
Dealing With Disaster: Surviving Misbehaved Kernel Extensions

Margo I. Seltzer, Yasuhiro Endo, Christopher Small, Keith A. Smith
Harvard University

Abstract
Today’s extensible operating systems allow applications
to modify kernel behavior by providing mechanisms for
application code to run in the kernel address space. The
advantage of this approach is that it provides improved
application flexibility and performance; the disadvan-
tage is that buggy or malicious code can jeopardize the
integrity of the kernel. It has been demonstrated that it is
feasible to use safe languages, software fault isolation,
or virtual memory protection to safeguard the main ker-
nel. However, such protection mechanisms do not
address the full range of problems, such as resource
hoarding, that can arise when application code is intro-
duced into the kernel.

In this paper, we present an analysis of extension
mechanisms in the VINO kernel. VINO uses software
fault isolation as its safety mechanism and a lightweight
transaction system to cope with resource-hoarding. We
explain how these two mechanisms are sufficient to
protect against a large class of errant or malicious
extensions, and we quantify the overhead that this
protection introduces.

We find that while the overhead of these
techniques is high relative to the cost of the extensions
themselves, it is low relative to the benefits that
extensibility brings.

1 Introduction
Many of today’s research operating systems share the
goal of providing applications with a richer and more
powerful interface to kernel functionality. There are sev-
eral approaches undergoing exploration and analysis
today. The Scout system [9] supports static specializa-
tion: Scout administrators can run a kernel that has been
specialized for a particular workload on a particular
machine. By targeting a particular kernel for a particular
workload, Scout can take advantage of advanced com-
piler optimization techniques, efficient kernel code
paths, and a smaller system footprint. The extensible
systems, such as SPIN [4] and VINO [15] allow applica-
tions to download code into the kernel to provide
improved functionality and performance. Synthetix [13]
provides improved flexibility and functionality by iden-

tifying commonly executed paths and producing opti-
mized versions of them, but does not allow applications
to modify or extend the kernel.

In this paper, we concentrate on the class of
extensible systems. An extensible system is one that
permits clients to modify the behavior of a shared server
by loading client-specific extension code into the server.
Such extensibility is useful in a wide range of systems.
Database clients might extend their server by loading
code into it to support new data types [8]. In a traditional
operating system, user applications can exploit
extensibility to customize the policies and functionality
implemented by the kernel (e.g., the eviction policy for
the file cache, or the delivery order for signals and other
asynchronous events). Finally, in a microkernel
operating system, the same extensions that are of
interest in a traditional operating system can be loaded
into the relevant system servers rather than the operating
system kernel. Although we focus on extensibility in the
context of a monolithic operating system kernel, the
issues and technology discussed in this paper are
relevant to these other classes of extensible systems.

An extensible operating system supports the
downloading of application extensions, orgrafts, into
the kernel. Allowing applications to load code into the
kernel spells immediate disaster unless the kernel is
well-protected against buggy or malicious grafts.
Safeguarding the kernel from errant grafts requires two
different forms of protection. First, the kernel must
guarantee that grafts do not misuse memory by reading
inappropriate data (e.g., device registers or another
user’s data), writing inappropriate data, or executing bad
instructions. This problem has been addressed by the
use of safe languages such as Modula-3 [11], as used by
SPIN, software fault isolation [20], as used by VINO, or
virtual memory address domains, as used by Mach [1].
Second, the kernel must ensure that grafts do not
consume resources to the extent that they jeopardize the
acceptable performance of the kernel and other
applications. This problem has been less well researched
and is the topic of this paper.

In Section 2, we discuss the different ways that
grafts can inadvertently or intentionally jeopardize
system integrity. In Section 3, we discuss VINO’s graft
architecture and how it addresses the issues raised in
Section 2. In Section 4, we quantify the cost of VINO’s
mechanisms. In Section 5, we present related work. In

This work was sponsored in part by grants from Sun
Microsystems Laboratories, Bellcore, the Sloan Foundation,
and the National Science Foundation.

Section 6, we discuss the lessons we have learned in
building VINO, and we conclude in Section 7.

2 How Grafts Misbehave
Our model of grafts is that they are similar to regular
processes that run inside the kernel. SFI is used instead
of the traditional VM mechanisms to prevent illegal data
accesses. Each graft receives its own heap and stack,
and when a graft changes kernel state (e.g., by opening a
file), the kernel records the fact so that any such modifi-
cations can be undone if the graft misbehaves. In a trust-
ing world, these precautions are sufficient to avoid or
cope with innocent errors such as access through an
invalid pointer. However, in an untrusting world, kernel
extensions might be malicious, seeking to destroy sys-
tem integrity, performance, or security. In building an
extensible system, we strive to prevent grafts from caus-
ing more damage than can be caused by a maliciously
written user-level program. Therefore, we consider it
unacceptable for a bug in a graft to crash the kernel,
while it might be tolerable for a graft to loop infinitely,
so long as it consumes only as much processing time as
would a user-level program with the same infinite loop.

There are three reasons why a maliciously written
graft is more dangerous than a maliciously written
process. The first is that grafts run in supervisor mode. If
no special care is taken, grafts have the potential to
wreak havoc with the kernel. The second is that grafts
are given access to a more powerful interface. Though
still restricted, grafts have access to more kernel entry
points than ordinary processes, including some of the
kernel’s synchronization points, providing grafts with
simple and effective ways to sabotage the system. The
more restrictive the graft interface, the easier it is to
protect against malice, but the more limited the
functionality of the grafts. It is a continuing struggle to
determine the correct balance between expressive power
and simplicity in designing a safe graft interface. The
final reason that a graft can be more dangerous than a
process is that once a graft is installed, the system relies
on the correct operation of the graft to provide system
services, and the graft’s actions can potentially affect all
the processes on the system. This problem is shared by
other extension models, such as upcalls. Depending on
the function that a graft or user-level server provides, a
malicious one can prevent the system from making
progress or can cause it to crash.

We have identified five classes of misbehavior
that grafts might exhibit. Each is described below. We
use the classifications to derive nine guiding principles
for the construction of a stable, extensible operating
system.

2.1 Illegal Data Access
Because grafts run in supervisor mode, we cannot use
conventional virtual memory mechanisms to prevent
grafts from making illegal memory accesses. Safe lan-
guages and software fault isolation provide mechanisms
for limiting the data accessible to a graft. We must also
provide a mechanism that allows the kernel to determine
whether a graft has been processed or compiled by such
a tool.

It is not sufficient to prevent a graft from
accessing information to which it is not entitled; we
must also ensure that a graft cannot execute a kernel
function that can provide the graft with information to
which it is not entitled. This means that any interface
that returns actual data to its caller (as opposed to meta-
data) cannot be called by a graft. In general, the kernel
can pass meta-data (such as buffer headers) freely to
grafts, so long as the data to which they refer (e.g., the
actual data buffers) are protected.

2.2 Resource Hoarding
Grafts can consume system resources. They can attempt
to loop infinitely, allocate excessive amounts of mem-
ory, or flood the network with packets. Because the
interface given to grafts is more powerful than that
given to user-level code, there is the potential for grafts
to cause more serious damage. For example, if grafts are
allowed to acquire kernel locks, they can block kernel
progress more effectively than a process that is unable
to directly acquire locks. Similarly, if grafts can con-
sume kernel resources, such as physical memory, and
hold them over long intervals, resource contention and
starvation can cause significant problems.

Consider this malicious code fragment:
lock(resourceA);
while (1);

If resourceA is highly contested, then we cannot
let the graft hold it arbitrarily long. In fact, a graft
cannot be allowed to hold any limited kernel resource
for an arbitrarily long period of time.

