hunk is written (committed). Upon system restart, 
c
 hunk ids that were previously allocated but not written 
are m� ade available in the free list for re-allocation. 

4.5 Read Operation 

G
B

iven a chunk id c0 , its state m% ay be located and vali-
dat

�
ed by traversing the path of descriptors from the 

leader to c0 . For each descriptor in the path, the chunk 
state is f� ound as follows. The encrypted state is read 
f

�
rom the location stored in the descriptor. It is de-

cry
 pted using the secret key. The decrypted state is 
h

�
ashed. If  the computed hash does not match that stored 

in the d
	

escriptor, tamper detection is signaled. 

For better performance, the chunk map keeps a cache of 
d

�
escriptors indexed by chunk ids. Also, the leader 

chunk is p
 inned in the cache. The cached data is de-
cry
 pted, validated, and unpickled.  

If
�

 the descriptor for c0  is not in cache, the read operation 
looks for the descriptor of c0 ’s parent chunk. Thus, the 
read operation�  proceeds bot

5
tom up until it finds a de-

scriptor in�  the cache. Then it traverses the path back 
dow

�
n to c0 , r% eading and validating each chunk in the 

path� . This approach exploits the validated cache to 
avo� id validating the entire path from the leader to the 
sp� ecified chunk. 

4.6 Com
6

mit Operation 

T
�

he commit operation hashes and encrypts each chunk 
to

�
 be written, and writes the encrypted state to the log in 

the
�

 untrusted store. We refer to the set of chunks written 
as th� e co0 mmit set. 

W
 

hen a chunk c0  is written or deallocated, its descriptor 
is 

	
updated to reflect its new location, hash, or status. 

Co
"

nceptually, this changes c0 ’s parent chunk d
9
; if d

9
 were 

also�  written out, its descriptor would be updated, and so 
o� n up to the leader, whose descriptor would be written 
to

�
 the tamper-resistant store. Instead, to save time and 

log space, the chunk store updates c0 ’s descriptor in 
cach
 e and marks it as dirty so it is not evicted. The bot-
tom

�
-up search during reads ensures that the stale de-

s� criptor stored in d
9
 is not used. 

4.7 Checkpoint 
6

W
 

hen the cache becomes too large because of dirty 
d

�
escriptors, all map chunks containing dirty descriptors 

and�  their ancestors up to the leader are written to the 
log

!
. This is done as a special commit operation called a 

checkpoint0 . In practice, checkpoints happen infre-
qu� ently compared to regular commits. Other log-
stru� ctured systems use similar checkpoints to defer and 

co
 nsolidate updates to the location map [RO91]. The 
c
 hunk store extends the optimization to propagating 
ha

�
sh values up the chunk map. 

The leader is written last during a checkpoint. We refer 
to

�
 the part of the log written before the leader as the 

checkpointed log0  and the part including and after the 
leader as the residual log. Figure 4 shows a simple ex-
a� mple, where the log tail contains some data chunks, 
p� ossibly written in multiple commits, a checkpoint con-
ta

�
ining the affected map chunks and the leader chunk, 

a� nd some more data chunks. Arrows link chunks as in 
Figure 3. 

1.51.4 3.
C

1 L.L1.1 2.2 2.1...D

checkpoint

1.1

checkpointed log residual log

1.71.3 1.51.1

 

Figur
�

e 4: Checkpointing the chunk map 

4.8 Recovery 
6

A c
�

rash loses buffered updates to the chunk map, but 
th

�
ey are recovered upon system restart by rolling for-

w� ard through the residual log. Section 4.9 describes 
h

�
ow the log is represented so the recovery procedure 

may find the sequence of chunks in the residual log. 

Fo
�

r each chunk in the residual log, the recovery proce-
du

�
re computes the descriptor based on its location and 

hash, and puts the descriptor in the chunk-map cache. 
T

�
his procedure requires additional support from the 

c
 ommit operation to redo chunk deallocations and to 
va� lidate the chunks in the residual log. This is described 
in the next tw

	
o sections. 

4.8.1 Chunk Deallocation 

Fo
�

r each chunk to be deallocated, the commit operation 
w� rites a deal

9
locate chunk to the log, which contains the 

id
	

 of the deallocated chunk.  

Deallocate chunks are instances of unnamed chunks( : 
the

�
y do not have chunk ids or positions in the chunk 

m; ap. This is acceptable because they are used solely for 
recovery from the residual log and are always obsolete 
in

	
 the checkpointed log. 

Like
E

 other chunks, unnamed chunks are encrypted with 
th

�
e secret key. They are also protected against tamper-

in
	

g, as described in the next section. Otherwise, an at-



ta
�

ck could cause a chunk to be un-deallocated. Or, an 
a� ttack could replay the deallocation of a chunk id after 
it was re-allocated. 

4.8.2 Validation of Residual Log 

Altho
�

ugh checkpointing defers the propagation of hash 
values up�  the chunk map, each commit operation must 
still � update the tamper-resistant store to reflect the new 
state � of the database. If the tamper-resistant store kept 
th

�
e hash of the leader and were updated only at check-

poi� nts, the system would be unable to detect tampering 
w� ith the residual log after a crash. We have imple-
m; ented two approaches for maintaining up-to-date vali-
d

�
ation information in the tamper-resistant store. 

