
Making Paths Explicit in the Scout Operating System

David Mosberger and Larry L. Peterson
Department of Computer Science

University of Arizona
http://www.cs.arizona.edu/scout/

Abstract

This paper makes a case for paths as an explicit abstrac-
tion in operating system design. Paths provide a unify-
ing infrastructure for several OS mechanisms that have
been introduced in the last several years, including fbufs,
integrated layer processing, packet classifiers, code spe-
cialization, and migrating threads. This paper articulates
the potential advantages of a path-based OS structure, de-
scribes the specific path architecture implemented in the
Scout OS, and demonstrates the advantages in a partic-
ular application domain—receiving, decoding, and dis-
playing MPEG-compressed video.

1 Introduction

Layering is a fundamental structuring technique with a
long history in system design. From early work on lay-
ered operating systems and network architectures [12,
32], to more recent advances in stackable systems [27,
15, 14, 26], layering has played a central role in managing
complexity, isolating failure, and enhancing configurabil-
ity. This paper describes a complementary, but equally
fundamental structuring technique, which we call paths.
Whereas layering is typically used to manage complexity,
paths are applied to layered systems to improve their per-
formance and to solve problems that require global con-
text.

We begin by developing some intuitionabout paths. A
path can be viewed as a logical channel through a multi-
layered system over which I/O data flows, as illustrated
in Figure 1. In this way, a path is analogous to a virtual
circuit that cuts through the nodes of a packet-switched
network. The only difference is that paths are within a
single host, while virtual circuits run between hosts.1

Also, the term “path” is well entrenched in our vo-
cabulary. For example, we often refer to the “fast path”

1The obviousnext step is to integrate paths through the end host with
circuits between hosts, but for the purpose of this paper, we focus on
paths within a single system.

Path B

Layer 4

Layer 3

Layer 2

Layer 1

Path A

Figure 1: Two Paths Through a Layered System

through a system, implying that the most commonly ex-
ecuted sequence of instructions have been optimized. As
another example, we sometimes talk about optimizing the
“end-to-end path,” meaning we are focused on the global
performance of the system (e.g., from I/O source to sink),
rather than on the local performance of a single compo-
nent. As a final example, we sometimes distinguish be-
tween a system’s “control path” and its “data path,” with
the former being more relevant to latency and the latter
more concerned with throughput.

Finally, paths can be loosely understood by consid-
ering specific OS mechanisms that have been proposed
over the last few years. Consider the followingexamples.

� Fbufs [6] are a path-oriented buffer management
mechanism designed to efficiently move data across
a sequence of protection domains.2 Fbufs depend
on being able to identify the path through the system
over which the data will flow.

2Although layering does not imply multiple protection do-
mains, systems often impose hardware-enforced protection at layer
boundaries.

� Integrated layer processing (ILP) [4, 1] is a tech-
nique for fusing the data manipulation loops of mul-
tiple protocol layers. It depends on knowing ex-
actly what sequence of protocol modules a network
packet will traverse.

� Packet classifiers [31, 20, 2, 8] distinguish among
incoming network packets based on certain fields
found in their headers. In a sense, a packet classi-
fier pre-computes the path that a given message will
follow.

� Specialization is sometimes used to optimize com-
mon path code sequences [24, 23]. Specialization,
in turn, depends on the existence of invariants that
constrain the path through the code that is likely to
be executed.

� The Alpha OS allows threads to migrate across a se-
quence of protection domains [5]; others have de-
fined similar mechanisms [13, 9]. Such mechanisms
recognize that tasks often span multiple domains,
and so account for resource usage on a path basis
rather than a domain basis.

The thesis of this paper is that these mechanisms are
not isolated optimizations, but rather, that they can be
unified and explained by the path abstraction. In a nut-
shell, these mechanisms all share the following funda-
mental idea: they expose and exploit non-local context.

Consider a layered system like the one illustrated in
Figure 1. While the advantage of layering and modular-
ity is to hide information, there are many situations when
it would be beneficial for a given layer to have access to
non-local context. For example, suppose one of the mod-
ules is processing an Ethernet packet. With only local
context, the module knows nothingabout the packet’s rel-
ative importance compared to other packets. However,
if it is known that the packet is part of a particular video
stream, then it is easy to determine its processing dead-
line, what modules need to be executed to process it, how
many CPU cycles this processing will require, where its
data should be placed in memory, and so on. In other
words, by knowing a certain set of invariants (e.g., that
the packet is part of some video stream), the module is
able to access and exploit global context that is available
outside any one module or layer. Abstractly then, a path
is defined by these invariants and provides access to the
corresponding context.

Having access to non-local context leads to two kinds
of advantages: (1) improved resource allocation and
scheduling decisions, and (2) improved code quality. In
the former case, work is segregated early, facilitating the
following benefits:

� The system can place data in a memory buffer that is
already accessible to all the modules along the path.
This is essentially what fbufs do. In contrast, data
often has to be copied (either logically or physically)
from one buffer to another at each module or layer
boundary.

� The system can know that a particular path needs to
be scheduled for execution in order to meet a dead-
line; e.g., display a video frame. This is critical
to being able to offer different Qualities of Service
(QoS). In contrast, not segregating work into paths
means that low-priority work may need to be done
to discover high-priority work that needs attention.

� If scheduling deadlines for a particular path are such
that it is impossible to make use of a particular piece
of work (e.g., network packet or video frame), then
the system can discard unnecessary work early, that
is, before executing the path. A conventional system
often has to process several layers before knowing
that continuing is of no value.

In the latter case—improved code quality—the system
has more information available to it, making more ag-
gressive code optimizations possible. Examples of such
optimizations include the following:

� The more invariants the system knows about code to
be executed, the more opportunities the system has
to specialize the code path. For example, the system
can do constant folding and propagation, dead-code
elimination, and interprocedural register allocation.

� The more layers across which the system is able to
optimize, the more opportunities there are to elim-
inate redundant work. For example, the more pro-
tocol layers available, the more loads and stores in-
tegrated layer processing can remove. Similarly, it
is sometimes possible to merge per-layer operations.
For example, instead of having each layer check for
the appropriate header length, it is possible to check
for the sum of all header lengths at the beginning of
packet processing.

This paper makes two contributions. First, it develops
an explicit path abstraction; Section 2 explores the design
space for paths, and Section 3 describes an implementa-
tion of paths in the Scout operating system. Second, the
paper demonstrates how having a path abstraction leads
to the first set of advantages outlined above, i.e., those
that have to do with improvements in resource allocation
and scheduling. In particular, Section 4 describes an ap-
plication that receives MPEG-compressed video over a
network and then decodes and displays it. A companion
paper demonstrates some of the code-related improve-
ments attributable to paths [23].

2 Path Abstraction

While it is tempting to view paths as an optimization that
can be super-imposed on an existing layered system—
and it is certainly the case that many of the ideas de-
scribed in this paper can be applied in this way—we
take a more “first principles” approach to defining paths.
Specifically, this section develops a working definition of
paths in an incremental fashion. Our goal is to explore the
design space for paths, and in the process, to introduce the
particular architecture that we settled on.

2.1 Basic Paths

A path is a linear flow of data that starts at a source device
and ends at a destination device. While the data is moved
from the source to the destination, it is transformed (pro-
cessed) in some path-specific manner. That is, if the in-
put data is represented as a message m, then the output
message is g(m), where g is the function that represents
the path-specific transformation. In addition, each path
has two queues associated with it, as depicted in Figure 2,
thereby decoupling the input and output devices. A path
scheduler determines when a given path is executed, that
is, when g(m) is evaluated.

