Making Paths Explicit in the Scout Operating System

David Mosberger and Larry L. Peterson
Department of Computer Science
University of Arizona
http://ww. cs. ari zona. edu/ scout/

Abstract

This paper makes a case for paths as an explicit abstrac-
tion in operating system design. Paths provide a unify-
ing infrastructure for several OS mechanisms that have
been introducedin thelast severa years, including fbufs,
integrated layer processing, packet classifiers, code spe-
cialization, and migrating threads. This paper articul ates
the potentia advantages of apath-based OS structure, de-
scribes the specific path architecture implemented in the
Scout OS, and demonstrates the advantages in a partic-
ular application domain—receiving, decoding, and dis-
playing MPEG-compressed video.

1 Introduction

Layering is a fundamental structuring technique with a
long history in system design. From early work on lay-
ered operating systems and network architectures [12,
32], to more recent advances in stackable systems [27,
15, 14, 26], layering has played acentra rolein managing
compl exity, isolatingfailure, and enhancing configurabil -
ity. This paper describes a complementary, but equally
fundamental structuring technique, which we call paths.
Whereas layeringistypically used to manage complexity,
paths are applied to layered systemsto improvetheir per-
formance and to solve problems that require globa con-
text.

We begin by devel oping some intuitionabout paths. A
path can be viewed as alogica channel through a multi-
layered system over which /O data flows, as illustrated
in Figure 1. In thisway, a path is analogous to a virtua
circuit that cuts through the nodes of a packet-switched
network. The only difference is that paths are within a
single host, whilevirtual circuits run between hosts.!

Also, the term “path” is well entrenched in our vo-
cabulary. For example, we often refer to the “fast path”

I The obviousnext step isto integrate pathsthroughthe end host with
circuits between hosts, but for the purpose of this paper, we focus on
paths within a single system.

Layer 4

|
\

N\
> \
7\
AN
) Layer 2
i

Layer 1

Path A Path B

Figure 1: Two Paths Through a Layered System

through a system, implying that the most commonly ex-
ecuted sequence of instructionshave been optimized. As
another exampl e, we sometimestalk about optimizing the
“end-to-end path,” meaning we are focused on the global
performance of the system (e.g., from 1/O source to sink),
rather than on the local performance of a single compo-
nent. Asafinal example, we sometimes distinguish be-
tween asystem’s “control path” and its“ data path,” with
the former being more relevant to latency and the latter
more concerned with throughput.

Finaly, paths can be loosely understood by consid-
ering specific OS mechanisms that have been proposed
over thelast few years. Consider thefollowing examples.

o Fbufs [6] are a path-oriented buffer management
mechani sm designed to efficiently move data across
a sequence of protection domains.? Fbufs depend
on being abletoidentify the path throughthe system
over which the datawill flow.

2Although layering does not imply multiple protection do-
mains, systems often impose hardware-enforced protection at layer
boundaries.

o Integrated layer processing (ILP) [4, 1] is a tech-
niquefor fusing the data manipul ation loops of mul-
tiple protocol layers. It depends on knowing ex-
actly what sequence of protocol modules a network
packet will traverse.

o Packet classifiers [31, 20, 2, 8] distinguish among
incoming network packets based on certain fields
found in their headers. In a sense, a packet classi-
fier pre-computesthe path that a given message will
follow.

e Specialization is sometimes used to optimize com-
mon path code sequences [24, 23]. Specidization,
in turn, depends on the existence of invariants that
congtrain the path through the code that islikely to
be executed.

e The AlphaOSallowsthreadsto migrate acrossase-
guence of protection domains [5]; others have de-
fined similar mechanisms[13, 9]. Such mechanisms
recognize that tasks often span multiple domains,
and so account for resource usage on a path basis
rather than a domain basis.

The thesis of this paper is that these mechanisms are
not isolated optimizations, but rather, that they can be
unified and explained by the path abstraction. In a nut-
shell, these mechanisms all share the following funda-
mental idea: they expose and exploit non-local context.

Consider a layered system like the one illustrated in
Figure 1. While the advantage of layering and modular-
ity isto hideinformation, there are many situationswhen
it would be beneficial for a given layer to have accessto
non-local context. For example, suppose one of the mod-
ules is processing an Ethernet packet. With only local
context, themodul e knows nothing about the packet’srel -
ative importance compared to other packets. However,
if it is known that the packet is part of a particular video
stream, then it is easy to determine its processing dead-
line, what modules need to be executed to processit, how
many CPU cycles this processing will require, where its
data should be placed in memory, and so on. In other
words, by knowing a certain set of invariants (e.g., that
the packet is part of some video stream), the module is
ableto access and exploit global context that is available
outside any one module or layer. Abstractly then, a path
is defined by these invariants and provides access to the
corresponding context.