We cannot rely on a static check to prevent grafts
from hoarding resources. Therefore, we must be able to
preempt, and, if necessary,terminate the thread from
which a graft is called. If we terminate the thread, we
undo any kernel state changes that have been made,
releasing any resources held by the thread and allowing
the rest of the system to make forward progress.

Through preemption and scheduling we can
prevent a graft from taking more than its share of a
resource. Even a graft with an infinite loop gets no more
CPU time than would a user-level process with the same
infinite loop.

1. Grafts must be preemptible (§2.2).

2. Grafts cannot hold kernel locks or limited kernel resources for excessive periods of time (§2.2).

3. Grafts cannot access memory to which they have not been granted permission (§2.1).

4. Grafts cannot call functions that alter or return data that the graft is not allowed to access (§2.3).

5. Grafts cannot replace restricted kernel functions (§2.3).

6. The kernel must not execute grafts that are not known to be safe (§2.1, §2.3).

7. Grafts must not call functions to which they have not been granted access (§2.1).

8. Malicious grafts can only affect applications that have agreed to use them (§2.4, §2.5).

9. The kernel must be able to make progress even with a faulty graft in its path (§2.2, §2.4, §2.5).

Table 1. Rules for Grafting. Based on the ways in which grafts might corrupt the kernel, we derive these rules for
creating a safe, stable extensible kernel. We include the numbers of the sections that imply each rule.

2.3 Attempting to Use Incorrect Interfaces
There are certain parts of the kernel that cannot be
extended for a single application. For example, a single
application, running as a normal user, cannot be allowed
to replace a global kernel policy. If it could, the applica-
tion could take over the system by downloading a highly
biased scheduler. Such global graft points must be
accessible only to privileged users (users who, in a con-
ventional system, would be allowed to halt the system,
install new drivers, build a new kernel, etc.). Addition-
ally, the kernel must somehow verify that the down-
loaded graft has been properly protected (e.g., compiled
with the correct compiler). Finally, we must limit the
functions that are callable from grafts. As pointed out in
Section 2.1, grafts should not be allowed to call func-
tions that return private data. Additionally, grafts should
not be able to call functions that change kernel state in
an unrecoverable fashion; a graft should not be able to
call shutdown().

2.4 Antisocial Behavior
Our next category of graft misbehavior arises from
grafts that simply do not do what they have agreed to do.
Consider a scheduling graft used by a collection of cli-
ents and a server. Assume that the graft always selects
the same process to run. This scheduling discipline
penalizes the members of the scheduling group, but has
no adverse effect on processes that use the normal
scheduling discipline. We find this model of behavior
acceptable, applying Cao's principle for defining an
acceptable allocation policy: the selection of an applica-
tion specific policy should not adversely affect other
applications [5]. The task of the kernel is to prevent
grafts from damaging the integrity of the kernel. We
interpret this to mean crashing the kernel, corrupting
data, or interfering with processes that havenot agreed
to use the graft.

2.5 Covert Denial of Service
A graft can attempt a denial of service attack, by taking
advantage of the fact that the system is relying on its
correct execution to make forward progress. A page
replacement graft is such an example. When a page is
about to be evicted, the page daemon calls the graft so
that the graft can present an alternate page to replace. If
the graft never returns, the page daemon cannot make
forward progress causing the system to eventually run
out of free pages. Therefore, it is essential to provide
some mechanism by which we can detect such a throt-
tling state and return the system to a state where it can
make forward progress.

2.6 Summary
Table 1 summarizes the restrictions that we must impose
on grafts if we are to protect the kernel. In the next sec-
tion, we discuss how VINO addresses each of these
restrictions.

3 The VINO Grafting Architecture
VINO is an extensible operating system designed to
provide resource-intensive applications greater control
over resource management. VINO supports the down-
loading of kernel extensions, which are written in C++
and protected using software fault isolation. To facilitate
graceful recovery from an extension failure, VINO runs
each invocation of an extension in the context of a
transaction. If the invocation fails or must be aborted
(e.g., because it is monopolizing resources), the transac-
tion mechanism undoes all actions taken by the invoca-
tion of the extension.

The VINO kernel is constructed from a collection
of objects and consists of an inner kernel and a set of
resources. VINO provides two different modes of
extensibility. First, a process can replace the
implementation of a member function (method) on an
object; this type of extension is used to override default
policies, such as cache replacement or read-ahead.

Second, a process can register a handler for a given
event in the kernel (e.g., the establishment of a
connection on a particular TCP port). Extensions of this
type are used to construct new kernel-based services
such as HTTP and NFS servers.

VINO runs on Intel’s x86 processors. The
machine-independent parts of VINO consist of entirely
new code. Following traditional engineering practices,
we have encapsulated all of the machine dependent
parts of the kernel behind a standardized interface.
Beneath this interface we use the machine dependent
portions of NetBSD 1.0—locore, the pmap module, and
the device drivers. By using the machine dependent
code from a pre-existing system, which itself runs on a
variety of platforms, we hope to simplify the task of
porting VINO to other architectures.

In this section, we discuss the VINO kernel
transaction mechanism, which is used to allow the
kernel to recover from misbehavior by extensions, and
how the kernel determines when to abort an extension
invocation. We then describe our software fault isolation
tool and dynamic linker, and give examples of the two
types of grafting.

3.1 Kernel Transaction Support
We encapsulate each graft invocation in a transaction to
allow us to spontaneously abort a graft and clean up its
state. When a function is grafted into the kernel a small
wrapper function is interposed; the wrapper begins a
transaction for the graft invocation and then calls the
grafted function. When the grafted function returns, the
wrapper commits the transaction.

The transaction support necessary for grafts is
simpler than a conventional data manager’s transaction
mechanism. The single goal of graft transactions is to
provide a means for backing out changes made by faulty
grafts. Therefore, the transaction system does not need
to handle permanent data, so its log need only be
transient, and it never has to “redo” operations; it only
has to undo them1. Therefore, of the four “ACID”
properties typically associated with transactions
(atomicity, consistency, isolation, and durability), we
need only provide the first three. However, because graft
functions may indirectly invoke other grafts, we found it
necessary to include support for nested transactions. In
this manner, any graft can abort without aborting its
calling graft.

All graft transactions are managed by the default
VINO transaction manager. When a transaction is

1. Note that conventional transaction semantics can be
provided by creating a new instance of our transaction
manager and replacing the transient log manager with a
permanent one.

initiated the manager allocates a transaction object that
is associated with the thread that invoked the graft. The
VINO transaction manager uses two-phase locking and
an in-memory undo call stack. Because the kernel is
preemptible, it must acquire locks on all resources being
accessed or modified. In the non-transaction case these
locks are released as soon as a thread is done
manipulating the resource. When the currently running
thread has a transaction associated with it, lock release
is delayed until commit or abort.

Modifications to permanent kernel state are
encapsulated in accessor functions (i.e. a grafted
function cannot directly manipulate kernel data; it must
go through data accessor functions). Each such accessor
function that can be called from a grafted function has
an associated undo function. Whenever an accessor
function is called, if there is a transaction associated
with the currently running thread, the corresponding
undo operation is pushed onto the transaction’s undo
call stack2. If a transaction aborts, the transaction
manager invokes each undo operation on the undo call
stack, and returns a transaction abort error to the graft
stub, which then calls the default function (i.e., the
function that was replaced by the graft).

When a non-nested transaction commits, the
locks are released, the undo call stack and transaction
object are freed, and execution continues normally.
When a nested transaction commits, its undo call stack
and locks are merged with those of its parent. Although
different in implementation, graft transactions are
similar in concept to the volatile transactions used in the
Quicksilver system [7].