Device
g(m)

Device

Figure 2: Simple path

While paths connect devices, there is no direct rela-
tionship between device pairs and paths: a given device
pair can be connected by zero or more paths. Allowing
for multiple paths to connect the same pair of devices is
sensible since both g(m) and the scheduling priority may
vary. For example, one path may handle UDP packets,
whereas another may handle TCP packets. Similarly, two
paths that forward IP packets between a pair of devices
may need to be scheduled differently if they provide a dif-
ferent quality of service. Thus, paths are dynamic entities
that are created at runtime; there is no a priori limit on the
number of paths that can exist in a given system.

What are the properties of basic paths? First and fore-
most, once a message has been enqueued on the input
queue of a path, it is already known what device the (pos-
sibly transformed) output message will arrive at. For the
purpose of resource management, it is also known thatm
belongs to the path on which it is enqueued, and all exe-
cution is performed on behalf of that path. In other words,
knowledge is available early and globally.

TCP

HTTP

VFS

UFS

SCSI ATM ETH FDDI

IP

Figure 3: Example Router Graph

2.2 Creating Paths

The key problem in creating a path is how to specify
g(m). While it would be possible to write a specific func-
tion for each path with distinct functionality, it is more
convenient to derive g(m) automatically from a modu-
larly organized system. This is because many of the paths
are likely to have substantial functionality in common,
such as various network, file, and windowing protocols.
Generating a path from components does not preclude
writing a specialized g(m) for those cases that warrant
the extra effort.

A router graph represents the modular structure of the
system, where each router is a software module that im-
plements a specific task, such as the NFS protocol or a
SCSI driver. The reason we call these modules routers
will become clear in a moment. As is common in a modu-
lar/layered system, individual routers provide their func-
tionality based on the functionality of other routers, that
is, it is possible to draw a dependency graph that rep-
resents the interdependence among the various routers.
This also means that a router graph fully describes what
kind of tasks a given system can perform. For example,
Figure 3 depicts a router graph that could be used to im-
plement a web server. Given this graph, a path that starts
at the ETH router (Ethernet device) and ends at the SCSI
router (disk device) would have a g(m) that is the com-
posite of the functions contributed by each router; i.e.,

g(m) = gSCSI(gUFS(� � � (gIP(gETH(m))) � � �)):

However, this still begs the question of how a path is
created. There are essentially two approaches: (1) the
path is pre-specified externally, and (2) the path is dis-
covered incrementally. This division corresponds to the
two sources of “knowledge” that influence path creation:
global and router-specific. Global knowledge is of the
sort “for a web service, the following sequence of routers

need to be part of the path.” Global knowledge may also
be used for optimization, for example, there may be an
optimized g(m) available for the web path that is pre-
ferred to an automatically derived composite function. In
contrast, local knowledge is of the form “if invariant X
is true for the path under construction, then the path can
pass through this router” or “if invariant Y is false, then
the path cannot go beyond this router.”

Using global knowledge alone to create a path would
be difficult since this knowledge often requires familiar-
ity with the internal workings of the routers that are tra-
versed by a path. In contrast, creating a path based on
router-specific knowledge alone would limit the utility of
paths considerably. (Recall that most advantages of paths
are due to the global knowledge they afford).

In our path architecture, paths are created in two
phases. First, router-specific knowledge is used to
create a maximum length path. Second, this maxi-
mum length path is transformed (optimized) using global
transformation rules, each of which is defined by a
hguard; transformationi pair. If the guard evaluates to
TRUE, the corresponding transformation is applied, re-
sulting in a new path. This process repeats until all guards
evaluate to FALSE.

To better illustrate the difference between local and
global knowledge, consider the router graph given in Fig-
ure 3. Suppose there is a path that starts at SCSI and ends
at ETH. Such is the case, for example, if IP can determine
that the remote host is on the same Ethernet as the local
host. If this is not true, then IP can not be sure whether
data will go out through ATM or FDDI, since the rout-
ing tables may change in the middle of the data transfer.
Clearly, this decision is completely IP specific, that is,
based on local knowledge. On the other hand, there are
several global facts that hold for a web path that could be
exploited, for example, data is transfered through TCP in
a predominantly uni-directional manner and accessed on
the disk in a strictly sequential fashion. Note that each
such invariant may affect the function gi of one or more
other routers. For example, the fact that data is accessed
sequentially may mean that it is best to avoid caching in
the file system (UFS). Similarly, the fact that TCP is in
the path may mean that the IP fragmentation code can be
omitted completely.

Finally, note that our definition of a path’s seman-
tics, which we denote as g(m), should not be taken to
mean that procedures constitute the fundamental building
blocks of paths. It is equally legitimate to construct a path
from a sequence of basic blocks, which is more in line
with having the path abstraction represent the “fast path”
through the system. In fact, procedures and basic blocks
define two ends of a granularity spectrum. Scout imple-
ments a specific point on this spectrum, as described in
Section 3.

2.3 Network View of Paths

We motivated routers as a means to automatically derive
the path function g(m). Alternatively, a router graph can
be viewed as a set of interconnected nodes that forward
messages along their links in the dependency graph. The
operation of a router is to receive a message, process it,
and then forward the resulting message to another router,
as illustrated in Figure 4.

Router

Figure 4: Message forwarding/routing

If a message is injected at some router, the trail it leaves
in the router graph as it is processed and forwarded cor-
responds to a sequence of routing decisions. If a given
trail is used very often, it may be worthwhile to explic-
itly encapsulate and optimize it. This is exactly what a
path does: it represents a fixed sequence of routing de-
cisions through the system’s modules. This is not unlike
a virtual circuit through a network: at connection estab-
lishment time, a set of invariants that are guaranteed to
hold for the duration of a connection is specified. In re-
turn, these invariants permit the customization of the path
in a way that is optimized for that particular connection.
In the case of a virtual circuit, the set of invariants con-
tains the address pair of the communicating peers, but it
may include other parameters such as the desired qual-
ity of service. The same kind of invariants are useful for
creating paths. For example, knowing what quality-of-
service a path requires helps when choosing an appropri-
ate scheduling policy and priority.

In this context, it makes more sense to let paths con-
nect an arbitrary pair of routers rather than insisting that
a path connects a pair of devices. The latter case is ideal
in the sense that it provides a maximum amount of global
knowledge. However, the maximum length of a path is
related to the strength of the invariants. In general, the
stronger the invariants, the more routing decisions can be
frozen at path-creation time, and the longer the resulting
path. While it is preferable to have long paths, a general
model must allow for the degenerate case where invari-
ants are so weak that not a single routing decision can be
made at path creation time. This degenerate case roughly
corresponds to a traditional layered system.

2.4 Generalized Paths

As defined so far, paths are simple and highly predictable:
a message arrives at the input queue, the path is scheduled
for execution, and the transformed message is deposited
in the output queue. While this simplicity is ideal for the
purpose of optimization, it also limits the usefulness of
paths. Since it is our goal to define paths in a way that
moves them from a purely performance-motivated con-
cept into an abstraction with which a complete operating
system can be built, we must extend paths to make them
more widely applicable, but in a way that does not destroy
the properties that make the path abstraction attractive in
the first place.

2.4.1 Directionality

Processing in a path is usually bi-directional: a remote-
procedure call arrives over the network, results in some
computation, and an answer is sent back to the caller; the
arrival of a network packet triggers the sending of an ac-
knowledgment; or a disk block is requested and arrives
asynchronously. Such bi-directional paths could be han-
dled by creating two separate paths, but it seems more
natural if a path that is used to make a request is also the
one that yields the response. A similar argument can be
made about resource management. A more technical ar-
gument for making paths bi-directional is that often the
two directions are dependent on each other. For example,
when sending a network packet to a remote host, it may
be desirable to include a piggy-back acknowledgment in
that same packet.