Having access to non-local context leads to two kinds
of advantages. (1) improved resource alocation and
scheduling decisions, and (2) improved code quality. In
the former case, work is segregated early, facilitating the
following benefits:

e Thesystem can place datain amemory buffer that is
aready accessible to all the modules a ong the path.
This is essentially what fbufs do. In contrast, data
often hasto be copied (either [ogically or physicaly)
from one buffer to another at each module or layer
boundary.

o The system can know that a particular path needsto
be scheduled for execution in order to meet a dead-
line, eg., display a video frame. Thisis critical
to being able to offer different Qualities of Service
(Q0S). In contrast, not segregating work into paths
means that low-priority work may need to be done
to discover high-priority work that needs attention.

o |f scheduling deadlinesfor aparticul ar path are such
that it isimpossibleto make use of aparticular piece
of work (e.g., network packet or video frame), then
the system can discard unnecessary work early, that
i, beforeexecuting thepath. A conventiona system
often has to process several layers before knowing
that continuing is of no value.

In the latter case—improved code quaity—the system
has more information available to it, making more ag-
gressive code optimizations possible. Examples of such
optimizationsinclude the following:

¢ Themoreinvariantsthe system knowsabout codeto
be executed, the more opportunities the system has
to specialize the code path. For example, the system
can do constant folding and propagation, dead-code
elimination, and interprocedurd register alocation.

e The more layers across which the system isable to
optimize, the more opportunitiesthere are to eim-
inate redundant work. For example, the more pro-
tocol layers available, the more loads and storesin-
tegrated layer processing can remove. Similarly, it
issometi mes possi bl eto merge per-layer operations.
For example, instead of having each layer check for
the appropriate header length, it is possibleto check
for the sum of al header lengthsat the beginning of
packet processing.

This paper makes two contributions. First, it develops
an explicit path abstraction; Section 2 exploresthe design
space for paths, and Section 3 describes an implementa-
tion of pathsin the Scout operating system. Second, the
paper demonstrates how having a path abstraction leads
to the first set of advantages outlined above, i.e.,, those
that have to do with improvementsin resource allocation
and scheduling. In particular, Section 4 describes an ap-
plication that receives MPEG-compressed video over a
network and then decodes and displaysit. A companion
paper demonstrates some of the code-related improve-
ments attributable to paths[23].

2 Path Abstraction

Whileitistempting to view paths as an optimization that
can be super-imposed on an existing layered system—
and it is certainly the case that many of the ideas de-
scribed in this paper can be applied in this way—we
take amore “first principles’ approach to defining paths.
Specifically, thissection devel opsaworking definition of
pathsin anincremental fashion. Our god istoexplorethe
design spacefor paths, andinthe process, tointroducethe
particular architecture that we settled on.

2.1 Basc Paths

A pathisalinear flow of datathat startsat asource device
and ends at adestination device. Whilethedataismoved
from the source to the destination, it istransformed (pro-
cessed) in some path-specific manner. That is, if thein-
put datais represented as a message m, then the output
message isg(m), where g isthe function that represents
the path-specific transformation. In addition, each path
has two queues associated withit, as depictedin Figure 2,
thereby decoupling theinput and output devices. A path
scheduler determines when a given path is executed, that
is, when g(m) isevauated.

Qe

Figure 2: Simple path

While paths connect devices, there is no direct rela
tionship between device pairs and paths. a given device
pair can be connected by zero or more paths. Allowing
for multiple paths to connect the same pair of devicesis
sensible sinceboth ¢(m) and the scheduling priority may
vary. For example, one path may handle UDP packets,
whereas another may handle TCP packets. Similarly, two
paths that forward | P packets between a pair of devices
may need to be schedul ed differently if they provideadif-
ferent quality of service. Thus, pathsare dynamic entities
that are crested at runtime; thereisno apriori [imit onthe
number of pathsthat can exist in agiven system.