4.8.2.1 Direct Hash Validation 

T
�

he chunk store maintains a sequential ha
�

sh of the re-
sid� ual log. The log hash is stored in the tamper-resistant 
store � and updated after every commit. Upon recovery, 
the 

�
hash in the tamper-resistant store is matched against 

th
�

e hash computed over the residual log. This approach 
is illustrated

	
 in Figure 5. 
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Fig
�

ure 5: Tamper-resistant store contains database hash 

A
�

 commit operation waits until the commit set is written 
to

�
 the untrusted store reliably before it updates the hash 

in
	

 the tamper-resistant store. Otherwise, a crash could 
leav

!
e the tamper-resistant store updated when the un-

trusted
�

 store is not, and cause validation to fail upon 
reco� very. The update to the tamper-resistant store is the 
real commit point: If there is a crash during this update, 
the p

�
revious value stored in the tamper-resistant store is 

recov� ered, and the last commit set in the untrusted store 
is ignored. The commit operation returns after the tam-
per-� resistant store is updated reliably. 

Direct hash validation creates paths of hash links from 
the

�
 tamper-resistant store to all current chunk ver-

sio� ns—in both the residual log and the checkpointed 
log. This is true because the tamper-resistant store is 
d

�
irectly linked to all chunks in the residual log, which 

in
	

cludes the leader from the last checkpoint, and the 
leader is linked through the chunk map to all current 
c
 hunk versions in the checkpointed log. Note that all 
unna
 med chunks in the residual log are linked as well.  
U

*
nnamed chunks in the checkpointed log are not linked, 

w� hich is not a weakness because all such chunks are 
obs� olete. 

4.8.2.2 Counter-based validation 

In this approach, upon each commit, a sequential hash 
o� f the commit set is stored in an unnamed chunk added 
to

�
 the log, called the commi0 t chunk. The commit chunk 

is 
	

signed with the secret key. (The signature need not be 
p� ublicly verifiable, so it may be based on symmetric-
key encryption [MOV96].) An attack cannot insert an 
arb� itrary commit set into the residual log because it will 
be u

�
nable to create an appropriately signed commit 

c
 hunk. Replays of old commit sets are resisted by add-
ing 

	
a count to the commit chunk that is incremented 

af� ter every commit. Deletion of commit sets at the tail 
o� f the log is resisted by storing the current commit 
cou
 nt in the tamper-resistant store. This approach is 
illustrated in Figure 6. 

 

c.L c.
73 1.

M
31.1

M c.L c.
74

hash
hash

1.
M

51.4
M

3.1
N

L.
O

L1.
M

1 2.2
P

2.
P

1..Q . 1.
M

7 1.
M

51.1
M c.L c.

75

hash

T.R. store
count = 75

secret key

c.L c.
72

sign

checkpointed log residual log

c.L c.
73 1.

M
31.1

M c.L c.
74

hash
hash

1.
M

51.4
M

3.1
N

L.
O

L1.
M

1 2.2
P

2.
P

1..Q . 1.
M

7 1.
M

51.1
M c.L c.

75

hash

T.R. store
count = 75

secret key

c.L c.
72

sign

checkpointed log residual log  

Figure 6: Tamper-resistant store contains commit count 

A checkpoint is followed by a commit chunk containing 
the

�
 hash of the leader chunk, as if the leader were the 

o� nly chunk in the commit set. The recovery procedure 
ch
 ecks that the hash of each commit set in the residual 
lo

!
g matches that stored in the commit chunk, and that 

the
�

 counts stored in the commit chunks form a se-
qu� ence. Finally, the procedure compares the count in 
the

�
 last commit chunk with that in the tamper-resistant 

store. T� he hash-links created in this approach are simi-
lar to

!
 those in direct hash validation, except that the 

c
 ommit chunks are signed and linked from the tamper-
r� esistant store through a sequence of numbers. 

Co
"

unter-based validation has several advantages. First, 
th

�
e tamper-resistant counter is a weaker requirement 

th
�

an a generic tamper-resistant store. Provided the 



cou
 nter cannot be decremented by any)  program, it does 
no� t need additional protection against untrusted pro-
gram� s. There is little incentive for untrusted programs 
to in

�
crement the counter because they would not be able 

to
�

 sign a commit chunk with the increased count.  

Seco
�

nd, the commit count allows the system to tolerate 
b

�
ounded discrepancies between the tamper-resistant 

store an� d the untrusted store, if desired. For example, 
the sy

�
stem might allow the count in the tamper-resistant 

sto� re, t� , to%  be a little behind the last count in the un-
trusted

�
 store, u( . This trades off security for perform-

an� ce. The security risk is that an attack might delete 
co
 mmit sets t� +R 1 through u( . The performance gain is that 
a co� mmit operation need not wait for updating the count 
in the tam

	
per-resistant store, provided (u( -t� ) 

S
is smaller 

than so
�

me threshold ∆
T

utU . This is useful if the tamper-
r� esistant store has high update latency. The system 
might also allow t�  to leap ahead)  of u(  by another thresh-
ol� d ∆tuV . This admits situations where the untrusted store 
is w

	
ritten lazily (e.g., IDE disk controllers often flush 

th
�

eir cache lazily) and the tamper-resistant store might 
be u

�
pdated before the untrusted store. The only security 

risk is the deletion of at most ∆tu V co
 mmit sets from the 
tail o

�
f the log. 

A
�

 drawback of counter-based validation is that tamper 
d

�
etection relies on the secrecy�  of the key used to sign 

the
�

 commit chunk. Therefore, if a database system 
needed to provide tamper-detection but not secrecy, it 
w� ould still need a secret store.  