Therefore, we extend the path model as follows. Each
path end has a pair of queues—an input queue for one di-
rection, an output queue for the other direction. The path
function g(m) is also extended to take a second argument
d that gives the direction (FWD or BWD) in which the
path should be traversed. FWD is the direction in which
the path was created, while BWD refers to the reverse di-
rection. Each router-specific function is extended in the
same way.

2.4.2 Complex Processing

The current path model assumes that the path transforma-
tion is “work-preserving,” that is, for every input mes-
sage, there is exactly one output message. This is limiting
since it means that important operations such as packet
reassembly and fragmentation cannot be accommodated.
In the former case, most input messages do not result
in an output message. Instead, the partial messages are
buffered inside the router. In the latter case, every input
message may result in many more than one output mes-
sage. Similarly, a retransmission timeout may result in a

new message being generated spontaneously from within
the path.

For this reason, we loosen the evaluation rule for paths.
Suppose that creating a path results in the routers con-
tributing the functions g1, ..., gn. A message may now
be injected at any one of these sub-functions and the in-
vocation of gi may result either in gi�1 or in gi+1 being
invoked. That is, these sub-functions can be invoked in
any order, subject to the rule that only neighboring func-
tions are invoked, or that the message be enqueued at an
output queue.

2.5 Remarks

In summary, a path is created incrementally by invokinga
create operation on a router and specifying a set of invari-
ants. The invariants describe the properties of the desired
path, and are used to determine a next router that must be
traversed by any message traveling on this path. The path
reaches its maximum length when the invariants are no
longer strong enough to make a unique routing decision.
Each traversed router contributes a function gi that is ap-
plied when processing a message. A path that traverses
three routers is shown in Figure 5.

Routerg1 g2 g3Router

Figure 5: Example Path

Path execution is decoupled from the arrival and depar-
ture processes at the routers by four queues. For each di-
rection, there is an input and an output queue. Typically,
a path execution involves dequeuing a message from an
input queue and evaluating the gi functions in sequence
until the other end of the path is reached. However, for
generality, a message may get absorbed in the middle of
a path, or turned around, or a new message may be cre-
ated spontaneously inside a path.

Finally, keep in mind that policy issues—i.e., how to
use paths for a given system—remain unspecified. There
are two dimensions to this issue, which can be visual-
ized as the “length” and the “width” of the path, respec-
tively. The “length” of the path is simple to understand:
it corresponds to the number of routers that the path tra-
verses. A path’s width is more subtle: a highly special-
ized path is narrow, whereas a more general path is wide.
For example, a path that can only be used to carry non-
fragmented messages for a specific host-pair would be
considered narrow, while a path from a network adapter
to the IP protocol that can handle any IP datagram would
be considered wide.

While it might seem that one wants paths to be as nar-
row (specific) as possible, this is not necessarily the case.
Such a strategy can lead to an explosion of paths—e.g.,
one per packet or one per request/response transaction—
which also implies having to create paths too frequently.
Since there is a cost associated with path creation, one
clearly wants the path to have enough breadth to carry
multiple messages. The strategy we have adopted is to
define a modest number of long-lived paths (e.g., one per
window, one per open file, one per TCP connection) and
then to define a small number of “short/fat” paths to catch
the exceptional cases (e.g., all fragmented IP packets).

3 Implementing Paths in Scout

Scout is an experimental operating system designed for
network appliances—e.g., set-top boxes, file- and web-
servers, and cluster computers. Scout is designed around
the path abstraction, supports both non-realtime and soft-
realtime applications, and runs in a single address space.
This section describes how the path abstraction is imple-
mented in Scout.

Note that compatibilitywith standard application inter-
faces (e.g., POSIX) is not a major goal of Scout, except to
understand how such interfaces either exploit or interfere
with paths. On the other hand, interoperability with ex-
isting protocol specifications is an important requirement
of Scout.

3.1 Routers and Services

Just as in the architecture, routers are the unit of program
development in Scout. A router implements some func-
tionality such as the IP protocol, the MPEG decompres-
sion algorithm, or a driver for a particular SCSI adapter.
A router implements one or more services that can be
used by other higher-level routers. As is typical in a lay-
ered system, most routers themselves use other lower-
level routers to implement their services. Scout does not,
however, enforce strict layering. Cyclic dependencies are
admissible as long as there is a partial (non-cyclic) order
in which the routers can be initialized.

Each service in a router has a name and a type. The
names are unique, but otherwise arbitrary and chosen by
the programmer. The relevance of service types is ex-
plained in more detail below. For the purpose of config-
uring a router graph, it is sufficient to know that two ser-
vices can be connected by an edge only if they are mutu-
ally compatible. Figure 6 illustrates routers, services, and
how they interact in a router graph. In this partial router
graph, IP has three services: up, down, and res. The first
two are of type net and the latter is of type nsClient (for
“name-service client”). The down service is connected to

net:net

IP

ARP

ETH

resolver:nsProvider

down:net

up:net

res:nsClient

up:net

Figure 6: Routers and Services.

ETH’s up service. This connection is used by IP to send
and receive IP datagrams. The res service is connected
to ARP’s resolver service. IP uses this to translate IP host
numbers into Ethernet addresses. ARP itself is connected
to ETH as well so that it can broadcast and listen to rele-
vant ARP packets.

A router is implemented simply as a collection of C
source files. These files, along with the external interface,
are described in a spec file. The syntax for spec files is
shown below:

router name f
files = ffilename, ...g;
service = fname:type, ...g;

g

A service name may be preceded by a less-than marker
(<) to indicate that the routers connected to that service
must be initialized before this router can be initialized.
The Scout infrastructure ensures that router initialization
occurs in an order that is consistent with the partial order
defined by these markers. For the purpose of router ini-
tialization, cyclic dependencies are forbidden. The Scout
development environment includes a configuration tool
that translates a router graph into C source code that cre-
ates and initializes the runtime view of a router graph
when the system boots. This configuration tool checks
for and rejects any router graph with cyclic dependencies.

At runtime, a Scout router is represented by a variable
of the following structure:

struct Router f
String name;
long (*init)(Router r);
CreateStageFunc createStage;
DemuxFunc demux;
RouterLinkList links[NSERVICES];

g;

That is, a router consists of its name (member name),
three function pointers (members init, createStage, and
demux) and a list of router graph edges that connect to this
router to other routers (member links).

Each router r provides just one globally visible opera-
tion:

Router rCreate (String n, int c[]);

This operation is used to create a specific router with
name n. The integer array c specifies how many times
each router service has been connected to other routers.
Once all routers are created, Scout initializes them in the
partial order described above. A router is initialized by a
call to its init function.

3.2 Path Object

Section 2 argued that it is preferable to create paths incre-
mentally, with the resulting paths initially consisting of a
sequence of sub-functionsgi. Likewise, Scout paths con-
sist of a sequence of stages. Each router that is crossed by
a path creates one such stage. Since a path enters a router
at one service and leaves it through another, a stage effec-
tively connects a pair of services. That is, it represents a
fixed routing decision.