What are the properties of basic paths? First and fore-
most, once a message has been enqueued on the input
gueue of apath, it isaready known what devicethe (pos-
sibly transformed) output message will arrive a. For the
purpose of resource management, itisaso knownthat m
belongsto the path on which it is enqueued, and al exe-
cutionisperformed on behalf of that path. 1n other words,
knowledge is available early and globally.

HTTP

VFS TCP

SCSI ATM || ETH || FDDI

Figure 3: Example Router Graph

2.2 Creating Paths

The key problem in creating a path is how to specify
g(m). Whileit would be possibleto writeaspecific func-
tion for each path with distinct functionality, it is more
convenient to derive g(im) automatically from a modu-
larly organized system. Thisisbecause many of the paths
are likely to have substantial functionality in common,
such as various network, file, and windowing protocols.
Generating a path from components does not preclude
writing a specialized g(m) for those cases that warrant
the extra effort.

A router graph represents the modular structure of the
system, where each router is a software module that im-
plements a specific task, such as the NFS protocol or a
SCSI driver. The reason we call these modules routers
will become clear inamoment. Asiscommon inamodu-
lar/layered system, individual routers providetheir func-
tionality based on the functionality of other routers, that
is, it is possible to draw a dependency graph that rep-
resents the interdependence among the various routers.
This also means that a router graph fully describes what
kind of tasks a given system can perform. For example,
Figure 3 depictsarouter graph that could be used to im-
plement aweb server. Given thisgraph, apath that starts
at the ETH router (Ethernet device) and ends at the SCSI
router (disk device) would have a g(m) that is the com-
posite of the functions contributed by each router; i.e,

9(m) = 9scs1(9urs(- - - (91pl9eTH(M))) -)

However, this still begs the question of how a path is
created. There are essentially two approaches: (1) the
path is pre-specified externdly, and (2) the path is dis-
covered incrementally. This division corresponds to the
two sources of “knowledge” that influence path creation:
global and router-specific. Global knowledge is of the
sort “for aweb service, the following sequence of routers

need to be part of the path.” Global knowledge may also
be used for optimization, for example, there may be an
optimized g(m) available for the web path that is pre-
ferred to an automatically derived compositefunction. In
contrast, local knowledgeis of the form “if invariant X
istrue for the path under construction, then the path can
pass through thisrouter” or “if invariant Y isfalse, then
the path cannot go beyond thisrouter.”

Using globa knowledge aone to create a path would
be difficult since this knowledge often requires familiar-
ity with the internal workings of the routersthat are tra-
versed by a path. In contrast, creating a path based on
router-specific knowledge a onewould limit the utility of
paths considerably. (Recall that most advantages of paths
are due to the global knowledge they afford).

In our path architecture, paths are created in two
phases. First, router-specific knowledge is used to
cregte a maximum length path. Second, this maxi-
mum length path istransformed (optimized) using global
transformation rules, each of which is defined by a
(guard, transformation) pair. If the guard evauates to
TRUE, the corresponding transformation is applied, re-
sultinginanew path. Thisprocessrepeatsuntil al guards
evaluate to FALSE.

To better illustrate the difference between loca and
global knowledge, consider therouter graph giveninFig-
ure 3. Supposethereisapath that startsat SCSI and ends
at ETH. Suchisthecase, for example, if IP can determine
that the remote host is on the same Ethernet as the local
host. If thisis not true, then IP can not be sure whether
data will go out through ATM or FDDI, since the rout-
ing tables may change in the middle of the data transfer.
Clearly, this decision is completely IP specific, that is,
based on local knowledge. On the other hand, there are
severa global factsthat hold for aweb path that could be
exploited, for example, dataistransfered through TCPin
a predominantly uni-directional manner and accessed on
the disk in a strictly sequential fashion. Note that each
such invariant may affect the function ¢; of one or more
other routers. For example, the fact that datais accessed
sequentially may mean that it is best to avoid caching in
the file system (UFS). Similarly, the fact that TCP isin
the path may mean that the IP fragmentation code can be
omitted completely.

Finaly, note that our definition of a path’s seman-
tics, which we denote as g(m), should not be taken to
mean that procedures constitutethefundamental building
blocksof paths. Itisequally legitimateto construct apath
from a sequence of basic blocks, which is more in line
with having the path abstraction represent the “fast path”
through the system. In fact, procedures and basic blocks
define two ends of a granularity spectrum. Scout imple-
ments a specific point on this spectrum, as described in
Section 3.