3.2 When to Abort Graft Transactions
Transactions provide the mechanism by which we can
abort resource intensive grafts, but we still need a policy
to determine when to abort a graft. Grafts are allowed to
run so long as they do not interfere with the behavior of
other processes. For the purpose of discussing resource
hoarding, we can divide the various system resources
into two categories. For some resources, we are prima-
rily concerned that a graft does not hold the resource for
too long, thus becoming a bottleneck to all other threads
that need the resource. We call thesetime-constrained
resources. With other resources, such as memory, we
wish to ensure that a graft does not use too much of the
resource. We call thesequantity-constrained resources.
In VINO, we use a different technique to enforce limits
on each of these types of resource.

2. Our current implementation requires that this code be added
by hand. This could clearly be automated with a preprocessor
and appropriate source-code decoration.

Consider the case of locks as an example of a
time-constrained resource. If a graft holds a lock that no
other thread requests, then continuing to hold that lock
does not affect the rest of the system. Conversely, if
other threads do request the lock, then the graft is
potentially degrading system performance. Therefore,
with every lockable resource, we associate a time-out
value that indicates how long a lock can be held on that
object during periods of contention. This time-out based
locking also provides an implicit mechanism for
breaking deadlocks. Because resource requirements
vary tremendously, reasonable time-out intervals must
be determined (experimentally) on a per-resource-type
basis. For example, a page may be locked for tens of
milliseconds during I/O while a free space bitmap
should be locked for only a few hundreds of instructions
while it is being traversed.

When a request for a lock blocks, the waiting
thread schedules a time-out whose duration is based on
the resource being requested. If the time-out on a lock
expires, and the lock is held by a thread that is executing
a transaction, we abort that transaction. Note that we
abort the transaction even if the lock was acquired
before the graft was invoked. In such a case, the graft
will return to the invoking code which presumably will
release the lock(s) in a timely manner.

To enforce limits on quantity-constrained
resources, we use the same mechanisms for grafts that
we use for user-level threads and processes. Each thread
in VINO has a set of resource limits associated with it.
These limits constrain the amounts of various resources
(e.g., memory) that the thread may consume. When a
graft is installed, it initially has limits of zero (i.e., it
cannot allocate any resources). The installing thread
may transfer arbitrary amounts from its own limits to
the newly installed graft, or the thread can request that
all of the graft’s allocation requests be “billed” against
the installing thread’s own limits. If multiple processes
wish to pool resources (e.g., a collection of database
clients and servers may wish to pool their wired
memory resources to create a shared buffer pool), they
can each delegate their resource rights to the graft, in a
manner analogous to ticket delegation in lottery
scheduling [21].

When a thread invokes a grafted function in the
kernel, the thread’s resource limits are replaced by those
associated with the graft. Thus, the same mechanisms
that prevent processes from exceeding resource limits
are automatically applied to grafts. When the process
would normally be denied requests for new resources,
the graft’s requests also fail.

3.3 Graft Code Safety
As stated above, grafts are protected through the use of
software fault isolation [20]. The overhead of software
fault isolation has been shown to range from 5% to
200%, depending on the application. We developed an
SFI tool, MiSFIT, for this purpose [17]. At compilation
time MiSFIT inserts instructions to protect loads and
stores. Code is added to force the target address to fall
within the range of memory allocated to the graft. The
cost of this protection is two to five cycles per load or
store.

To protect function calls, VINO kernel developers
maintain a list of graft-callable functions. Only
functions on this list may be called from grafts. Direct
function calls are checked when grafts are dynamically
linked into the kernel; the function is looked up in the
graft-callable list; if the target function is not on the list,
the graft is not loaded into the system.

Indirect function calls (e.g., C++ virtual function
calls) are checked at run-time by looking up the address
of the target function in a hash table containing the
addresses of all graft-callable functions. If the target
function is not on the list, the graft’s transaction is
aborted. In general, the cost of probing a hash table
depends on the contents of the table and the key being
probed for. Through the use of a sparse open hash table
we find our average cost is ten to fifteen cycles per
indirect function call.

Graft-callable kernel routines must perform the
same type of argument checking and verification that
system calls do. A graft is run with the user identity of
the process that installs it; graft-callable functions are
responsible for checking that the user has been granted
access to files, memory, and devices that the graft
attempts to use. In this way the protection domain in
which the graft runs is (at least in theory) the same as
the protection domain of the process that installed the
graft.

VINO must ensure that code loaded into the
kernel has been processed by MiSFIT. MiSFIT
computes a cryptographic digital signature of the graft
and stores it with the compiled code. When VINO loads
a graft it recomputes the checksum and compares it with
the saved copy. If the two do not match the graft is not
loaded. Tools that perform this type of code signing are
commercially available [10].

3.4 Function Graft Example
Once a graft has been compiled, processed by MiSFIT,
and assembled, it is ready to be grafted into the running
system. To install a graft, an application must first
obtain a handle for thegraft point.This is accomplished
by looking up the graft point in a kernel-maintained
graft namespace. The name is composed of the object to

be grafted (e.g., the open file) and the name of the func-
tion to be replaced (e.g., “read-ahead”). The graft point
handle provides areplacemethod that is used to instruct
the kernel to replace the function at the graft point with
the new function. Figure 1 shows an example.

This interface enables the replacement of a single
member function for a given object. The list of functions
that can be grafted on each class is specified by the class
designer; some classes may not allow any of their
functions to be grafted; others may allow all functions to
be grafted.

3.5 Event Graft Example
The interface discussed above is suitable for modifying
the behavior of a single object. However, an application
may want to drop an entire service into the kernel, such
as an HTTP server [4], an NFS server, or a database
server. Ourevent graft model is based on the idea that
these services are typically, if not always, designed to
respond to a stream of incoming external events. Each
of these servers receives a request, processes it, and
sends a response. We model servers as handlers for
events, where each request is viewed as an event. We
extend our definition of function graft points, introduced
above, to encompass these events: event graft points
correspond to the external events to which a service
responds.

Along with the replacement of a graft function
shown above, we also permit theadditionof a new graft
function to a graft point. Rather than replace an existing
function, the grafted function will be called in addition
to any other functions added to the graft point. We
provide an interface for applications to specify the order
in which grafted functions are called.

When an event occurs in the kernel (e.g., a new
connection is established on the TCP port dedicated to
HTTP, or a packet is received on the UDP port for NFS),
VINO spawns a worker thread and begins a transaction.
It then invokes the grafted function (passing it a file
descriptor or other data required to process the event).

file_o *db;
graftpoint_handle_o *gp;

db = file_o::open(“db”, “r”);
gp = graft_namespaces->lookup(db,

“readahead”);
gp->replace(“my_readahead.o”);

Figure 1. Function graft example.The database server is
replacing the kernel’s default file read-ahead function with
an application-specific version. The server looks up a
handle for the read-ahead function of the database in the
graft namespace. It then installs the new read-ahead
function. Although the function calls shown here are to
C++ member functions, they invoke VINO system calls.

When the grafted function returns, the worker thread
commits the transaction and exits. An example of
adding a function to an event graft point, and the outline
of an HTTP server graft, are shown in Figure 2.

3.6 Summary
Returning to Table 1, we can now identify how VINO
copes with the various classes of misbehavior. By
design, our kernel is preemptible. Therefore, any thread,
including any thread that called a graft, is preemptible
(Rule 1). The combination of transaction abort and
resource accounting protects against resource hoarding
(Rule 2). If a graft consumes too many resources or runs
for too long a period of time while holding a high-con-
tention lock, its transaction is aborted. When a graft
transaction is aborted, the graft is forcibly removed from
the kernel, so that new invocations of the call use nor-
mal kernel code and not the misbehaving graft code.
Our SFI compiler generates instructions to prevent
grafts from accessing memory to which they are not
entitled (Rule 3) and from executing functions to which
the graft does not have access.