A stage is a rich object that contains at least the follow-
ing members:

struct Stage f
Iface end[2];
Path path;
Router router;
long (*establish)(Stage s, Attrs a);
void (*destroy)(Stage s);

g;

Member end is an array containing pointers to the inter-
faces of the stage. These interfaces are derived from the
services that a stage connects in a manner that will be ex-
plained below. The path and router members point to the
path that the stage is part of and the router that created
the stage, respectively. The establish and destroy func-
tion pointers are used during path creation and destruc-
tion and are explained in more detail in Section 3.3.

The relationship between interfaces and router services
is as follows. Each router service type consists of a pair
of interface types: the first element in this pair specifies
what interface the service provides whereas the second el-
ement specifies the interface that the service requires to
function properly. For example, the net service type is
symmetric in the sense that it both provides and requires
a net interface. This can be expressed as the pair:

servicetype net = <NetIface, NetIface>;

Scout supports simple single inheritance for interface
types. This means that instead of the exact interface type
required by a service it is possible to provide a more spe-
cific interface. Hence, the precise rule used to decide
whether a pair of services can be connected in a router

graph is that the interfaces provided must be identical to
or more specific than the interfaces required.

All interfaces encountered when traversing a path in a
particular direction are chained together. Since it is some-
times necessary to “turn around” the data flow inside a
path, each interface also contains a back pointer to the
next interface in the opposite direction. A third pointer
provides access to the stage to which the interface be-
longs. Therefore, the most primitive interface is given
by:

struct Iface f
Iface next;
Iface back;
Stage stage;

g;

This obviously is not a very interesting interface since it
provides no way to deliver data. All real interfaces de-
clare additional members that hold function pointers or
other data. For example, the net interface is declared as
follows:

struct NetIface f
struct Iface i;
long (*deliver)(Iface i, Msg m);

g;

That is, the net interface provides a single function to de-
liver a message m to interface i. While Scout can techni-
cally support an arbitrary number of interface types, the
intent is to keep this number as small as possible. For
example, at present there is an interface type to asyn-
chronously exchange messages (this is used both by fil-
ters and networking protocols), a window manager inter-
face, a file system interface, and a few other, lesser inter-
face types.

Given the definition of stages and interfaces, it is now
easy to describe the actual path object:

struct Path f
Stage end[2];
long pid;
void (*wakeup)(Path p, Thread t);
PathQueue q[4];
struct Attrs attrs;

g;

The array end contains two pointers to the stages at the
extreme ends of the path. A path can set the wakeup func-
tion pointer to request that a specific function gets exe-
cuted when a thread t is awakened to execute in a path
p. This is discussed more in Section 3.4. The four path
queues are stored in q. These queues are generic in the
sense that the queuing discipline is unspecified. The two
properties that are defined for any such queue is the cur-
rent length and the maximum length. Finally, attrs is a set
of name/value pairs (attributes). Attributes allow to at-
tach arbitrary state to a particular path. For example, this

enables stages to exchange and share information anony-
mously (withoutknowing exactly what stage is the source
of the information and what stages are the consumers).

A path can therefore be visualized as shown in Fig-
ure 7. The path shown there consists of four stages.
The stages were created by the TEST, UDP, IP, and
ETH routers. Each interior stage contains two interfaces
(semi-circles), whereas the stages at the extreme ends of
the path contain only one interface each. These extreme
stages are, strictly speaking, not part of the path but they
are used to connect to the routers that manage the path
queues.

UDP

IP

TEST

ETH

interfaces

path

stages

Figure 7: Path structure.

3.3 Path Creation

Paths are created and destroyed using the following func-
tions:
Path pathCreate(Router r, Attrs a);
void pathDelete(Path p);

A path is created by invoking pathCreate on a router
r. The kind of path to be created is described by the set
of attributes a. These attributes are arbitrary name/value
pairs that specify the invariants that hold true for the path
being created. The pathCreate results in an invocation of
the createStage function in router r (see Section 3.1). The
createStage function has the following type:

Stage (*CreateStageFunc)(Router r, int s,
Attrs a,
RouterLink* n);

Here, r is the router on which pathCreate was invoked
and s is the number of the service through which the path
being created enters the router. Since r is the first router
in the path, there is no such service, so the value is set to
-1 (not a valid service number). Argument a is the set of
attributes passed to the pathCreate operation. Once r cre-
ates a new stage and makes a routing decision, it sets n to

the router/service pair that the path must traverse next, if
there is such a pair, otherwise it sets it to NULL.

Given the next router/service pair, the createStage op-
eration is invoked on that next router. Now, argument s
is set to the index of service through which the path en-
ters the router and a is the (possibly modified) set of at-
tributes. This process continues until a path reaches its
full length, which happens either when it reaches a leaf
router or when the attributes are so weak that no unique
routing decision is possible. When either event occurs, a
sequence of stages has been created. The stages and the
interfaces contained therein are then linked together into
a path structure. Once the path object is fully created, the
establish functions in the stage objects are executed in the
order in which the stages were created. This gives each
stage a chance to perform initialization that depends on
the existence of the entire path.

As described so far, path creation consists of three
phases: (1) create sequence of stages, (2) combine stages
into path object, and (3) establish (initialize) stages. Dur-
ing a fourth and final phase, path transformation rules
are applied to the path. This provides the means through
which Scout uses global knowledge to transform and op-
timize paths. Semantically, transformation rules have no
effect, but they typically result in better performance and
better resource allocation or usage. For example, if a path
contains a sequence of interfaces for which there is opti-
mized code is available, then the function pointers in the
interfaces can be updated to point to this optimized code.
More details on such code-related path-transformations
can be found in a companion paper [23]. Section 4 dis-
cusses some transformations that improve resource man-
agement.

When a Scout system boots, there are typically a few
routers that create a handful of paths, e.g., to receive key
strokes or network packets. All other paths are either di-
rectly or indirectly created by these initial paths. In other
words, path creation and destruction is under control of
the routers that are present in a given system. The Scout
infrastructure never creates or destroys paths implicitly.

3.4 Path Execution

Paths are executed by threads—the active entities in
Scout. A router starts execution of a path by dequeuing
data from the input queue and invoking an interface-type
dependent data-delivery function.

Since threads are independent objects and since path
queues can often be optimized away, it is possible for a
thread to execute a path, enter a router, and then continue
execution in another path without any context switches.
This is important because degenerate paths can be short,
so forcing context switches at every path/router crossing
could result in an excessive number of context switches,

and therefore, less than optimal performance.
In Scout, threads are scheduled non-preemptively ac-

cording to some scheduling policy and priority. Scout
supports an arbitrary number of scheduling policies, and
allocates a percentage of CPU time to each. The min-
imum share that each policy gets is determined by a
system-tunable parameter. Two scheduling policies have
been implemented to date: (1) fixed-priority round-robin,
and (2) earliest-deadline first (EDF) [18]. The reason
for implementing the EDF policy is that for many soft-
realtime applications, it is most natural to express a path’s
“priority” in terms of a deadline. We present an example
of this in the next section.

Scout uses a non-preemptive scheduler because it
meets our needs and is easy to use. In the future, Scout
will allow for uncooperative “threads,” but since it is
not a good idea to share any resource with uncoopera-
tive threads in an uncontrolled manner, those threads will
not share memory either. That is, uncooperative threads
will be isolated from each other in some manner (e.g.,
through separate address spaces, fault isolation, or a safe
language). If uncooperative threads do not share mem-
ory, using a preemptive scheduler among them is triv-
ial. Thus, scheduling is split into domains—within a do-
main, there is trust and hence a non-preemptive scheduler
can be used. Across domains, there is no trust and a pre-
emptive scheduler is necessary. This is not unlike what
many traditional UNIX kernels do—the kernel “threads”
are scheduled non-preemptively whereas the user-level
processes are scheduled preemptively.