2.3 Network View of Paths

We motivated routers as a means to automatically derive
the path function ¢(m). Alternatively, arouter graph can
be viewed as a set of interconnected nodes that forward
messages along their linksin the dependency graph. The
operation of arouter is to receive a message, process it,
and then forward the resulting message to another router,
asillustratedin Figure 4.

_—
=

-

h
Router

R

Figure 4: Message forwarding/routing

If amessageisinjected at somerouter, thetrail it leaves
in the router graph asit is processed and forwarded cor-
responds to a segquence of routing decisions. If a given
trail is used very often, it may be worthwhile to explic-
itly encapsulate and optimizeit. Thisis exactly what a
path does: it represents a fixed sequence of routing de-
cisions through the system’s modules. Thisis not unlike
avirtual circuit through a network: at connection estab-
lishment time, a set of invariants that are guaranteed to
hold for the duration of a connection is specified. Inre-
turn, theseinvariantspermit the customi zati on of the path
inaway that is optimized for that particular connection.
In the case of avirtua circuit, the set of invariants con-
tains the address pair of the communicating peers, but it
may include other parameters such as the desired qual-
ity of service. The same kind of invariantsare useful for
cregting paths. For example, knowing what quality-of-
service a path requires hel ps when choosing an appropri-
ate scheduling policy and priority.

In this context, it makes more sense to let paths con-
nect an arbitrary pair of routers rather than insisting that
a path connects a pair of devices. Thelatter caseisided
inthe sense that it provides amaximum amount of global
knowledge. However, the maximum length of a path is
related to the strength of the invariants. In genera, the
stronger the invariants, the more routing decisions can be
frozen at path-creation time, and the longer the resulting
path. Whileit is preferable to have long paths, a general
model must allow for the degenerate case where invari-
ants are so weak that not a single routing decision can be
made at path creation time. This degenerate case roughly
corresponds to a traditiona layered system.

2.4 Generalized Paths

Asdefined sofar, pathsare simpleand highly predictable:
amessage arrivesat theinput queue, the path isscheduled
for execution, and the transformed message is deposited
in the output queue. Whilethissimplicity isideal for the
purpose of optimization, it aso limits the useful ness of
paths. Sinceit is our god to define pathsin away that
moves them from a purely performance-motivated con-
cept into an abstraction with which a complete operating
system can be built, we must extend paths to make them
morewidely applicable, butinaway that doesnot destroy
the propertiesthat make the path abstraction attractivein
thefirst place.

24.1 Directionality

Processing in a path is usually bi-directional: a remote-
procedure call arrives over the network, resultsin some
computation, and an answer is sent back to the caller; the
arriva of anetwork packet triggers the sending of an ac-
knowledgment; or a disk block is requested and arrives
asynchronously. Such bi-directional paths could be han-
died by creating two separate paths, but it seems more
natural if apath that is used to make areguest isaso the
one that yields the response. A similar argument can be
made about resource management. A more technical ar-
gument for making paths bi-directional is that often the
two directionsare dependent on each other. For example,
when sending a network packet to aremote host, it may
be desirable to include a piggy-back acknowledgment in
that same packet.

Therefore, we extend the path model as follows. Each
path end has apair of queues—an input queuefor one di-
rection, an output queue for the other direction. The path
function ¢(m) isalso extended to take asecond argument
d that givesthe direction (FWD or BWD) in which the
path should be traversed. FWD isthe direction in which
the path was created, while BWD refersto thereverse di-
rection. Each router-specific function is extended in the
same way.

242 Complex Processing

The current path model assumes that the path transforma-
tion is “work-preserving,” that is, for every input mes-
sage, thereisexactly one output message. Thisislimiting
since it means that important operations such as packet
reassembly and fragmentation cannot be accommodated.
In the former case, most input messages do not result
in an output message. Instead, the partial messages are
buffered inside the router. In the latter case, every input
message may result in many more than one output mes-
sage. Similarly, aretransmission timeout may result in a

new message being generated spontaneously fromwithin
the path.

For thisreason, weloosentheeva uationrulefor paths.
Suppose that creating a path results in the routers con-
tributing the functions ¢4, ..., g,. A message may now
beinjected at any one of these sub-functions and thein-
vocation of ¢; may result either in g;—; orin g;41 being
invoked. That is, these sub-functions can be invoked in
any order, subject to the rulethat only neighboring func-
tionsare invoked, or that the message be enqueued at an
output queue.