4.9 Log Representation 

This section describes the structure of the data written 
to

�
 the log. The log consists of a sequence of chunks; we 

refer to the representation of a chunk in the log as a 
versioW n.  

4.9.1 Chunk 
X

Versions 

Chunk ve
"

rsions are read for three different functions: 
• Re

'
ad operation, which uses the chunk id and the de-

s� criptor to read the current version. 
• Log cleaning, which reads a seg� ment of the check-

p� ointed log sequentially. 
• Recovery, which reads the residual log sequentially. 

T
�

o enable sequential reading, the log contains informa-
tio

�
n to identify and demarcate chunks. Each chunk ver-

s� ion comprises a header followed by a body. The header 
c
 ontains the chunk id and the size of the chunk state. 
The header of an unnamed chunk contains a reserved id. 
Bot

-
h the header and the body are encrypted with the 

secret k� ey. Similarly, the hash of the residual log or a 
com
 mit set covers both headers and bodies.  

4.9.2 Head of Residual Log 

T
�

he recovery procedure needs to locate the head and the 
tail o

�
f the residual log. The head of the residual log is 

th
�

e leader. Its location is stored in a fixed place, as in 
oth� er log-structured storage systems. It need not be kept 
in tamper-resistant store: With direct hash validation, 
tam

�
pering with this state will change the computed hash 

o� f the residual log. With counter-based validation, it is 
possible f� or an attack to change the location to the be-
g� inning of another commit set. Therefore, the recovery 
p� rocedure checks that the chunk at the stored location is 
th

�
e leader. 

B
-

ecause the location of the leader is updated infre-
q� uently—upon each checkpoint—storing it at a fixed 
lo

!
cation outside the log does not degrade performance. 

T
�

his location is written after the writes to the untrusted 
store an� d the tamper-resistant store have finished. Its 
u
 pdate marks the completion of the checkpoint. If there 
is a crash before this update, the recovery procedure 
ignores the checkpoint at the tail of the log. 

4.9.3 Tail of Residual Log 

W
 

ith direct hash validation, the location of the log tail 
may be stored in the tamper-resistant store along with 
th

�
e database hash. This works well because the write to 

the tam
�

per-resistant store is the true commit point. 

W
 

ith counter-based validation, it is possible to infer the 
lo

!
cation of the tail from the log itself, as in conventional 

d
�
atabases [GR93]. The last commit set in the log may 

have been corrupted in a crash. The hash stored in a 
c
 ommit chunk serves well as a checksum for the commit 
set. T� he recovery procedure stops when the hash of a 
co
 mmit set does not match the hash stored in the com-
m; it chunk. 

4.9.4 Segments 

T
�

he untrusted store is divided into fixed-size segments 
to 

�
aid cleaning, as in Sprite LFS [RO91]. The segment 

size � is chosen for efficient reading and writing by the 
cl
 eaner, e.g., on the order of 100 KB for disk-based 
sto� rage. A segment is expected to contain many chunk 
ver� sions. The size of a chunk version cannot exceed the 
segm� ent size. A commit set may span multiple seg-
me; nts.  

T
�

he log is represented as a sequence of potentially non-
adj� acent segments. Since the recovery procedure needs 
to

�
 read the residual log sequentially, segments in the 

residual log contain an unnamed nextY -segment chunk at 
th

�
e end, which contains the location of the next seg-

me; nt.  



4.9.5 Log Cleaning 

T
�

he log cleaner reclaims the storage of obsolete chunk 
v� ersions and compacts the storage to create empty seg-
ments. It selects a segment to clean and determines 
w� hether each chunk version is current by using the 
c
 hunk id in the header to find the current location in the 
c
 hunk map. It then commits the set of current chunks, 
w� hich rewrites them to the end of the log [BHS95].  

The set of steps from selecting a segment to committing 
the

�
 current chunks happens atomically with respect to 

ex� ternally invoked operations. The cleaner may be in-
v� oked synchronously when space is low, but it is mostly 
invo

	
ked asynchronously during idle periods. 

The cleaner does not clean segments in the residual log, 
becau

�
se that would destroy the sequencing of the resid-

u
 al log. This also resolves what the cleaner should do 
w� ith unnamed chunks, because they are always obsolete 
in

	
 the checkpointed log. For performance reasons, the  

cleaner selects segm
 ents with low utilization. Details on 
the utilizatio

�
n metric and the maintenance of this infor-

m; ation are beyond the scope of this paper. 

The cleaner need not validate the chunks read from the 
segm� ent provided the commit operation for rewriting 
c
 urrent chunks does notY  update the hash values stored in 
c
 hunk descriptors. If the hashes are recomputed and 
u
 pdated, as they would be in a regular commit, the 
c
 leaner must validate the current chunks; otherwise, the 
c
 leaner might launder chunks modified by an attack. 
B

-
ecause of its simplicity, we have implemented the sec-

on� d, less efficient, approach. 

5 Chunk Store: Multiple Partitions 

T
�

his section describes extensions to the chunk store that 
p� rovide multiple partitions and partition copies. Multi-
p� le partitions enable the use of different cryptographic 
p� arameters for different types of data. Partition copies 
en� able fast backups. 

5.1 Specification 

The chunk store manages a set of named partitions, each 
c
 ontaining a set of named chunks. A chunk id comprises 
the

�
 chunk position, as before, and the id of the contain-

ing partition. (A chunk in one partition may have the 
sa� me position as another chunk in another partition.) 
T

�
he chunks in a partition are protected with the parame-

ters asso
�

ciated with it. 