Rules 4 and 7 are provided for by a combination
of static and dynamic methods. When constructing the
list of graft callable functions, we must exclude those
functions that return data without checking for
appropriate permissions (Rule 4). MiSFIT and the
dynamic linker ensure that only functions on the graft
callable list are invoked by grafts (Rule 7).

Rules 5 and 6 are enforced statically through our
downloading mechanism. In addition to verifying that a
graft does not call inappropriate functions, the dynamic

// http server installation,
// invoked at user level

graftpoint_handle_o *gp;

gp = graft_namespace->lookup(“tcp/80”);
gp->add(“http_server.o”);

// http server code, run as graft in kernel.
http_server(file_o *fd)
{

char buf[256];
fd->read(buf, sizeof(buf));
// process http request...
...

}

Figure 2. Event grafting example.The first code fragment
installs the server code on TCP port 80; the second code
fragment represents the server itself. Each time a new
connection is accepted on TCP port 80 a worker thread
starts a new transaction and invokes the http_server()
function, passing it the file descriptor from which
http_server() can read the http request. When http_server()
finishes handling the connection, it returns, and the worker
thread commits the transaction and closes the connection.

loader prohibits grafting onto restricted kernel entry
points, such as the security enforcement modules (Rule
5). The digital signature scheme described in Section
3.3 ensures that the kernel does not execute any grafts
that are not known to be safe (Rule 6).

We believe that the combination of resource
accounting, the downloading mechanism, and the
separation of global and local policy decisions limits the
applications affected by malicious grafts to only those
applications that use those grafts and ensures that the
kernel can make forward process, even in the presence
of a malicious graft (Rules 8 and 9).

4 The Cost of Graft Protection
In previous work we presented a taxonomy of types of
kernel extensions [16], and we use that taxonomy here
to evaluate the overhead of graft maintenance in VINO.
We identified three basic graft structures, each of which
encompasses a broad class of kernel graft points.Stream
Grafts act much like UNIX filters, accepting data, trans-
forming or manipulating the data, and producing either a
new data stream or result. Some examples of Stream
Grafts are encryption, compression, and checksum cal-
culation. A Prioritization Graft chooses a candidate
from a set such as selecting a process to schedule, a page
to evict, or a buffer to flush. ABlack Box Graft is more
general than Prioritization and Stream grafts; a Black
Box graft has some number of inputs, some state, and a
single output. From outside the graft, it appears as a
“black box” function, producing a single output value.
File system read-ahead, access control checking, and
name resolution are examples of Black Box grafts.

In this section, we present sample grafts from
each class and quantify the overhead associated with
making the graft safe. The VINO system is still in its
infancy, so we cannot run large, complex applications.
For this reason, we perform the analysis at the graft
level, as opposed to the application level. This allows us
to perform fine grain measurements and also makes our
measured overheads as conservative as possible. For
example, if our protection mechanisms impose a 25%
penalty on the graft in isolation, the observed penalty in
a complete application can only be smaller.

Table 2 outlines our measurement methodology,
identifying how we decompose each graft to isolate
individual overhead components. Figure 3 depicts the
code paths and general structure of our grafts,
highlighting the typical paths that we measure. In an
effort to encapsulate the full cost of extensibility, we
measure ourbase path by removing any levels of
indirection and results checking that we introduced to
facilitate grafting. TheVINO path measures our normal
kernel paths; it includes any extra levels of indirection

we impose, but no transaction overhead. Thenull path
includes full support for grafting, including transaction
begin and end, but does the minimal amount of work
possible for each example graft. Thesafe and unsafe
paths include the full graft path, with transactions, and
quantify the MiSFIT overhead in the difference between
the two paths. Finally, theabort path results from a
transaction abort at the end of the graft execution in the
safe path. As we measure the cost of these increasingly
complex execution paths, we report both the total
execution time of each path and the incremental
overhead between successively complex paths.

Our test platform consists of an Intel Endeavor
motherboard with a 120 MHz Pentium processor, a 512
KB pipeline burst L2 Cache, and 32 MB of 60ns EDO
DRAM. We use a single 5400 RPM Fujitsu M2694ESA
disk with a SCSI interface, a formatted capacity of
1080MB, an average seek time of 9.5 ms, and a 64KB
buffer. As our tests were performed on a Pentium, we
were able to take advantage of the hardware cycle
counter on the CPU. We computed the number of cycles
for each test, and then using the clock speed of the
processor, converted from cycles to microseconds. To
reduce the sensitivity of our results to cache effects, we
drop outliers by eliminating the top 10% and bottom
10% of the measurements before computing the means
and standard deviations. (We ran each test between 300
and 3000 times depending on the test.) In most cases the
standard deviations were negligible (less than 2.5% of
the mean). We observed higher standard deviations for
very short duration events, because an individual cache
miss can account for a significant fraction of the
measurement. In a few of the tests, we still find
differences in cache behavior between test cases; in

Measurement Explanation

Base path Kernel code path with all extra indi-
rection and graft-support removed.

VINO path Normal VINO kernel path, with indi-
rection for graft support and return-
value verification.

Null path Includes graft stubs, transaction begin
and commit, and minimal (null) graft.

Unsafe path Includes full graft code and lock over-
head

Safe path Includes code protected with MiSFIT.

Abort path Complete safe path with transaction
abort instead of commit.

Table 2. Measurement Methodology. Each graft
benchmark will decompose the graft cost into the
components described here.

G
ra

ft

R
es

ul
ts

 c
he

ck
in

g

T
ra

ns
ac

tio
n

be
gi

n

T
ra

ns
ac

tio
n

en
d

(c
om

m
it)

lo
ck

s

lo
ck

s

...

Unsafe path

Figure 3. Graft Evaluation Model. The base path represents
the cost of kernel functionality without the extra indirection
required to support grafting. TheVINO path includes the cost of
indirection. Thenull path includes the graft overhead and any
additional overhead required to check the graft’s return value(s),
but not the actual graft code. Theunsafe path includes the actual
graft, but does not include MiSFIT overhead, and theabort path
is the complete,unsafe path with transaction commit replaced by
a transaction abort. The shaded boxes represent points where
policy decisions are made.

Base path

D
ef

au
lt

VINO path

Null path

T
ra

ns
ac

tio
n

ab
or

t

A
bo

rt
 p

at
h

N
ul

l
gr

af
t

V
IN

O
 k

er
ne

l c
od

e
these cases, we explicitly measure and report the
additional cache overheads.

For each of our sample grafts, we perform a
simple cost-benefit analysis. In each case, the cost of the
graft is the time to execute the grafted function, along
with the general overhead of executing a graft
(transaction protection, MiSFIT overhead, etc.). The
difference between thesafe path and theVINO path
provides the total cost of a graft in terms of the overhead
that it adds to the system. The difference between each
successive pair of measurements in Table 2 corresponds
to one part of the overhead. Thenull path adds the cost
of transaction protecting a graft function to theVINO
path. The cost of the graft function itself can be
determined by comparing thenull path with theunsafe
path (where we add the graft function without any
MiSFIT protection). Finally, we compute the MiSFIT
overhead by comparing theunsafe path and thesafe
path measurements.

The benefits associated with each graft depend on
the specific functionality being grafted into the kernel.
We estimate the benefit derived from each of our test
grafts and compare this to the cost of the graft in order

to determine the suitability of the VINO extension
architecture for the different types of grafts that we have
measured.