25 Remarks

Insummary, apathiscreated incrementally by invokinga
Cregte operation on arouter and specifying aset of invari-
ants. Theinvariantsdescribe the propertiesof thedesired
path, and are used to determine anext router that must be
traversed by any message traveling on thispath. The path
reaches its maximum length when the invariants are no
longer strong enough to make a unique routing decision.
Each traversed router contributesafunction g; that isap-
plied when processing a message. A path that traverses
three routersis shown in Figure5.

@ o o2 o3
M< AR DEE

\/ \/ \/

Figure 5: Example Path

Path execution isdecoupled fromthearriva and depar-
ture processes at the routers by four queues. For each di-
rection, thereis an input and an output queue. Typically,
a path execution involves dequeuing a message from an
input queue and evaluating the ¢; functions in sequence
until the other end of the path is reached. However, for
generality, a message may get absorbed in the middle of
a path, or turned around, or a new message may be cre-
ated spontaneoudy inside a path.

Finally, keep in mind that policy issues—i.e., how to
use pathsfor agiven system—remain unspecified. There
are two dimensions to this issue, which can be visua-
ized as the “length” and the “width” of the path, respec-
tively. The “length” of the path is simple to understand:
it corresponds to the number of routers that the path tra-
verses. A path’s width is more subtle: a highly special-
ized path is narrow, whereas a more general pathiswide.
For example, a path that can only be used to carry non-
fragmented messages for a specific host-pair would be
considered narrow, while a path from a network adapter
tothe | P protocol that can handle any I P datagram would
be considered wide.

Whileit might seem that one wants paths to be as nar-
row (specific) as possible, thisisnot necessarily the case.
Such a strategy can lead to an explosion of paths—e.g.,
one per packet or one per request/response transaction—
which also implies having to create paths too frequently.
Since there is a cost associated with path creation, one
clearly wants the path to have enough breadth to carry
multiple messages. The strategy we have adopted is to
define amodest number of long-lived paths (e.g., one per
window, one per open file, one per TCP connection) and
then to defineasmall number of “short/fat” pathsto catch
the exceptional cases (e.g., al fragmented |P packets).

3 Implementing Pathsin Scout

Scout is an experimental operating system designed for
network appliances—e.g., set-top boxes, file- and web-
servers, and cluster computers. Scout isdesigned around
the path abstraction, supportsboth non-realtimeand soft-
realtime applications, and runsin a single address space.
This section describes how the path abstractionisimple-
mented in Scout.

Notethat compatibility with standard applicationinter-
faces (e.g., POSIX) isnot amajor god of Scout, except to
understand how such interfaces either exploit or interfere
with paths. On the other hand, interoperability with ex-
isting protocol specificationsisan important requirement
of Scout.

3.1 Routersand Services

Just asinthe architecture, routersare the unit of program
development in Scout. A router implements some func-
tionality such as the IP protocol, the MPEG decompres-
sion algorithm, or a driver for aparticular SCSI adapter.
A router implements one or more services that can be
used by other higher-level routers. Asistypicd inalay-
ered system, most routers themselves use other lower-
level routersto implement their services. Scout does not,
however, enforcestrict layering. Cyclicdependenciesare
admissible aslong asthere isapartia (non-cyclic) order
in which the routers can be initialized.

Each service in a router has a name and atype. The
names are unique, but otherwise arbitrary and chosen by
the programmer. The relevance of service typesis ex-
plained in more detail below. For the purpose of config-
uring arouter graph, it is sufficient to know that two ser-
vices can be connected by an edge only if they are mutu-
aly compatible. Figure6illustratesrouters, services, and
how they interact in arouter graph. Inthispartial router
graph, IP has three services: up, down, and res. Thefirst
two are of type net and the latter is of type nsClient (for
“name-service client”). The down serviceisconnected to

up:net
1P

down:net |res:nsClient

resolver:nsProvider

ARP
net:net
up:net
ETH

Figure 6: Routersand Services.

ETH’s up service. Thisconnection is used by IP to send
and receive |P datagrams. The res service is connected
to ARP'sresolver service. IPusesthistotrandate|P host
numbersinto Ethernet addresses. ARPitsalf isconnected
to ETH aswell so that it can broadcast and listento rele-
vant ARP packets.