Once a thread executes on behalf of a path, it can
trivially adjust its own priority as necessary. However,
there also needs to be a mechanism that allows a newly
awakened thread to inherit a path’s scheduling require-
ments. For this purpose, a path can set the wakeup func-
tion pointer in its path object to a function that selects
the appropriate scheduling policy and priority for a newly
awakened thread.

3.5 Finding Paths

In many cases, knowing the path that should be used for
a given set of data is trivial. For example, an applica-
tion might create a path to a graphics window and then
use that path to draw lines and paint text. In some cases,
however, the path to be used is determined implicitly by
the data itself. For example, when a packet arrives at a
network adapter, it is not immediately known which path
that packet belongs to. For this reason, each Scout router
provides a demux operation that maps the data into a path
that can be used to process that data. This problem is
identical to what is referred to a “packet classification” in
the networking literature. Since Scout uses packet classi-
fication in a context that is somewhat unusual, it is worth

enumerating the specific requirements that it places on
this process:

� Efficient enough to handle peak-loads. Classifica-
tion must take a short amount of time relative to the
typical path execution time. Otherwise, the advan-
tage of improved resource management due to paths
would be lost.

� Provide relaxed (best-effort) classification accuracy.
Unlike traditional classifiers, the Scout classifier just
has to find a path that is “good enough” to process
the given data. This is best illustrated with an exam-
ple: suppose the data to be classified is an IP frag-
ment. Traditional classifiers defer classification un-
til the entire IP datagram has been reassembled. For
the purposes of Scout, it is acceptable to hand off
IP fragments to a path that knows how to reassem-
ble the fragments. Once the full datagram is avail-
able, the IP protocol can rerun the classifier to find
the next path.

Many packet classifiers have been proposed (e.g., [31,
20, 2, 8]), but none of them address all of the Scout re-
quirements satisfactorily. For this reason, Scout adopted
the simple solution of requiring each router to provide a
function that performs a classification. Any given router
typically implements only a small portion of the entire
classification process. If a router cannot make a unique
classification decision, it may ask the next router to refine
that decision. This continues until either a unique path
is found or until it is determined that no appropriate path
exists. In the latter case the offending data is simply dis-
carded.

3.6 Remarks

Figure 8 summarizes the Scout timeline. At the earli-
est time (top), individual routers and path transformations
are implemented. Later on, a system is configured by
specifying a router graph and selecting appropriate trans-
formation rules. The kernel is then built and booted. Dur-
ing runtime, paths are created, executed, and eventually
destroyed when no longer needed.

As implemented in Scout, paths are light-weight. For
example, a path to transmit and receive UDP packets con-
sists of six stages. Creating such a path on a 300MHz
Alpha takes on the order of 200�s. This time does not
include the application of any transformations. The path
object itself is about 300 bytes long and each stage is
on the order of 150 bytes in size (including all the inter-
faces). Also, packet classification is reasonably efficient.
The first (unoptimized) implementation of the Scout clas-
sification scheme is already able to demultiplex a UDP
packet in less than 5�s.

build time

path execution

runtime

Early

Late

router implementation

path transformations

router graph & transformation rules

kernel build

path creation

Figure 8: Scout Development Timeline.

There are many other aspects of Scout that space does
not permit us to describe; most of them are orthogonal
to paths. For example, we believe software-based fault
isolation (SFI) [30] could be imposed on top of paths by
defining each router to be in a separate fault domain. Sim-
ilarly, hardware-enforced protection could be imposed
between paths. Note that the horizontal partitioning(SFI)
is possible because Scout routers have well-defined in-
terfaces, while the vertical partitioning (hardware protec-
tion) is enabled by explicit paths.

Also, the Scout router graph is configured at build time,
and as currently defined, it is not possible to extend the
graph at runtime. However, it is possible to configure an
interpreter into the router graph, thereby supporting ex-
tensibility. For example, we are currently implementing
the Java API (and interpreter) in Scout [10]. This will
make it possible to download Java applications into Scout
at runtime.

4 Demonstration Application

This section demonstrates the use and benefits of paths
with a simple, but realistic application implemented in
Scout. The application consists of receiving, decoding,
and displaying MPEG encoded video streams. MPEG
encoding is able to reduce the size of a video by a fac-
tor of 10 to 100, but this compression ratio comes with
a computationally expensive decompression algorithm.
Workstations have only recently become fast enough to
perform this task in realtime. Since MPEG decoding in-
volves substantial computation, it is an application that
demonstrates some of the advantages of paths related to
resource management.

4.1 MPEG Router Graph

The Scout router graph for the demonstration application
is shown in Figure 9. The topmost router, DISPLAY,
manages the framebuffer. The bottom of the graph is
formed by three routers implementing standard network-
ing protocols: UDP, IP, and ETH. In the middle are the
three interesting routers: MPEG, MFLOW, and SHELL.

ETH

IP

UDP

MFLOW

MPEG

DISPLAY

SHELL

Figure 9: Router graph for MPEG example.

The MPEG router accepts messages from MFLOW,
applies the MPEG decompression algorithm to them, and
sends the decoded images to the DISPLAY router. There,
the images are queued for display at the appropriate time.
The MPEG router uses application-level framing (ALF)
[4] to minimize internal buffering. That is, the MPEG
source sends Ethernet MTU-sized packets that contain
an integral number of work-units (MPEG macroblocks).
This ensures that the MPEG decoder does not have to
maintain complex state across packet boundaries and ob-
viates the need for undesirable queueing between MPEG
and MFLOW.

The MFLOW router implements a simple flow-control
protocol. MFLOW advertises the maximum sequence
number that it is willing to receive based on the sequence
number of the last processed packet and the input queue
size. MFLOW uses sequence numbers to ensure ordered,
but not reliable, delivery of packets to MPEG.

The SHELL router is used to create paths dynamically.
It is configured on top of UDP so it can receive com-
mand requests via the network. SHELL is not unlike a
UNIX shell in that it waits for a command request which
it then maps into a command “invocation.” In the context
of Scout, this involves mapping the command name into
an appropriate path create operation. To create a path,
SHELL requires two pieces of information: the router on
which the path create operation is to be invoked on and
a set of attributes (invariants). In the current implemen-
tation, an mpeg decode command always results in a
path create invocation on the DISPLAY router. In gen-

eral, SHELL might consult an environment variable to
select the graphics display to be used. SHELL creates
MPEG paths with the following two attributes:

PA NET PARTICIPANTS=hip-addr, udp-porti:
This attribute specifies the network address of the
process that sent the mpeg decode command
request. SHELL assumes that the network address
of the video source is the same as the address that
originated the command request.

PA PATHNAME=“MPEG”: The value of this at-
tribute is a string that, in its simplest form, is
interpreted as a sequence of router-names. It is
used either to force a specific routing decision or
to supply routing information when there is no
other routing information available. In the case of
an MPEG path, SHELL sets this attribute to the
string “MPEG” to force DISPLAY to forward path
creation to the MPEG router.

Another attribute that is used during MPEG path cre-
ation is PA PROTID. Unlike the other attributes, this one
is not specified by the SHELL router. Instead, it is re-
set by each router that implements a networking proto-
col. The value of this attribute is the protocol id of the
next-higher level networking protocol. This id is nor-
mally needed during packet classification. For example,
IP packets with a protocol type of 6 are TCP packets and
TCP packets with a port number of 21 are normally FTP
packets. So when FTP forwards a path create operation to
TCP, it sets PA PROTID to 21. If TCP decides to forward
path creation to IP, it resets the value of PA PROTID to
6 to let IP know that it is dealing with a TCP path.