  

 

 

The following partition operations are provided: 
• Alloc

Z
ate() returns PartitionId 

Returns an unallo
'

cated partition id. 
• Write(partitionId, secretKey, cipher, hashFunction) 

Sets the state o
�

f partitionId to an empty partition with 
th
�

e specified cryptographic parameters. 
• Write(partitionId, sourcePId) 

Co
"

pies the current state of sourcePId to partitionId. 
E

[
ach chunk in sourcePId is logically duplicated in 

p� artitionId at the same position. 
• Diff(oldPId, newPId) returns set<ChunkPosition> 

Re
'

turns a set containing chunk positions whose state 
is different in newPId and oldPId. 

• Deallocate(partitionId) 
Deallo

7
cates partitionId and all of its copies, and all 

c
 hunks in these partitions. 

Fur
�

thermore, the chunk allocate operation requires the 
id of the partition in which the chunk is to be created. A 
co
 mmit operation may include a number of write and 
d

�
eallocate operations on both partitions and chunks. 

This makes it possible, for example, to store the id of a 
ne� wly-written partition into a chunk in an existing parti-
tio

�
n in one atomic step. 

The next few sections describe how the extended speci-
f

�
ication is implemented. 

5.2 Multi-partition Chunk Map 

Figur
�

e 7 shows the structure of the multi-partition chunk 
map. Each written partition has a pos8 ition map, w% hich 
maps a chunk position in the partition to a descriptor. 
T

�
his map is like the single-partition map described in 

Se
�

ction 4.3. The map chunks in the position map of 
p� artition P

\
 belong to P

\
: their partition id is P

\
 and they 

are protected u� sing P
\

’s cryptographic parameters. In the 
figure, chunk ids are denoted as p8 artition:position.  
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Figur
�

e 7: Multi-partition chunk map 



The leader chunk for a partition contains information 
need� ed to manage the position map, as before, and the 
cry
 ptographic parameters of the partition, including the 
secret k� ey. The p8 artition map at the top maps a partition 
id

	
 to the partition leader. This map is managed like the 

p� osition map of a special partition, called the system�  
p� artition, which has a reserved id denoted S

&
 in the fig-

ur
 e. The partition leaders are the data chunks of the 
sy� stem partition and are protected using the crypto-
grap� hic parameters of the system partition. Many parti-
tio

�
n operations such as allocating a partition id or read-

ing a partition leader translate into chunk-level opera-
tio

�
ns on the system partition. 

Chunks in the
"

 system partition and the system leader are 
protected � using a fixed cipher and hash function that are 
con
 sidered secure, such as 3DES and SHA-1 [MOV96]. 
They are encrypted with the key in the secret store. 
T

�
hus, secrecy is provided be creating a path of ci0 pher 

lin
@

ks from the secret store to every current chunk ver-
sion� . We say that there is a cipher link from one piece 
o� f data to another if the second is encrypted using a key 
sto� red in the first. 

5.3 Partition Copies and Diffs 

To copy a partition P to Q
d

,%  the chunk store copies the 
con
 tents of P

\
’s leader to Q

d
’s leader. Thus, Q

d
 and P

\
 

sha� re both map and data chunks, and Q
d

 inherits the 
cry
 ptographic parameters of P

\
. Thus, partition copies 

are ch� eap in space and time. 

W
 

hen chunks in P are updated, the position map for P 
is up
	

dated, but that for Q
d

 continues to point to the 
c
 hunk versions at the time of copying. The chunks of Q

d
 

can
  also be modified independently of P
\

, b% ut the com-
m; on use is to create a read-only copy, called a s� napshot. 

The chunk store diffs two partitions by traversing their 
p� osition maps and comparing the descriptors of the cor-
responding chunks. Commonly, diffs are performed 
b

�
etween two snapshots of the same partition. 

5.4 Log Representation 

A commit set may contain chunks from different parti-
tio

�
ns. A chunk body

�
 is encrypted with the secret key 

a� nd cipher of its partition. However, chunk headers are 
en� crypted with the system key and cipher, so that clean-
in

	
g and recovery may decrypt the header without know-

ing the partition id of the chunk. 

T
�

he system leader is the head of the residual log, so it is 
linked from the tamper-resistant store. The residual log 
is 

	
hashed using the system hash function. Thus, each 

c
 hunk in a commit set is hashed twice: once with its 
p� artition-specific hash function to update the chunk 

des
�

criptor, and once with the system hash function to 
up
 date the log hash. In principle, the log hash could be 
c
 omputed over the partition-specific hashes of chunk 
bodies

�
. However, a weak partition hash function could 

th
�

en invalidate the use of the log hash as a checksum for 
recov� ery (see Section 5.4). For simplicity, and because 
hashing is relatively fast, we chose to keep the hashes 
sep� arate. 

5.5 Cleaning and Recovery 

Che
"

cking whether a chunk version is current is compli-
c
 ated by partition copies. A chunk header contains the 
id

	
 of the partition P

\
 to which it belonged when the 

c
 hunk was written. Even if the version is obsolete in P, %

it may be current in some direct or indirect copy of P. 
T

�
herefore, each partition leader stores the ids of its di-

rect copies and the cleaner checks for current-ness in 
th

�
e copies, recursively. The process would be more 

co
 mplex had it not been that the deallocation of a parti-
tio

�
n deallocates the partition’s copies as well. 