4.1 A Black Box Graft: Read-Ahead
File read-ahead is an example of a policy for which tra-
ditional operating systems implement a general algo-
rithm that is good for most applications, but not
necessarily optimal for all. A typical file read-ahead pol-
icy operates on the assumption that most applications
perform sequential I/O. When the system detects
sequential access to a file, it asynchronously prefetches
some additional amount of file data with each read
request. Because most file accesses are sequential [3],
this policy usually improves performance. There are
several cases, however, where this general policy does
not improve (and can even degrade) application perfor-
mance [12].

At first glance, it may seem that user-level threads
are the simple and obvious solution to application-
directed prefetching. However, without kernel support, a
strictly user-level prefetching implementation is unable
to exploit kernel-level information about the on-disk
layout of the file data. Similarly, without explicit kernel
support, an application that performs many short
sequential reads to different offsets in a large file may
incur the overhead of having the kernel prefetch
unneeded parts of the file. Finally, thread-level
prefetching is indistinguishable from normal user I/O
and the kernel is unable to assign accurate priorities to
pending I/O requests.

4.1.1 Cost-benefit Analysis of Read-ahead
File read-ahead is one of the most appealing kernel poli-
cies to graft, because the potential gains are large. For
the remainder of this discussion, we will consider read-
ahead in the context of a specific hypothetical applica-
tion, modeled on a random access workload such as
might be generated by a database server. The core of this
application is a loop that reads a block of data, and then
performs some computation on it. We assume that the
application reads the blocks of data in a non-sequential
order, but has advance knowledge of what blocks it will
need.

Because the default kernel read-ahead policy only
supports sequential access, no prefetching would
normally be done. Thus, each time the application
issued a non-sequential read request, it would block
until the data was fetched from disk. If the application
can graft a new read-ahead function onto the file,
however, then each time it reads one block, it can also
prefetch the next block. Thus, we can imagine the
application reading block A and prefetching block B,

computing on block A, then reading block B and
prefetching block C, and computing on block B.

What are the costs and benefits associated with
this scheme? Consider the request to read block B. The
cost for the application is the overhead associated with
prefetching the block as described above. The benefit to
the application is that the amount of time that the
application is suspended waiting for block B is reduced
by the amount of time since that prefetch request. This is
the amount of time that the application spent computing
between read requests. Thus, the application will win if
the cost of the read-ahead graft is less than the time the
application spends between read requests.

4.1.2 Implementing the Read-ahead Graft
In VINO, application level file descriptors are handles
for kernel levelopen-file objects. Traditional file-related
system calls (read, seek, etc.) are translated to method
invocations on the appropriate open-file. Whenever a
user issues a read request, the corresponding method on
the open-file handles the read, and then calls itscom-
pute-ra method to determine which (if any) additional
file blocks should be prefetched. This function is passed
a descriptor describing the offset and size of the current
read request, and is allowed to provide a list of addi-
tional file extents that should be prefetched. These
prefetch requests are passed to the underlying file sys-
tem where they are added to a per-file prefetch queue.
The file system removes prefetch requests from this
queue and issues them to the I/O system as memory
becomes available for read-ahead. (In this manner, if a
graft of thecompute-rafunction asks for 100MB to be
prefetched, it will not steal all of the system’s memory
pages. Instead, the 100MB will be prefetched in order,
as pages become available.) The allocation of memory
buffers to satisfy read-ahead requests is determined by a
global policy that cannot be grafted by users with nor-
mal privileges.

The default read-ahead policy used by VINO only
prefetches when the user accesses a file sequentially.
Applications that wish to specify an alternate
prefetching policy do so by grafting a newcompute-ra
function onto the appropriate open-file object.

As described above, our hypothetical application
would benefit from a read-ahead policy that permitted it
to specify the blocks to be prefetched. To this end, we
implemented a graftable read-ahead policy for non-
sequential access. A memory buffer is shared between
the application and the read-ahead graft, allowing the
application to specify its anticipated file access pattern.
The graft version of thecompute-rafunction uses the
data in this shared buffer to issue read-ahead requests.

4.1.3 Measuring Read-ahead Graft Overhead
We tested the read-ahead graft by reading three thou-
sand four kilobyte blocks in a random order from a
twelve megabyte file. Each time the application code
issued a read request to the open file object, it also
placed the location and size of its subsequent read in the
shared buffer so that it could be prefetched. Table 3
shows the overhead for the read-ahead graft.

From these measurements, we see that the cost of
executing the grafted read-ahead function (the
difference between theunsafe path and thenull path) is
37 µs. Most of this cost is the overhead of acquiring a
lock before accessing the shared memory buffer. The
other cost of executing the grafted read-ahead function
is the grafting overhead—the cost of running the graft
function in a transaction, the overhead of applying
MiSFIT to the graft function, and the extra checking
required to validate the values returned by the graft
function. Table 3 shows that the total cost of starting and
committing a transaction is 64µs. The overhead

Overhead
(µs)

Elapsed
time (µs)

Base path 0.5

Indirection cost 1.0

VINO path 1.5

Transaction begin 36.0

Null graft cost 1.5

Transaction commit + 28.0

Incremental overhead 65.5

Null path 67.0

Lock overhead 33.0

Graft function 2.0

L1 cache miss time + 2.0

Incremental overhead 37.0

Unsafe path 104.0

MiSFIT overhead 3.0

Safe path 107.0

Abort cost (additional,
above commit time)

1.0

Abort path 108.0

Table 3. Read-ahead Graft Overhead.The read-ahead
graft decides which page should be prefetched with each read
request. Thebase path measures the time to select the next
(i.e., sequential) block. The graft function allows the user to
specify an access pattern. This simple function has a short
execution time, yielding a disproportionately large graft
overhead.

imposed by MiSFIT, derived by comparing the
measurements of the safe path and theunsafe path, is
another three microseconds. Thus the total grafting
overhead for this function is 65.5µs.

Returning to our cost benefit analysis, the total
cost of executing the grafted read-ahead function (the
safe path from Table 3) is 107µs. Thus, our application
would benefit from using this graft assuming that it
spends at least 107µs between read requests. For
comparison, it takes 137µs to sum a four kilobyte array
of integers on our test machine. (4KB is our file system
block size.)

4.2 A Prioritization Graft: Page Eviction
Virtual memory page eviction is another example of a
policy for which traditional operating systems imple-
ment a general algorithm (e.g., some variant of the clock
algorithm) that is good for most applications, but not all.
Applications for which LRU is the right paging strategy
will enjoy fine performance under this algorithm, but
there are cited cases where such an algorithm is subopti-
mal [2,12,18].

The key challenge in supporting application-
provided page out selection is to do so in a manner that
does not compromise the integrity of the virtual memory
system. There are three requirements necessary to
enforce this. First, the page eviction decision must be
made in a timely fashion, because poor VM
performance can slow the entire system. Second, the
value returned by the graft must be valid (or detectably
invalid). Third, the graft cannot permit the application to
use more physical memory than would be allowed if the
same application ran without a page eviction graft.

4.2.1 VINO VM Page Eviction
The VINO virtual memory system is based loosely on
the Mach VM system [14]. A virtual address space
(VAS) consists of a collection of memory objects
mapped to virtual address ranges. A memory object rep-
resents a contiguous piece of data that may be backed by
a variety of objects such as a device, a network connec-
tion, or a file. Once a memory object is associated with a
particular object, the object becomes responsible for
handling page faults to the memory object in a manner
appropriate for the materialized item (e.g., read a file
from disk, read data from a network connection).

Virtual memory page eviction is implemented by
a two-level eviction algorithm. A global page eviction
algorithm selects a victim page. Then, if the owning
VAS has installed a page eviction graft, it invokes the
graft passing it the victim page and a list of all other
pages that the virtual memory system currently assigns
to the particular VAS. The VAS-specific function can

accept the victim page or suggest another page as a
replacement (similar to Cao’s replacement strategy [5]).