Figure 9 shows two video paths (from ETH to DIS-
PLAY) and a shell path for receiving commands (from
ETH to SHELL). Note that the video paths take their in-
put from, and deposit their output into, a queue. These
queues are serviced by interrupt handlers. In ETH, the
queue is filled in response to a receive interrupt, and in
DISPLAY, the queue is drained in response to the vertical
synchronization impulse of the video display. Output to
the display is synchronized to this impulse because there
is no point in updating the display at a higher frequency.

There are three points worth emphasizing about this
example. First, there are no queues other than the ones
in ETH and DISPLAY. As mentioned above, this is due
to MPEG’s use of ALF. Second, ALF—along with ex-
plicit paths—enable integrated layer processing. Since
MPEG reads the network packet data in units of 32 bits,
it would be straight-forward to integrate the (optional)
UDP checksum with the reading of the MPEG data. This
would require a path-transformation rule that matches
for MPEG being run directly on top of UDP. If this pat-
tern matches, the path can be transformed by replacing

the UDP and MPEG receive processing functions with
functions that implement the UDP checksum computa-
tion as part of MPEG’s reading of the packet data. Third,
without queuing in the middle of the path, scheduling is
simplified—if the output queue is full already, there is lit-
tle point in scheduling a thread to process a packet in the
input queue. This implication would not hold in the pres-
ence of additional queues.

Table 1 gives measurements that indicate the perfor-
mance a Scout MPEG kernel can achieve. The table lists
the maximum decoding rate in frames per second for a se-
lection of four video clips. To put these numbers in per-
spective, the table also gives the corresponding numbers
for Linux. The numbers are comparable in the sense that
both systems run on the same machine (a 300MHz 21064
Alpha), use essentially the same MPEG code, and re-
ceive the compressed video over the network. The domi-
nant costs in this example are the decompression of the
MPEG stream and the dithering and displaying of the
video frames. That is, practically all time is spent in the
MPEG and DISPLAY routers.

of max. rate [fps]
Video frames Scout Linux

Flower 150 44.7 37.1
Neptune 1345 49.9 39.2
RedsNightmare 1210 67.1 55.5
Canyon 1758 245.9 183.3

Table 1: Coarse-Grain Comparison of Scout and Linux

While the playing field was as level as we could make
it, it must be understood that this is an apples and or-
anges comparison—the two systems have a very differ-
ent scope, level of functionality, and maturity. Still, the
comparison is useful to establish that a path-based sys-
tem such as Scout can easily achieve performance that is
consistent with the machine on which it runs.

4.2 Queues

As Figure 9 shows, two queues exist at the ends of the
MPEG path. These queues are in the ETH router (the in-
put queue) and in DISPLAY (the output queue).

The input queue is required for two reasons: (1) for
high-latency networks it may be necessary to have mul-
tiple network packets in transit, and (2) because of net-
work jitter, these multiple packets may all arrive clustered
together. Since the peak arrival rate at the Ethernet is
much higher than the MPEG processing rate, the queue
is needed to absorb such peaks.

Whereas the input queue absorbs bursts that are lim-
ited in size, the job of the output queue is to absorb jitter

at a more global level—decompression itself introduces
significant jitter. Depending on the spatial and temporal
complexity of a video scene, the encoded size of any par-
ticular video frame may be orders of magnitudes differ-
ent from the size of the average frame in that stream. The
network may also suffer from significant jitter, e.g., due
to temporary congestion of a network link. Finally, the
sender of the MPEG stream itself is likely to add jitter
since the video may, for example, be read from a a disk
drive. Just how big should these queues be? Obviously,
they should be “just big enough,” but is it possible to put
some quantitative limits on their sizes?

First, consider the input queue. If processing a single
packet requires more time than it takes to request a new
packet from the source, then an input queue that can hold
two packets is sufficient: one slot is occupied while the
last received packet is being processed, and the second
(free) slot is advertised to the source. If the round-trip
time (RTT) is greater than the time to process a packet,
then the input queue needs to be two times the RTT �
bandwidth product of the network. MFLOW can mea-
sure the round-trip latency by putting a timestamp in its
header. The important point from the perspective of this
paper, however, is that accurate measurement of the peak
processing rate is enabled by paths—it is a simple matter
of specifying the appropriate transformation rule to en-
sure that the average time spent processing each packet
is measured. For MPEG, this means that the initial func-
tion in the ETH-stage of the router is modified to measure
processing time and to update the path attribute that keeps
track of the average processing time.

In the case of the output queue, the factors influenc-
ing queue size are more varied and complex. A complete
analysis is beyond the scope of this paper. In general,
bounding the size of this queue requires cooperation with
admission control and would typically employ a network
reservation system, such as RSVP [3]. The current im-
plementation leaves this parameter under user control to
facilitate experimentation.

4.3 Scheduling

Since each video path has its own input queue and since
the packet classifier is run at interrupt time, newly arriv-
ing packets are immediately placed in the correct queue.
This means that once a packet is under control of the soft-
ware, there is no danger of priority inversion due to low-
priority packets being processed ahead of high-priority
packets. This is one of the most significant advantages
of paths. For example, the early separation makes it pos-
sible to run a video stream while flooding the network
adapter with small Ethernet packets.

This is demonstrated in Table 2, which shows how
the maximum decoding frame rate for the Neptune video

drops when load is added to the Scout and Linux sys-
tems, respectively. The additional load consists of a flood
of ICMP ECHO requests (generated with ping -f). In
the Scout case, the video path is run at the default round
robin priority, whereas the path handling ICMP requests
is run at the next lower priority. In contrast, Linux han-
dles ICMP and video packets identically inside the ker-
nel. As the table shows, adding the ICMP load has little
effect on the frame rate for Scout, while the maximum
framerate for Linux drops by more than 42%. Clearly,
the early separation afforded by paths can have signifi-
cant benefits. This is not to say that paths are the only way
to solve this particular problem (e.g., [22]), but it does
support our claim that paths can be an effective solution
to such problems.

Framerate [fps]
unloaded loaded �

Scout 49.9 49.8 -0.2%
Linux 39.2 22.7 -42.1%

Table 2: Frame Rate Under Load

While the advantages of paths due to early separation
are important, paths play an even more intimate role in
scheduling. As explained in Section 3, a path can regis-
ter a wakeup callback that can be used to adjust a thread’s
scheduling policy and priorityaccording to its own needs.
The MPEG path uses this facility to ensure that any thread
that is ready for execution in the path will be scheduled
with the proper realtime constraints. In combination, sep-
arate input queues and proper scheduling guarantee that
the MPEG Scout kernel has no difficulty in delivering
and processing realtime MPEG packets even under se-
vere background loads. For example, an arbitrary num-
ber of low-priority MPEG streams (or some other non-
realtime background work) can be displayed without ad-
versely affecting realtime streams running in the fore-
ground.

The default Scout scheduler is a fixed-priority, round-
robin scheduler. Since video is periodic, it seems reason-
able to use rate-monotonic (RM) scheduling for MPEG
paths. With RM scheduling, a (periodic) realtime thread
receives a priority level that is proportional to the rate at
which it executes. That is, the frame-rate at which a video
is displayed would control the priority of the correspond-
ing path. However, there are several reasons that make
earliest-deadline-first (EDF) scheduling more attractive
than RM scheduling. These include:

� The frame-rate must be under user control to sup-
port features such as slow-motion play or fast for-
ward. This implies that a large number of priority-
levels would be necessary. Otherwise, two MPEG

paths that have similar, but not identical, frame-rates
could not be distinguished scheduling-wise. If the
number of priority levels is large, EDF scheduling
is just as efficient as RM scheduling.