S
�

uppose the cleaner rewrites a chunk ve
�

rsion identified 
as � P:x that is current only in partitions Q

d
 and R. The 

com
 mit procedure updates the descriptors for Q:x
d

 and 
R:x

e
 in the cache. Further, in order that the recovery pro-

c
 edure is able to identify the chunk correctly, the 
c
 leaner appends an unnamed cl0 eaner chunk, w% hich 
sp� ecifies that the chunk is current in both Q

d
 and R

e
.  

6 Backup Store 

The backup store creates and restores backup s
5

ets. A 
back

�
up set consists of one or more p8 artition backups. 

T
�

he backup store creates backup sets by streaming 
b

�
ackups of individual partitions to the archival store and 

resto� res them by replacing partitions with the backu                         
ps read f� rom the archival store. 

6.1 Backup Consistency 

T
�

he backup store guarantees consistency of backup 
c
 reation and restore with respect to other chunk store 
o� perations. Instead of locking each partition for the en-
tire 

�
duration of backup creation, the backup store cre-

ates � a consistent snapshot of the source partitions using 
a � single commit operation. It then copies the snapshots 
to 

�
archival storage in the background. We assume that 

restores are in� frequent, so it is acceptable to stop all 
o� ther activity while a restore is in progress.  

6.2 Backup Representation  

P
f

artition backups may be fu
g

ll  or incrementalh . A full 
p� artition backup contains all data chunks of the parti-
tio

�
n.  An incremental backup of a partition is created 



w� ith respect to a previous snapshot, the bas
5

e, an% d  con-
ta

�
ins the data chunks that were created, updated, or de-

allocated sin� ce the base snapshot. Backups do not con-
ta

�
in map chunks since chunk locations in the untrusted 

sto� re are not needed. Chunks in a backup are repre-
se� nted like chunk versions in the log. 

Current state
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Created empty
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Base snapshot
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New snapshot
Partition R

Incremental backup

Full backup

Current state
Partition P

Created empty
Partition P

Base snapshot
Partition Q

New snapshot
Partition R
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Full backup
 

Figure 8: Full and incremental backups 

A partition backup contains a backup des
5

criptor, a s% e-
q� uence of chunk versions, and a backup signature. The 
b

�
ackup descriptor contains the following (illustrated 

using p
 artition ids from Figure 8): 
• id

	
 of source partition (P

\
) 
S

• id of partition snapshot used for this backup (R) 
S

• id
	

 of base partition snapshot (Q
d

, if%  incremental) 
• b

�
ackup set id (a random number assigned to the set) 

• num� ber of partition backups in the backup set 
• p� artition cipher and hasher 
• tim

�
e of backup creation 

T
�

he representation of partition backups is illustrated 
bel

�
ow. Here, Hsi  denotes the system hash function, Hpj  

d
�
enotes the partition hash function, E

k
si  denotes system 

ciph
 er using the system key, and Epj  denotes the parti-
tio

�
n cipher using the partition key.  

 

PartitionBackup ::=  
Esl (Bac

m
kupDescriptor) 

( E
m

sl ( ChunkHeader)  Epn (ChunkBody)  )* 
BackupSignature 
o

C
p

hecksum 
 
BackupSignature ::= 
o

Esl (H
m

sl (Bac
m

kupDescriptor  Hpn ((ChunkId ChunkBody
m

)*))) 

T
�

he backup signature binds the backup descriptor with 
the

�
 chunks in the backup and guarantees integrity of the 

p� artition backup. The unencrypted checksum allows an 
external � application to verify that the backup was writ-
ten co

�
mpletely and successfully. 

6.3 Backup Restore 

The backup store restores a backup by reading a stream 
of�  one or more backup sets from the archival store. The 
b

�
ackup store restores one partition at a time, enforcing 

the f
�

ollowing constraints: 
• In

�
cremental backups are restored in the same order as 

th
�

ey were created, with no missing links in between. 

This is enforced by matching the base partition id in 
th

�
e backup descriptor against the id of the previous 

resto� red snapshot for the same partition. 
• If  a partition backup is restored, the remaining parti-

tio
�

n backups in the same backup set must also be re-
stored. T� his is enforced by matching the number of 
b

�
ackups with a given set id against the set size re-

corded i
 n backup descriptors. 

After reading the entire backup stream, the restored 
p� artitions are atomically committed to the chunk store.   
Backup restores require approval from a trusted pro-
gr� am, which may deny frequent restoring or restoring of 
ol� d backups. 

7 
q

Object Store 

Th
�

e objh ect store adds safety against errors in applica-
tio

�
n programs. It provides type-safe and transactional 

access to a set of�  objects. An object is the unit of typed 
data accessed by

�
 the application. The object store im-

plem� ents two-phase locking on objects and breaks dead-
lock

!
s using timeouts. Transactions acquire locks in ei-

th
�

er shared or exclusive mode. We chose not to imple-
m; ent granular or operation-level locks because we 
ex� pect only a few concurrent transactions. The object 
store � keeps a cache of frequently-used or dirty objects. 
C

"
aching data at this level is beneficial because the data 

is decrypted, validated, and unpickled. 

The object store could store one or more pickled objects 
in each chunk. W

	
e chose to store each object in a dif-

ferent chunk because it results in a smaller volume of 
d

�
ata that must be encrypted, hashed, and written to the 

lo
!

g upon a commit. In addition, the implementation of 
the cache is sim

�
plif ied since no chunk can contain both 

co
 mmitted and uncommitted objects. On the other hand, 
sto� ring each object in a different chunk destroys inter-
obj� ect clustering and increases the database size due to 
p� er-chunk overhead (see Section 9.3). Because we ex-
pect m� uch of the working set to be cached, the lack of 
inter-

	
object clustering is not important. 