The global algorithm then verifies that the
selected page belongs to the specific VAS and is not
wired. If either of these checks fails the system ignores
the request and evicts the original victim. When an
acceptable choice is returned, we use Cao’s approach
and place the original victim into the global LRU queue
in the spot occupied by the replacement specified by the
graft.

4.2.2 Measuring Page Eviction Graft Overhead
We tested our sample page eviction graft with an appli-
cation that has a 2MB data footprint of which a few
pages are performance critical. The application and graft
share a region of memory in which the application
places the page numbers of those pages it wishes to

Overhead
(µs)

Elapsed
time (µs)

Base path 39

Indirection cost 1

VINO path 40

Transaction begin 52

Null graft cost 2

Transaction commit 34

Results checking +2

Incremental overhead 90

Null path 130

Lock overhead 34

Graft function

Results checking

160

+5

Incremental overhead 199

Unsafe path 329

MiSFIT overhead 26

Safe path 355

Abort cost (additional,
above commit time)

–7

Abort path 348

Table 4. Page Eviction Graft Overhead.The grafted code
runs in addition to the default code. Because the
pagedaemon runs as a background thread, its behavior is not
completely deterministic, and we observe high standard
deviations when calculating incremental overheads. While
the measurements with over 329µs duration had less than
3% standard deviation, short-duration measurements had
high standard deviations (the highest was 16% for theVINO
path). For bothunsafe andsafe paths, the graft overrules the
default victim selection. The total cost of theabort path is
lower than thesafe path,because results checking and list
manipulation are simplified.

retain in memory. During page out, the graft checks the
globally selected victim to ensure that it is not one of the
pages listed by the application. If it is, the graft scans the
list of pages that it is allowed to evict, returning the first
page it finds that is not on its list of important pages.
Table 4 shows the different measurement paths for this
graft.

When a graft disagrees with the default victim
selection, the cost of victim selection increases by an
order of magnitude, but is quite reasonable compared to
the cost of the I/O operation that might be saved. If we
apply a cost-benefit analysis, the cost of adding the graft
is 316µs, while the benefit of avoiding a page fault is
approximately 18 ms in our system. The graft can
disagree with the victim selection approximately 57
times for each I/O that we save. In addition, the cost is
reduced to 159µs when the graft agrees with the default
victim selection, and because the pageout daemon runs
asynchronously, the increased cost of victim page
selection is unlikely to reduce application performance.

4.3 A Prioritization Graft: Scheduling
It is often the case that a group of threads or processes
work in concert, and should be scheduled as a group.
For example, a database server process and its clients
can be thought of as a single application; when there are
no outstanding server requests, the server process
should not be scheduled, but when several clients are
blocked on requests to the server, the server process
should be given a proportionally larger share of the total
CPU in order to more quickly reply to the outstanding
requests.

Each user-level process has associated with it a
kernel-level thread. When the kernel thread is chosen to
be run next, itsschedule-delegatefunction is run. The
default version of this function returns the identity of the
thread itself (i.e., instructions to run the selected thread).
The schedule-delegate function can be replaced by
grafting a process-specific function that, in the example
above, would have the client return the identity of the
server process when the client was waiting for the server
to reply to a request.

Our example schedule-delegate graft scans a
process list of 64 entries, examines each (to determine if
one of the other processes should be run instead) and
then returns its own ID.

The base path measurement is the cost of
switching processes on our system, the primary costs of
which are choosing which thread to run next, switching
kernel threads, and switching VM contexts. In this case,
theVINO path differs from thebase pathonly in a call
to a function that returns the new threads’s ID and the
code to verify that the returned ID is that of a valid
thread (which is accomplished by probing a hash table

containing the valid thread IDs). Thenull path adds
transaction support around an invocation to this trivial
function. Theunsafe path invokes the graft described
above without SFI protection, and thesafe path includes
the cost of SFI protection. The results are presented in
Table 6.

Because this graft walks the process list, it must
acquire a lock for the list. Theunsafe andsafe paths add
this cost to the cost of the code that walks the process
list; the safe path adds the cost of MiSFIT protection.
Each iteration of the loop that walks the 64-element
process list takes about 0.5µs, primarily because our
collection class implementation is not well-optimized.

The cost for this graft, starting with the fixed
transaction begin/commit cost, is higher than thebase
path cost (for switching processes twice). Although
twice the cost of a process switch, it is still roughly 2%
of a typical timeslice of 10 ms (as opposed to 0.5% for
thebase path).

Overhead
(µs)

Elapsed
Time (µs)

Base path (two switches) 54

Indirection cost 1

VINO path 55

Transaction begin 38

Null graft cost 2

Transaction commit 30

L1 cache miss time +6

Incremental Overhead 76

Null path 131

Lock overhead 33

Graft function 35

Result checking +4

Incremental Overhead 72

Unsafe path 203

MiSFIT overhead 5

Safe path 208

Abort cost (additional,
above commit time)

3

Abort path 211

Table 5. Scheduling Graft Overhead. The base path
measurement includes the time to select the next process to
run, switch to it, and switch back (including switching VM
contexts twice). Thenull path includes a call to a function
that returns its argument (the candidate thread). Theunsafe
path adds the invocation of a non-trivial function that locks
and searches the process list. The largest increase in
overhead comes from the transaction and lock costs, which
sum to twice the process switch cost.

The benefit of permitting processes to control
scheduling is difficult to quantify; however, the benefit
of being able to control which process runs next can be
considerable. Multimedia applications are often
structured as several cooperating processes or threads.
In a conventional system, if the user interface thread is
scheduled when it comes time for the application to
display the next video frame, the best the UI thread can
do is yield, and hope that the video thread is scheduled
soon. With the ability to delegate a timeslice in the
manner discussed here, the UI thread could hand off
directly to the video thread, with the goal of better
meeting the scheduling deadlines of the application.

An operating system with support for real-time
scheduling and service guarantees might better meet the
needs of this particular application; however, we do not
believe that we cana priori determine all desirable
scheduling policies and hard-code them into the kernel.

4.4 A Stream Graft: Encryption/Decryption
A stream graft is used to transform a data stream as it
passes through the kernel. Examples of stream grafts are
compression (and decompression), logging, mirroring,
and encryption (and decryption).

Our graft performs a trivial (xor-style) encryption
of data as it is copied to user level, and symmetrical
decryption as it is brought into the kernel from user
level. The encryption algorithm used is not
computationally intensive, which is a conservative
position to take. The primary cost imposed by our
software fault isolation tool is protection against errant
loads and stores, so the higher the ratio of memory
accesses to other instructions, the higher the SFI
overhead. The most trivial stream graft just copies data
from input to output without transforming it; this graft
has the highest ratio of stores to other instructions.
Therefore, the simpler the transformation the graft
performs, the more conservative the overhead estimate.
For example, the cost of a computationally intensive
encryption scheme (e.g., DES) would dwarf the
overhead associated with software fault isolation.

Our sample graft is passed an 8KB input data
buffer block and an 8KB output buffer. The graft
encrypts the data into the output buffer and returns. This
graft is particularly interesting in that it requires no
synchronization overhead (the input and output buffers
have been obtained in the caller), but offers nearly the
worst case of software fault isolation overhead, because
it consists almost entirely of load and store instructions.
Table 6 shows the overhead for the encryption graft.

For the base path measurement we use the in-
kernel bcopy function to copy an 8KB buffer (105µs).
The VINO path adds a function indirection that is
sufficiently fast to be undetectable, and, as above, the

null path adds transaction begin and commit (64µs).
The base andVINO path measurements are artificially
low because they call bcopy in a tight loop. Using the
Pentium on-chip counters, we measured an additional
24 µs spent servicing L1 cache misses in thenull path
case, for a bcopy time of 193µs.