� MPEG decoding is periodic, but not perfectly so.
Consider playing a movie at 31Hz on a machine with
a display update frequency of 30Hz. Given that only
30 images can be displayed every second, it will be
necessary to drop one image during each one second
interval. When the drop occurs, there is no need to
schedule that path, so a fixed priority would be sub-
optimal.

� While not a quantitative argument, probably the
strongest case for EDF scheduling is that it is
the natural choice for a soft realtime thread that
moves data from an input queue to an output queue.
For example, if the output queue drains at 30
frames/second and the queue is half full, it is triv-
ial to compute the deadline by which the next frame
has to be produced.

For these reasons, Scout uses EDF scheduling for real-
time MPEG paths. For example, this allows Scout to dis-
play 8 Canyon movies at a rate of 10 frames per second,
together with a Neptune movie playing at 30 frames per
second, all without missing a single deadline. In contrast,
the same load with single-priority round-robin schedul-
ing leads to a large number of missed deadlines if the out-
put queues for the Canyon movies are large.3 For exam-
ple, with a queue size of 128 frames, on the order of 850
out of 1345 deadlines are missed by the path displaying
the Neptune movie. The reason for the poor performance
of round-robin scheduling is that it keeps scheduling the 8
Canyon movies as long as their output queues are not full,
even at times when the Neptune movie needs the CPU
much more urgently.

One question that remains is how the deadline is com-
puted. Here again, paths play a central role. If path exe-
cution is the bottleneck, then the output queue should be
kept as full as possible. In this case, it is best to set the
deadline to the display time of the next frame to be put
in the output queue. In contrast, if network latency is the
bottleneck, then the deadline should be based on the state
of the input queue. Since at any given time some number
of packets (n) should be in the transit to keep the network
pipe full, MFLOW must be able to advertise an open win-
dow of size n. This means that the deadline is the time at
which the input queue would have less than n free slots.
This time can be estimated based on the current length of
the queue and the average packet arrival rate.

3Because it is difficult to compute globally meaningful priorities
for RM scheduling in a dynamic system—i.e., one where different rate
videos come and go—single-priority round-robin is the next best alter-
native. Therefore, we compare EDF to this case, rather than to RM.

Since the path object provides direct access to both
queues, the effective deadline can simply be computed
as the minimum of the deadlines associated with each
queue. Alternatively, the path can use the path execu-
tion time and network round-trip time to decide which
queue is the bottleneck queue, and then schedule accord-
ing to the bottleneck queue only. The latter approach is
slightly more efficient, but requires a clear separation be-
tween path execution time and network round-trip time.
The implemented MPEG decoder is currently optimized
for the case where the output queue is the bottleneck, so
scheduling is always driven off of that queue.

4.4 Admission Control

Finally, paths enable admission control. As all memory
allocation requests are performed on behalf of a given
path, it is a simple matter of accounting to decide whether
a newly created path is admissible or not. Before start-
ing path creation, the admission policy decides how much
memory can be granted to a new path. As long as each
router in the path lives within that constraint, the path cre-
ation process is allowed to continue. (Note that admis-
sion control has not yet been implemented in Scout.)

Paths are also useful in deciding admissibility with re-
spect to CPU load. Again, this is due to the fact that it
is easy to compute the execution time spent per path—
our experiments show that there is a good correlation be-
tween the average size of a frame (in bits) and the aver-
age amount of CPU time it takes to decode a frame. Nat-
urally, the model that translates average frame size into
CPU processing time is parameterized by the speed of the
CPU, the memory system, and the graphics card. Rather
than determining these parameters manually, it is much
easier to measure path execution time in the running sys-
tem and use those measurements to derive the required
parameters. That is, the path execution timings are used
to derive the model parameters, which in turn, are used
for admission control.

Finally, if admission control determines that a video
cannot be displayed at the full rate, a user may choose
to view the video with reduced quality. For example,
the user may request that only every third image be dis-
played. Thanks to ALF and paths, it is possible to drop
packets of skipped frames as soon as they arrive at the
network adapter. This avoids wasting CPU cycles at a
time when they are at a premium.

5 Related Work

At a superficial level, Scout paths are similar to UNIX
pipes [28] and Pilot streams [25]. While all three abstrac-
tions have in common a linear sequence of “components”

(processes in UNIX, Mesa modules in Pilot, stages in
Scout), neither pipes nor streams provide any global con-
text to the individual modules. Neither do they attempt to
optimize the code along a “path.” It is also the case that
UNIX pipes are more coarse-grain and uni-directional.

As mentioned in Section 1, there is a wealth of mecha-
nisms that offer point-solutions to the more general prob-
lem of exploiting paths, both as a structuring framework
and as an optimization technique. This related work falls
broadly into two categories, depending on their primary
objective:

� optimizing code along the “fast path,” or

� improving resource management.

Examples of fast path optimizations include Synthesis
[19], Synthetix [24], PathIDs [17], Protocol Accelerators
[29], and integrated layer processing [4, 1]. Examples in
the second category include processor capacity reserves
[21], distributed/migrating threads [5, 9], and Rialto ac-
tivities [16]. Because space does not permit us to contrast
all of this work in detail, we simply point out that the path
abstraction as presented in this paper is an attempt at uni-
fying these various ideas. In particular, the proposed ab-
straction allows us to reason about both the fast path and
resource management issues. Our claim is that the unify-
ing principle behind this abstraction is the global knowl-
edge that paths afford. The rest of this section discusses
the related work we consider most relevant in more detail.

The system that is probably closest to Scout, at least in
terminology, is Da CaPo (dynamic configuration of pro-
tocols) [11]. It defines an infrastructure for building mul-
timedia protocols. While Da CaPo has a notion of paths
and stages, there are important differences at all levels.
At lowest level, Da CaPo paths are uni-directional and
stages have very restricted functionality (they are essen-
tially non-blockingevent-handlers). As a result, Da CaPo
is just powerful enough to accommodate common net-
working tasks. Also, interoperability with existing pro-
tocols is not a goal of Da CaPo. Another important dif-
ference is that path creation is left completely to an ex-
ternal “configuration manager.” As pointed out in Sec-
tion 2, this means that in any reasonably complex system,
the configuration manager will be burdened by detailed
knowledge of the internal workings of particular proto-
cols. In contrast, our path abstraction makes it easy to
exploit both local and global knowledge during path cre-
ation. At a higher level, Da CaPo focuses completely on
automatically selecting appropriate protocol functional-
ity; performance and resource allocation appear to be sec-
ondary issues.

Kay [17] introduces the notion of a PathID, which is
designed specifically to reduce the latency of receive-side
network processing. Fundamentally, a PathID is similar

to a fine-grained virtual circuit identifier (VCI) in ATM
networks [7]. Since PathIDs are stored in a known loca-
tion in the header of network messages, packet classifi-
cation becomes trivial (in the worst case a table-lookup).
In [17], packets with a PathID are processed by highly
optimized, handwritten code. Since this code is manu-
ally tuned, maintainability and ease of use are problem-
atic. In fact, the paper suggests that PathIDs should be
used for the rare cases where having to maintain two par-
allel branches of source code is a justifiable cost. Finally,
PathIDs do not attempt to elevate paths to a fundamental
OS structure, and the problem of creating paths without
human direction is not addressed.