8 Collection Store 

Th
�

e col0 lection store provides applications with indexes 
on�  collections0  of objects. A collection is a set of objects 
s� haring one or more indexes. Indexes can be dynami-
cally
  added and removed from each collection. Collec-
tion

�
s and indexes are themselves represented as objects. 

T
�

he collection store supports functional indexes
g

 th
�

at use 
keys extracted from objects by deterministic functions 
[Hwa94]. The use of functional indexes allows us to 
a� void a separate data definition language for the data-
b

�
ase schema. Indexes are maintained automatically as 



object� s are updated. Indexes may be unsorted or sorted, 
w� hich is possible because the objects are decrypted. 

9 Performance 

In this section we describe preliminary performance 
m; easurements. First, we present the performance on 
c
 hunk and backup store operations based on several 
m; icro-benchmarks. Then we compare the performance 
a� n off-the-shelf database system and TDB using a 
higher-level benchmark.   

9.1 Platform 

Performance was evaluated on a 450 MHz Pentium PC 
w� ith 128 MB of RAM, running the
  Windows NT 4.0 
o� perating system. TDB is written in C++. 

The untrusted store was implemented as an NTFS file 
on�  a hard disk with 9 ms average seek and 7200 rpm (4 
ms average rotational latency). Using a raw disk parti-
tion

�
 would be more efficient, but we do not expect the 

u
 sers of TDB to provide one. The total size of TDB 
caches (
 including the object cache and the chunk-map 
cach
 e) was set to 4 Mbytes. 

The tamper-resistant store was emulated with an NTFS 
file on another hard disk to avoid interference with ac-
cesses to
  the untrusted store. This disk has 12 ms aver-
ag� e seek and 5200 rpm (6 ms average rotational la-
ten

�
cy). The access time is similar to that for writing 

EEP
[

ROM, 5 ms [Inf00].  

W
 

e used counter-based validation and allowed the 
co
 unt in the tamper-resistant store to lag behind that in 
untr
 usted store by ∆utU  = 5. The tamper-resistant store is 
f

�
lushed only once is ∆

T
ut U com
 mits. The untrusted store is 

flushed upon every commit and we set ∆tuV  to 0. 

9.2 Micro-benchmarks 

This section presents the performance of basic crypto-
gr� aphic, disk, chunk store and backup store operations. 

9.2.1 
r

Cryptographic  and Disk Operations 

Encryption: We u
 

sed 3DES in CBC mode for the sys-
tem

�
 partition, which has a measured bandwidth of 2.5 

MB/s
�

 (0.4 µs s�  per byte). We used DES in CBC mode for 
o� ther partitions; the measured bandwidth is 7.2 MB/s 
(0.14 

t
µs s per by� te). There are other, more secure, algo-

rithms that run faster than DES [MOV96]. 

Hashing: W
 

e used SHA-1. The measured bandwidth is 
21.1 MB/

u
s (0.05 µs s�  per byte). Additionally, the “final-

ization”  of a hash value has a fixed overhead of 5 µs s.�   

St
v

ore latency: While the disk specs provide average 
latency, the measured latency varies widely based on 
the p

�
osition of disk head. Furthermore, the latency of 

t
�
he NTFS flush operation for files larger than 512 bytes 
is 

	
doubled because it writes file metadata separately. 

W
 

e measured write latencies of 10 ms to 20 ms for 
s� mall files and 25 ms to 40 ms otherwise. Therefore, we 
sh� all focus on the computational overhead and denote 
the 

�
latencies of the untrusted and tamper-resistant store 

sy� mbolically as l
@
uU  and l

@
tV . 

St
v

ore bandwidth: T
�

he measured bandwidth, b
5

uU , of%  
reading or writing the NTFS file implementing the un-
t

�
rusted store varies between 3.5 and 4.7 MB/s. 

9.2.2 
r

Chunk Store Operations 

W
 

e repeated each operation 10 times and found that the 
com
 putational overhead does not vary much, typically 
d

�
eviating less than 2%. 

Allocate chunk id: This operation does not change the 
persisten� t state. The average latency is 6 µs s.�   

Writ
w

e chunks + commit: We committed sets of 1 to 
128 chunks of sizes 128 bytes to 16 KB per chunk, 
w� hich covers the range we expect. The computational 
latency, measured using linear regression, is 132 µs s + �

36 
x

µs s p� er chunk + 0.24 µs s p� er byte of cumulative chunk 
size. T� he fixed overhead comes largely from processing 
the

�
 commit chunk (pickling, encrypting, hashing, etc.), 

the
�

 per-chunk overhead from processing the chunk 
header and finalizing the chunk’s hash value, and the 
per-� byte overhead from encryption and hashing the 
c
 hunk bodi

�
es. The I/O overhead is l

@
uU  + l

@
tV /

y
∆utU  + 1/ buU  per 

b
�
yte, which usually dominates the computational over-

h
�
ead. 

Read chunk: If the chunk descriptor is cached, the 
c
 omputational latency of reading a chunk is 47 µs s + �

0.18 
z

µs s p� er byte of chunk size. The fixed overhead 
c
 omes largely from processing the chunk header and 
f

�
inalizing the hash, and the per-byte overhead from de-

cry
 ption and hashing. The I/O overhead is l
@
uU  + 1/b

5
uU  per 

by
�

te. If the descriptor is not cached, the read operation 
r� eads in parental map chunks up to one whose descrip-
to

�
r is cached. In our experiments, each map chunk has 

64 des
{

criptors and has a size of 1.5 KB. 