The unsafe path encrypts the data as it copies it
from input to output, adding another 166µs over and
above the cost of the bcopy, for a total of 359µs. The
encryption takes 3.4 times that of a straight bcopy
(which is implemented using a hardware copy
instruction that has a cost of only one cycle per word
copied).

The cost of MiSFIT protection on thesafe path
adds 187µs, for a total of 546µs, or 5.2 times a straight
bcopy. This overhead is not surprising, given the lack of
optimization in our software fault isolation tool. Our
tool protects each indirect memory access; since the
graft consists primarily of memory accesses, we see a
protection overhead between two and three times the
cost of the function itself.

4.5 Transaction Failure Overhead
In each of our sample grafts, we measured the time
required to abort the graft. This cost is a function of the
number and complexity of the undo functions, the num-
ber of locks to release, and the constant overhead associ-
ated with ending a transaction. This cost varies
dramatically, depending on the complexity of the graft.

Overhead
(µs)

Elapsed
time (µs)

Base path 105

VINO path 105

Transaction begin 32

Transaction commit 32

L1 cache miss time +24

Incremental overhead 88

Null path 193

Graft function 166

Unsafe path 359

MiSFIT overhead 187

Safe path 546

Abort cost (additional,
above commit time)

4

Abort path 550

Table 6. Encryption Graft Overhead. As expected, this
graft is a worst-case scenario for software fault isolation,
imposing more than 100% overhead on the graft function.

For each of the grafts described above, we measured the
cost of aborting thenull path as well as the full grafted
path. These measurements are shown in Table 7.

Our sample grafts have sufficiently little state that
the full abort cost is only 0% to 40% more than the null
abort cost. Most of these grafts have littleundo work
and few locks. While we believe that these grafts are
representative of the fine-grain grafts that VINO allows,
more complex grafts will have higher abort costs. The
total abort time is represented by the equation:

. The abort
overheads we measured ranged from 32–38µs, and we
measured the cost of releasing a lock at 10µs per lock.
The undo cost should be somewhat less than the actual
cost of running the graft. Therefore, the abort cost
equation becomes: , where L is the
number of locks to be released, G is the cost of the graft,
and c is a constant less than one.

The most significant variable in aborting a
transaction occurs when the graft hoards resources and
must be timed out. We currently schedule time-outs on
system-clock boundaries, which occur every 10 ms.
Therefore, the delay for timing out a transaction will be
between 10 and 20 ms. This is obviously too coarse
grain for some resources, and we expect to
experimentally determine a more appropriate timing as
the system matures.

4.6 Summary
The overhead associated with using transactions and
software fault isolation to protect kernel integrity from
misbehaving grafts varies according the type of actions
performed by the graft. As the encryption graft demon-
strated, MiSFIT can increase the execution time of graft
code by nearly 200%. For less data intensive grafts,
such as the file read-ahead graft, the MiSFIT overhead,
while large relative to the cost of the graft itself, is only
a few microseconds. Transaction costs are relatively sta-
ble across all grafts, increasing in proportion to the num-
ber of locks acquired on a graft’s behalf. Each use of a

Null Abort
(µs)

Full Abort
(µs)

Read-Ahead 32 45

Page Eviction 38 50

Scheduling 33 45

Encryption 36 36

Table 7. Graft Abort Costs. For each of our sample grafts,
the difference between the two columns is a function of the
number and complexity of the undo functions and the
number of locks that must be released.

abort overhead unlock cost undo cost+ +

35µs 10L cG+ +

transaction lock instead of a conventional kernel mutex
lock adds approximately 19µs to the graft’s execution
time and 14µs to the abort cost.

The measured cost of running a graft in the
context of a transaction can be substantial, adding as
much as 200µs to the execution time of the graft code.
The true cost of downloading user code into the kernel,
however, must be measured in terms of the performance
and functionality gained by allowing applications to
modify the kernel. Grafts may eliminate or hide disk
accesses, avoid context switches, or eliminate
programmer labor by allowing the reuse of kernel
functionality. In many cases, the time gained more than
compensates for the overhead of the grafting
mechanisms. In other cases, the gains in flexibility and
savings in labor will be sufficient compensation, and in
some cases, the cost will outweigh any potential
benefits, and we must explore other alternatives for
kernel extensibility.

5 Related Work
VINO is one of many new operating systems that
belongs to the class of extensible systems. It is most
similar to the SPIN system [4]. In SPIN, extensions are
written in a typesafe language (Modula-3) and down-
loaded into the kernel where they initiate a thread. Once
installed, the thread can install handlers for any kernel
events for which it has appropriate permission and in
which it is interested. The use of a typesafe language
simplifies some of the safety issues involved in building
an extensible system, because the extensions cannot ref-
erence disallowed interfaces or data. Cleaning up after
errant extensions is also simplified in SPIN, because the
Modula-3 garbage collector can clean up state when a
graft terminates. However, the areas we found most
challenging, such as detecting and dealing with resource
hoarding, identifying malicious extensions, and identi-
fying the set of graft-callable and graft-replaceable
interfaces, are also challenges for SPIN.

Our event graft model is similar to the event
model of SPIN. Where the function graft model
(discussed in section 3.4) is appropriate for simple, fine-
grained graft points that correspond to single functions,
event graft points provide better support for the addition
of new services to the kernel.

The Exokernel project [6] is an extreme example
of an extensible system. The goal of the Exokernel
project is to remove abstractions from the kernel and
export a low-level machine interface directly to
applications. User-level libraries implement most of the
abstractions traditionally implemented by the kernel,
and the kernel implements the bare-minimum
functionality required to export the hardware interface

to applications safely. There are two ways to extend the
Exokernel. The first is to modify the user-level libraries
that implement the kernel abstractions. Because VINO
is a conventional kernel architecture, there is no analogy
in VINO. The second method of extending Exokernel is
to download code into the kernel and use software fault
isolation, as is done in VINO, to ensure safety.

Another approach to extensibility is to provide an
interpretive environment in the kernel in which kernel
extensions can be run. The interpreter can ensure safety
by preventing extensions from wreaking havoc in the
main kernel, but often incurs a significant runtime
overhead [16].

The adaptable systems, such as Synthetix [19],
take a different approach from the extensible systems.
Rather than having applications explicitly modify the
kernel’s behavior, Synthetix is designed so that
commonly executed paths through the operating system
can be specialized. For example, the common path
through the file system accesses the same file descriptor
and the same or sequentially next block in the
designated file. By providing a specialized component
that removes branches and the normal code to map file
descriptors to kernel structures, the performance of the
normal case can be greatly improved [13]. The only
additional cost comes in the form of checks that
distinguish between the normal path and the specialized
path and allow the system to execute the correct one at
the correct time. This approach is sufficient for
improving performance for paths that already exist in
the kernel, but does not address functionality that is not
present in the kernel initially.

6 Lessons Learned
C++ bought us some headaches that a safe language
such as Modula-3 would have avoided. In particular,
garbage collection would have simplified our task of
cleaning up after a misbehaved graft aborts. We could
also have avoided work-arounds such as delaying
deletes until transaction abort. Finally, the SFI overhead
for data intensive grafts, such as encryption, is irritating;
a more constrained language would have provided pro-
tection at the compiler level. While we have succeeded
in making our kernel robust against malicious grafts, it
has been painful at times.