A router is implemented ssimply as a collection of C
sourcefiles. Thesefiles, alongwith theexternal interface,
are described in a spec file. The syntax for spec filesis
shown below:

router name {
files = {filename, ... };
service = {name type, ... };
}

A service name may be preceded by a less-than marker
(<) to indicate that the routers connected to that service
must be initialized before this router can be initiaized.
The Scout infrastructure ensures that router initialization
occursin an order that is consistent with the partia order
defined by these markers. For the purpose of router ini-
tialization, cyclic dependencies are forbidden. The Scout
development environment includes a configuration tool
that trand ates arouter graph into C source code that cre-
ates and initializes the runtime view of a router graph
when the system boots. This configuration tool checks
for and rejects any router graph with cyclic dependencies.

At runtime, a Scout router isrepresented by avariable
of the following structure:

struct Router {
String nane;
| ong (*init)(Router r);

Creat eSt ageFunc creat eSt age;
DenmuxFunc demnux;
Rout er Li nkLi st |'i nks[NSERVI CES] ;

h

That is, a router consists of its name (member name),
three function pointers (members init, createStage, and
demux) and alist of router graph edgesthat connect tothis
router to other routers (member links).

Each router r providesjust one globally visible opera-
tion:

Router rCreate (String n, int c[]);

This operation is used to create a specific router with
name n. The integer array ¢ specifies how many times
each router service has been connected to other routers.
Once dll routers are crested, Scout initializesthem in the
partial order described above. A router isinitialized by a
cal toitsinit function.

3.2 Path Object

Section 2 argued that it is preferableto create pathsincre-
mentally, with the resulting pathsinitialy consisting of a
sequence of sub-functionsg; . Likewise, Scout paths con-
sist of asequence of stages. Each router that iscrossed by
apath creates one such stage. Since apath entersarouter
at oneservice and leavesit through another, astage effec-
tively connects a pair of services. That is, it represents a
fixed routing decision.

A stageisarich object that containsat |east thefollow-
ing members:

struct Stage {
Iface end[2];
Pat h pat h;
Router router;
| ong (*establish)(Stage s, Attrs a);
voi d (*destroy) (Stage 9);
¥

Member end is an array containing pointersto the inter-
faces of the stage. These interfaces are derived from the
services that astage connectsin amanner that will be ex-
plained below. The path and router members point to the
path that the stage is part of and the router that created
the stage, respectively. The establish and destroy func-
tion pointers are used during path creation and destruc-
tion and are explained in more detail in Section 3.3.

Therel ationship between interfaces and router services
isas follows. Each router service type consists of a pair
of interface types: thefirst element in this pair specifies
what interfacethe service provideswhereas the second € -
ement specifies the interface that the service requires to
function properly. For example, the net service typeis
symmetric in the sense that it both provides and requires
anet interface. This can be expressed as the pair:

servi cetype net = <Netlface, Netlface>;

Scout supports simple single inheritance for interface
types. This means that instead of the exact interface type
required by aserviceit ispossibleto provideamore spe-
cific interface. Hence, the precise rule used to decide
whether a pair of services can be connected in a router

graph is that the interfaces provided must be identical to
or more specific than the interfaces required.

All interfaces encountered when traversing apath in a
particular direction are chained together. Sinceitissome-
times necessary to “turn around” the data flow inside a
path, each interface also contains a back pointer to the
next interface in the opposite direction. A third pointer
provides access to the stage to which the interface be-
longs. Therefore, the most primitive interface is given

by:

struct Iface {
| face next;
| face back;
St age st age;
¥

This obviously is not avery interesting interface since it
provides no way to deliver data. All real interfaces de-
clare additional members that hold function pointers or
other data. For example, the net interface is declared as
follows:

struct Netlface {
struct |face i
long (*deliver)(lIface i, Msg m);
¥
That is, the net interface providesa singlefunction to de-
liver amessage mtointerfacei. While Scout can techni-
cally support an arbitrary number of interface types, the
intent is to keep this number as small as possible. For
example, a present there is an interface type to asyn-
chronously exchange messages (thisis used both by fil-
ters and networking protocols), awindow manager inter-
face, afile systeminterface, and afew other, lesser inter-
face types.
Given the definition of stages and interfaces, it is now
easy to describe the actual path object:

struct Path {
St age end[2] ;
| ong pi d;
voi d (*wakeup) (Path p, Thread t);

Pat hQueue q[4] ;
struct Attrs attrs;
¥

The array end contains two pointersto the stages at the
extremeends of the path. A path can set thewakeup func-
tion pointer to request that a specific function gets exe-
cuted when athread t is awakened to execute in a path
p. Thisis discussed more in Section 3.4. The four path
gueues are stored in g. These queues are generic in the
sense that the queuing disciplineis unspecified. The two
properties that are defined for any such queueis the cur-
rent lengthand themaximum length. Finaly, attrsisaset
of name/value pairs (attributes). Attributes alow to at-
tach arbitrary stateto aparticular path. For example, this

enabl es stagesto exchange and share informati on anony-
mously (without knowing exactly what stageisthesource
of theinformation and what stages are the consumers).