Write pa
w

rtition + commit: T
�

he computational latency 
of�  committing a new partition is 223 µs s. T� he computa-
tion

�
al latency of copying a partition is 386 µs s� , regard-

le
!

ss of the number of chunks in the source partition, 
ow� ing to our use of the copy-on-write technique. 



9.2.3 
r

Backup Store Operations 

W
 

e benchmarked only backup creation, we assume that 
back

�
up restore performance is not critical.  

Partition backup: We used 512 byte chunks. The 
com
 putational latency to create an incremental backup 
of�  a partition is 675 µs s + 9�  µs s p� er chunk in the backed 
u
 p partition + 278 µs s � per updated chunk. The fixed 
o� verhead comes mostly from creating the partition 
s� napshot and processing the backup descriptor and sig-
na� ture. The overhead per chunk in the backed up parti-
t

�
ion comes from diff-i ng the snapshot of the backed up 
p� artition against the base snapshot. The overhead per 
up
 dated chunk comes from copying the chunk.  

The size of a backup determines the I/O overhead  for 
w� riting it. The size of an incremental backup is 456 B + 
528 B per u

|
pdated chunk,

�
 which may be significantly 

less than the size of a full backup. 

9.3 Space Overhead 

The chunk descriptor, header, and padding add an over-
he

�
ad of about 52 bytes for chunks encrypted using an 8-

b
�
yte block cipher. The additional overhead per chunk 

d
�
ue to the chunk map is small because the fanout degree 

o� f the tree is large (64). Obsolete chunk versions in the 
log add additional overhead. When cleaning in idle pe-
rio� ds, the space utilization may be kept as high as 90% 
w� ith reasonable performance [BHS95]. 

9.4 Code Complexity 

Figure 9
�

 gives the complexity of TDB in terms of num-
ber of

�
 semicolons in C++ code. 

 
M

}
odule s emicolons 

C
~

ollection store 1,388 
O
�

bject store 512 
B
�

ackup store 516 
C
~

hunk store 2,570 
Com
~

mon utilities 1,070 
TOTAL 6,056 

Figure 9: TDB code complexity 

9.5 Performance Comparison 

In this section, we compare the performance of a system 
usi
 ng either TDB or an off-the-shelf embedded database 
sy� stem, which we shall call XDB.  The XDB-based 
sy� stem layers cryptography on top of XDB. We config-
u
 red both systems to use the same cryptographic pa-
rameters, cache size, and frequency of flushing the tam-
p� er-resistant store. 

9.5.1 Workload 
r

W
 

e measured the performance on a benchmark that 
models two operations related to vending digital goods: 
• Bind: A vendor binds three alternative contracts to a 

di
�

gital good. 
• Release: A consumer releases the digital good select-

in
	

g one of the three contracts randomly. 

The benchmark first creates 30 collections for different 
obj� ect types. Each collection has one to four indexes. 
T

�
he benchmark loads the cache before executing an 

ex� periment. The experiment consists of 10 consecutive 
b

�
ind or release operations. Figure 10 gives the number 

of�  database operations executed in each experiment. 

 
 r� ead update delete add commit 
release 781 181 10 41 96 

bind 1732 733 10 220 292 

Figure 10: Number of database operations. 

9.5.2 Comparison 
r

Results 

W
 

e repeated each experiment 10 times. Figure 11 
sh� ows the average times for the release and bind ex-
p� eriments, the part spent in the database system, and the 
p� art thereof spent in commit, which is the major over-
h

�
ead. 
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Fig
�

ure 11: Runtime comparison 

TDB outperformed XDB, primarily because of faster 
co
 mmits, but also in the remaining database overhead. 
W

 
e believe that XDB performs multiple disk writes at 

co
 mmit. 

T
�

he stored size of XDB after running the release ex-
peri� ment was 3.8 MB. The stored size of TDB was 4.0 
MB, based on 60% maximum log utilization. 

9.5.3 
r

TDB Performance Analysis 

Here, we analyze the performance of the release ex-
peri� ment. Figure 12 breaks down the TDB overhead by 



module. The time reported for each module excludes 
ne� sted calls to other reported modules.  The figure gives 
th

�
e average time (µ� ), 

S
the standard deviation (σ), an

S
d 

p� ercentage of total (%). 

 

 
module µ� (ms) σ(

�
ms) % 

�

DB TOTAL 4209 484 100 

collection store 162 0 4 

object store 85 0 2 

chunk store 61 1 1 

encryption 157 1 4 

hashing 93 5 2 

untrusted store read 8 0 0 

untrusted store write 3353 164 81 

tamper-resistant store 229 46 6 

Figure 12: TDB runtime analysis 

T
�

he overhead is dominated by writes to the untrusted 
store. T� he experiment flushed the untrusted store 96 
tim

�
es and the tamper-resistant store 19 times. The over-

head
�

 of writing to the tamper-resistant store may vary 
sig� nificantly depending on the device and the frequency 
of�  flushes. There was no checkpoint or log cleaning 
d

�
uring the experiment. (In the bind experiment, log 

cl
 eaning took a total of 1030 ms.)  