By far, the most challenging issues were not
language issues; they were system design issues.
Repeatedly, we found ourselves making trade-offs
between restricting the graft interface and adding
overhead to handle all the types of malice we foresaw
with the broadened interface we provided. In general,
we strove to make grafts as flexible as possible, even
when it bought us extra complexity in the design or

extra overhead in the protection mechanisms. The
system is still too young for us to determine whether
these trade-offs were justified. As we gain more
experience with sophisticated applications, we can
reevaluate this design decision.

We also discovered that we had to think very
differently when designing a system for fine grain
extensibility. Every decision that might conceivably be
extended had to be encapsulated in an interface. This
encourages extreme modularity. (At this point, we have
not been able to completely quantify this cost.) For
example, a conventional lock manager might implement
the get_lock request as shown in Figure 4.
Unfortunately, this code encapsulates at least two policy
decisions. First, it assumes that any incoming lock
request can be granted if it does not conflict with any
holders, ignoring the locks on the wait list (e.g., it
implements a reader priority locking protocol). Second,
it assumes that locks should be appended to the waiters
list, implying an ordering. A more general
implementation ofget_lock is shown in Figure 5.
This implementation encapsulates each policy decision
at the cost of a level of indirection at each decision
point. On our system, function calls typically cost
approximately 35 cycles at 8.3 ns/cycle; these add up
remarkably quickly.

Perhaps the most daunting design issue that
confronted us was selecting the right abstraction for
grafts. Are they threads? Are they simple functions? We
revisit this question regularly, but our current position is
that grafts are effectively user-level processes that
happen to run in the kernel’s address space. As
processes are isolated from the kernel by address space
boundaries, grafts are isolated from the kernel by
software fault isolation. Grafts interact with the kernel

get_lock(requested_lock) {
if (can_grant = grantable(lock))

lock_add(lock, holders_list);
else

lock_add(lock, waiters_list);
}

Figure 5. Encapsulated lock algorithm.

get_lock(requested_lock) {
for (lock=head(holders_list);

lock != NULL;
lock=lock->next)
if (is_conflict(lock,

requested_lock)) {
append(lock, waiters_list);
break;

}
if (lock != NULL)

append(lock, holders_list);
}

Figure 4. Conventional lock algorithm.

through a selected set of interfaces, but these interfaces
are much lower level and functionally richer than the
processes’ system call interface. In an ideal world,
grafts should look just like other kernel code, and for the
most part, they do.

7 Conclusion
Two simple mechanisms, software fault isolation and
transactions, protect our kernel from mischievous exten-
sions imposing penalties ranging from 104 to 270µs. In
all of our test cases, these costs are outweighed by the
potential benefits of the grafts. Because grafts either
provide functionality not present in the system or signif-
icantly improve performance, we believe that such over-
head is acceptable for most scenarios. It is certainly
possible that we have overlooked classes of misbehavior
that we cannot detect and/or handle, but our mecha-
nisms are applicable across a wide range of extensions.

Acknowledgments
We would like to thank the program committee and
reviewers for their helpful comments, and especially our
shepherd, Jim Gray, for his insight and assistance in
improving the paper and its presentation. We would also
like to thank the members of the VINO group, espe-
cially Aaron Brown and David Holland, for their help.

References
[1] Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid,

R., Tevanian, A., and Young, M., “Mach: A New Kernel
Foundation for UNIX Development,”Proc. Summer 1986
USENIX Conf.,Atlanta, GA, July 1986, 93–112.

[2] Appel, A., Li, K., “Virtual Memory Primitives for User
Programs,”Proc. ASPLOS IV,Santa Clara, CA, April
1991, 96–107.

[3] Baker, M., Hartman, J., Kupfer, M., Shirriff, K.,
Ousterhout, J., “Measurements of a Distributed File
System,”Proc. 13th SOSP, Pacific Grove, CA, Oct. 1991,
198–212.

[4] Bershad, B., Savage, S., Pardyak, P., Sirer, E. G.,
Fiuczynski, M., Becker, D., Eggers, S., Chambers, C.,
“Extensibility, Safety, and Performance in the SPIN
Operating System,”Proc. 15th SOSP,Copper Mountain,
CO, Dec. 1995, 267–284.

[5] Cao, P., Felten, E., and Li, K., “Application-Controlled
File Caching Policies”,Proc. 1994 Summer USENIX
Conf.,Boston, MA, June 1994, 171–182.

[6] Engler, D., Kaashoek, F., and O’Toole, J., “Exokernel: An
Operating System Architecture for Application-Level
Resource Management,”Proc. 15th SOSP,Copper
Mountain, CO, Dec. 1995, 251–266.

[7] Haskin, R., Malachi, Y., Sawdon, W., and Chan, G.,
“Recovery Management in QuickSilver,”ACM TOCS 6,
1, Feb. 1988, 82–108.

[8] Illustra Information Technologies, “Introduction to
Illustra,” Part No. ILL0795-01Ill,Illustra Web DataBlade
User’s Guide, Release 2.1 Beta. Sep. 1995. Part No.
WEB-00-12-UG.

[9] Montz, A., Mosberger, D., O'Malley, S., Peterson, L.,
Proebsting, T., Hartman, J., “Scout: A Communications-
Oriented Operating System,” Department of Computer
Science, University of Arizona, Technical Report 94-20,
June 1994.

[10]Microsoft Corp., “How Software Publishers Can Use
Authenticode Technology,” http://www.microsoft.com/
intdev/signcode.

[11] Nelson, G., Systems Programming with Modula-3,
Prentice Hall, Englewood Cliffs, NJ, 1991.

[12]Patterson, R. H., Gibson, G. A., Ginting, E., Stodolsky,
D., and Zelenka, J., “Informed Prefetching and Caching,”
Proc. 15th SOSP,Copper Mountain, CO, Dec. 1995, 79–
91.

[13]Pu, C., Autrey. T., Black. A., Consel, C., Cowan, C.,
Inouye, J., Kethana, L., Walpole, J., and Zhang, K.,
“Optimistic Incremental Specialization: Streamlining a
Commercial Operating System,”Proc. 15th SOSP,
Copper Mountain, CO, Dec. 1995, 314–324.

[14]Rashid, R., Tevanian, A., Young, M., Golub, D., Baron,
R., Black, D., Bolosky, W., and Chew, J., “Machine-
Independent Virtual Memory Management for Paged
Uniprocessor and Multiprocessor Architectures,”Proc.
ASPLOS II,Palo Alto CA, Oct. 1987, 31–39.

[15]Seltzer, M., Endo, Y., Small, C., Smith, K., “An
Introduction to the Architecture of the VINO Kernel,”
Harvard University Computer Science Technical Report
34-94, 1994.

[16]Small, C., Seltzer, M., “A Comparison of OS Extension
Technologies,”Proc. 1996 USENIX Conf.,San Diego,
CA, Jan. 1996, 41–54.

[17]Small, C., “MiSFIT: A Minimal i386 Software Fault
Isolation Tool,”, Harvard University Computer Science
Technical Report TR-07-96, 1996.

[18]Stonebraker, M., “Operating Support for Database
Management,”CACM 24, 7, July 1981, 412–418.

[19]Volanschi, E., Muller, G., Consel, C., “Safe Operating
System Specialization: the RPC Case Study”,Proc. 1st
Workshop on Compiler Support for System Software,
Tuscon, AZ, Feb. 1996.

[20]Wahbe, R., Lucco, S., Anderson, T., Graham, S.,
“Efficient Software-Based Fault Isolation,”Proc. 14th
SOSP,Asheville, NC, Dec. 1993, 175–188.

[21]Waldspurger, C., Weihl, W., “Lottery Scheduling:
Flexible Proportional-Share Resource Management,”
Proc. 1st OSDI,Monterey, CA, Nov. 1994, 1–11.