6 Concluding Remarks

This paper makes two contributions. First, it describes
how paths can be made an explicit OS abstraction, and
shows how this abstraction has been implemented in
the Scout operating system. Second, it makes a case
for why paths should be made explicit. This case in-
cludes both the intuitive arguments made in Section 1,
and a demonstration of how paths proved beneficial in
one particular application—receiving, decoding, and dis-
playing MPEG-compressed video. On this latter point,
we showed how paths are used to:

� segregate work early to avoid priority inversion;

� schedule the entire processing along a path accord-
ing to the bottleneck queue, and to automatically de-
termine the bottleneck queue in the system;

� provide accountability to decide the admissibility of
a memory allocation request; and

� discard unnecessary work early to minimize the
waste of resources.

What remains to be done is to demonstrate Scout—and
the utility of paths—on a wider set of domains. For ex-
ample, work on a Scout-based Java-box, active network
router, and scalable storage server are under way.

Acknowledgments

We would like to thank the other members of the Scout
group, particularly, John Hartman, Brady Montz, Patrick
Bridges, David Larson, and Rob Piltz. Thanks also to the
reviewers, especially our shepherd, Rich Draves. This
work supported in part by DARPA Contract DABT63-
95-C-0075 and NSF grant NCR-9204393.

References
[1] M. B. Abbott and L. L. Peterson. Increasing network

throughput by integrating protocol layers. IEEE/ACM
Transactions on Networking, 1(5):600–610, Oct. 1993.

[2] M. L. Bailey, B. Gopal, M. A. Pagels, L. L. Peterson, and
P. Sarkar. PathFinder: A pattern-based packet classifier. In
Proc. of the 1st Symp. on Operating Systems Design and
Implementation, pages 115–123, 1994.

[3] R. Braden, D. Clark, and S. Shenker. RFC-1633: Inte-
grated services in the Internet architecture: an overview.
Available at ftp://ftp.internic.net/rfc, July 1994.

[4] D. Clark and D. Tennenhouse. Architectural considera-
tions for a new generation of protocols. In Proc. of SIG-
COMM ’90 Symp., pages 200–208, Sept. 1990.

[5] R. K. Clark, E. D. Jensen, and F. D. Reynolds. An archi-
tectural overview of the Alpha real-time distributed ker-
nel. In 1993 Winter USENIX Conf., pages 127–146, Apr.
1993.

[6] P. Druschel and L. L. Peterson. Fbufs: A high-bandwidth
cross-domain transfer facility. In Proc. of the 14th ACM
Symp. on Operating System Principles, pages 189–202,
Dec. 1993. ACM.

[7] P. Druschel, L. L. Peterson, and B. S. Davie. Experiences
with a high-speed network adaptor: A software perspec-
tive. In Proc. of SIGCOMM ’94 Symp., pages 2–13, Aug.
1994.

[8] D. Engler and M. F. Kaashoek. DPF: Fast, flexible mes-
sage demultiplexing using dynamic code generation. In
Proc. of SIGCOMM ’96 Symp., pages 53–59, Aug. 1996.

[9] B. Ford and J. Lepreau. Evolving Mach 3.0 to a migrating
thread model. In 1994 Winter USENIX Conf., pages 97–
114, Jan. 1994.

[10] J. Gosling, F. Yellin, and The Java Team. The Java Appli-
cation Programming Interface. Addison-Wesley, Read-
ing, MA, 1996.

[11] A. Gotti. The Da CaPo communication system. Technical
report, ETHZ, Switzerland, June 1994.

[12] A. Habermann, L. Flon, and L. Cooprider. Modularization
and hierarchy in a family of operating systems. Commu-
nications of the ACM, 19(5):266–272, May 1976.

[13] G. Hamilton and P. Kougiouris. The Spring nucleus: a
microkernel for objects. In Proc. of the Summer 1993
USENIX Conf., pages 147–159, June 1993.

[14] J. S. Heidemann and G. J. Popek. File-system develop-
ment with stackable layers. ACM Transactions on Com-
puter Systems, 12(1):58–89, Feb. 1994.

[15] N. C. Hutchinson and L. L. Peterson. The x-kernel: An
architecture for implementing network protocols. IEEE
Transactions on Software Engineering, 17(1):64–76, Jan.
1991.

[16] M. Jones, P. Leach, R. Draves, and J. Barrera. Support
for user-centric modular real-time resource management
in the Rialto operating system. In Proc. of the 5th Intl.
Workshop on Network and OS Support for Digital Audio
and Video, pages 55–66, Apr. 1995. ACM.

[17] J. S. Kay. Path IDs: A Mechanism for Reducing Network
Software Latency. PhD thesis, University of California,
San Diego, 1995.

[18] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Jour-
nal of the ACM, 1(20):46–61, Jan. 1973.

[19] H. Massalin. Synthesis: An Efficient Implementation of
Fundamental Operating System Services. PhD thesis,
Columbia University, New York, NY, Sept. 1992.

[20] S. McCanne and V. Jacobson. The BSD packet filter: A
new architecture for user-level packet capture. In 1993
Winter USENIX Conf., pages 259–269, Jan. 1993.

[21] C. W. Mercer, S. Savage, and H. Tokuda. Processorcapac-
ity reserves: An abstraction for managing processor us-
age. In Proc. of the 4th Workshop on Workstation Operat-
ing Systems (WWOS-IV), pages 129–134, Oct. 1993.

[22] J. C. Mogul and K. K. Ramakrishnan. Eliminating re-
ceive livelock in an interrupt-driven kernel. In 1996 Win-
ter USENIX Conf., pages 99–112, Jan. 1996.

[23] D. Mosberger, L. Peterson, P. Bridges, and S. O’Malley.
Analysis of techniques to improve protocol latency. In
Proc. of SIGCOMM ’96 Symp., pages 73–84, Sept. 1996.

[24] C. Pu et al. Optimistic incremental specialization:
Streamlining a commercial operating system. In Proc.
of the 15th ACM Symp. on Operating System Principles,
pages 314–324, Dec. 1995.

[25] D. D. Redell et al. Pilot: an operating system for a per-
sonal computer. Communications of the ACM, 23(2):81–
92, Feb. 1980.

[26] R. V. Renesse, K. Birman, R. Friedman, M. Hayden, and
D. Karr. A framework for protocol composition in Ho-
rus. In Proc. of the 14th ACM Symp. on Principles of Dis-
tributed Computing, pages 80–89, Aug. 1995.

[27] D. M. Ritchie. A stream input-output system. AT&T
Bell LaboratoriesTechnical Journal, 63(8):311–324, Oct.
1984.

[28] D. M. Ritchie and K. Thompson. The UNIX time-sharing
system. Communications of the ACM, 17(7):365–375,
July 1974.

[29] R. van Renesse. Masking the overhead of protocol layer-
ing. In Proc. of SIGCOMM ’96 Symp., volume 26, pages
96–104, Stanford, CA, Aug. 1996. ACM.

[30] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Effi-
cient software-based fault isolation. In Proc. of the 14th
ACM Symp. on Operating System Principles, pages 203–
216, Dec. 1993.

[31] M. Yuhara, B. N. Bershad, C. Maeda, and J. E. B. Moss.
Efficient packet demultiplexing for multiple endpoints
and large messages. In 1994 Winter USENIX Conf., pages
153–165, 1994.

[32] H. Zimmermann. OSI reference model—the ISO model
of architecture for open systems interconnection. IEEE
Transactions on Communications, COM-28(4):425–432,
Apr. 1980.