T
�

he overhead of encryption and hashing is only 6% of 
th

�
e database overhead. The effective bandwidths of 

en� cryption and hashing are 6.5 MB/s and 20.6 MB/s, 
w� hich are close to the peak bandwidths reported in Sec-
t

�
ion 9.2.1. 

10 Potential Extensions 

The current design of TDB has a number of limitations. 
B

-
elow we describe extensions to address them. 

Untrusted storage on servers: TDB may be used to pro-
tect a database stored at an

�
 untrusted server. This appli-

catio
 n of TDB may benefit from additional optimiza-
tio

�
ns for reducing network round-trips to the untrusted 

serv� er, such as batching reads and writes. 

T
$

rusted paging. The current design assumes that the 
entire � runtime, volatile state of a trusted program is pro-
tected 

�
by the trusted processing environment. TDB lim-

its its volatile state by controlling its cache size, but this 
limit is not hard. Therefore, some volatile state may 
h

�
ave to be paged out to untrusted storage. This problem 

may be solved by using a page fault handler to store 
e� ncrypted and validated pages in the chunk store. 

St
&

eal buffer management. Currently, modified objects 
must remain in the cache until their transaction com-
m; its, which may degrade the security and performance 
o� f large transactions. Evicting dirty objects would re-
q� uire writing them to the log. This requires additional 
s� upport in the chunk sto

�
re. 

Logical logging. Logical logging may reduce the vol-
um
 e of data that must be encrypted, hashed, and written 
to

�
 the untrusted store. The chunk store uses logical log-

g� ing for some operations (for example, deallocation of 
c
 hunks), but it does not allow higher modules to specify 
o� perations that should be logged logically. 

11 Related Work 

There are many systems aimed at providing secure stor-
ag� e. TDB differs from most of them because of its 
uniq
 ue trust model. 

In
�

 another paper at this conference, Fu et al. describe a 
read-only file system that may be stored in untrusted 
s� ervers [FKM00]. A hash tree is embedded in the inode 
h

�
ierarchy. The trusted creator signs the root hash with 

the tim
�

e of update and expiration. This system is not 
des

�
igned to handle frequent updates or updates to indi-

v� idual file blocks in the untrusted server. 

Techniques for securing audit logs stored on weakly-
protected h� osts are suitable for securing append-only 
d

�
ata that is read infrequently and sequentially by a 

tru
�

sted computer [BY97, SK98]. They employ a linear 
ch
 ain of hash values instead of a tree. When the data 
needs to be read, it is validated by recomputing the hash 
ov� er the entire log. These techniques are not suitable for 
a database sy� stem such as ours, which requires frequent 
an� d random read-write access to data.  

B
-

lum et al. considered the problem of securing various 
d

�
ata structures in untrusted memory using a hash tree 

rooted in a small amount of trusted memory [BEG+91]. 
T

�
his work does not address storage management for 

p� ersistent data. 

Som
�

e systems provide secure storage by dispersing data 
o� nto multiple hosts, with the expectation that at least a 
certain f
 raction of them (for example, two-thirds) will 
be h

�
onest. The data may be replicated as-is for time 

ef� ficiency [CL99], or it might be encoded to reduce the 
cu
 mulative space overhead [Rab89, Kra93, GGJ+97]. 
R

'
ead requests are broadcast to all machines and the data 

returned is error corrected. This approach provides re-
covery0  from tampering, not merely tamper detection. 
Ho

�
wever, it relies on more trusted resources than are 

av� ailable to TDB. The expectation of an honest quorum 
is 

	
based on the assumption that, under normal opera-

tio
�

n, the hosts are weakly protected but not hostile, so 



the d
�

ifficulty for a hostile party to take over k
�
 hosts in-

creases sig
 nificantly with k
�
.  

Ou
�

r use of log-structured storage builds on a previous 
w� ork on log-structured storage systems [RO91, 
JKH93]. T

�
he Shadows database system is log structured 

an� d provides snapshots [Ylo94]. Otherwise, there has 
b

�
een little interest in log-structured database systems, 

perh� aps because of the need to keep large sets of data 
ph� ysically clustered or to keep the log compact using 
lo

!
gical logging.  

12 Conclusions 

W
 

e have presented a trusted database system that lever-
ag� es a trusted processing environment and a small 
am� ount of trusted storage to extend tamper-detection 
an� d secrecy to a scalable amount of untrusted storage. 
The architecture integrates encryption and hashing with 
a � low-level data model, which protects data and meta-
d

�
ata uniformly. The model is powerful enough to sup-

p� ort higher-level database functions such as transac-
tio

�
ns, backups, and indexing. 

W
 

e found that log-structured storage is well suited for 
b

�
uilding such a system. The implementation is simpli-

f
�
ied by embedding a hash tree in the comprehensive 

location map that is central to log-structured systems: 
obj� ects can be validated as they are located. The check-
p� ointing optimization defers and consolidates the 
propag� ation of hash values up the tree. Because updates 
are � not made in place, a snapshot of the database state 
can b
 e created using copy-on-write, which facilitates 
incremental backups.  

W
 

e measured the performance of TDB using micro-
b

�
enchmarks as well as a high-level workload. The data-

base ov
�

erhead was dominated by writes to the untrusted 
store � and the tamper-resistant store, which may vary 
s� ignificantly based on the types of devices used. The 
ov� erhead of encryption and hashing was only 6% of the 
to

�
tal. On this workload, TDB outperformed a system 

t
�
hat layers cryptography on an off-the-shelf embedded 
dat

�
abase system, while also providing more protection. 

This supports the suitability of the TDB architecture. 
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