A path can therefore be visuaized as shown in Fig-
ure 7. The path shown there consists of four stages.
The stages were created by the TEST, UDP, IR, and
ETH routers. Each interior stage contains two interfaces
(semi-circles), whereas the stages at the extreme ends of
the path contain only one interface each. These extreme
stages are, strictly speaking, not part of the path but they
are used to connect to the routers that manage the path
queues.

path
“ K\ TEST
ages i
,,,,,,,,,,, < / vinterfaces
\\ K UDP
,,,,,,,,,,,,,,,, /
A P
,,,,,,,,,,,,,,,, /
U ETH

Figure 7: Path structure.

3.3 Path Creation

Paths are created and destroyed using thefollowing func-
tions:
Pat h pat hCreate(Router r,
voi d pathDel ete(Path p);

Attrs a);

A path is created by invoking pathCreate on a router
r. The kind of path to be created is described by the set
of attributes a. These attributes are arbitrary name/value
pairsthat specify theinvariantsthat hold truefor the path
being created. The pathCreate resultsin an invocation of
the createStagefunctioninrouter r (see Section 3.1). The
createStage function has the following type:

Stage (*CreateStageFunc)(Router r,
Attrs a,
Rout er Li nk* n);
Here, r is the router on which pathCreate was invoked
and sisthe number of the service through which the path
being created entersthe router. Sincer isthefirst router
in the path, there isno such service, so thevaueis set to
-1 (not avalid service number). Argument a isthe set of
attributes passed to the pathCreate operation. Oncer cre-
ates anew stage and makes arouting decision, it setsnto

int s

therouter/service pair that the path must traverse next, if
thereissuch apair, otherwiseit setsit to NULL.

Given the next router/service pair, the createStage op-
eration is invoked on that next router. Now, argument s
is set to the index of service through which the path en-
ters the router and a is the (possibly modified) set of at-
tributes. This process continues until a path reaches its
full length, which happens either when it reaches a leaf
router or when the attributes are so weak that no unique
routing decision is possible. When either event occurs, a
sequence of stages has been created. The stages and the
interfaces contained therein are then linked together into
apath structure. Once the path object isfully created, the
establishfunctionsin the stage objectsare executed inthe
order in which the stages were created. This gives each
stage a chance to perform initiaization that depends on
the existence of the entire path.

As described so far, path creation consists of three
phases. (1) create sequence of stages, (2) combine stages
into path object, and (3) establish (initiaize) stages. Dur-
ing a fourth and fina phase, path transformation rules
are applied to the path. This provides the means through
which Scout uses global knowledgeto transform and op-
timize paths. Semantically, transformation rules have no
effect, but they typically result in better performance and
better resource allocation or usage. For example, if apath
contains a sequence of interfaces for which there is opti-
mized code is available, then the function pointersin the
interfaces can be updated to point to thisoptimized code.
More details on such code-related path-transformations
can be found in a companion paper [23]. Section 4 dis-
cusses some transformationsthat improve resource man-
agement.

When a Scout system boots, there are typicaly afew
routersthat create a handful of paths, e.g., to receive key
strokes or network packets. All other paths are either di-
rectly or indirectly crested by theseinitial paths. In other
words, path creation and destruction is under control of
the routersthat are present in a given system. The Scout
infrastructure never crestes or destroys pathsimplicitly.

3.4 Path Execution

Paths are executed by threads—the active entities in
Scout. A router starts execution of a path by dequeuing
datafrom the input queue and invoking an interface-type
dependent data-delivery function.

Since threads are independent objects and since path
gueues can often be optimized away, it is possible for a
thread to execute a path, enter arouter, and then continue
execution in another path without any context switches.
Thisisimportant because degenerate paths can be short,
so forcing context switches at every path/router crossing
could result in an excessive number of context switches,

and therefore, less than optimal performance.

In Scout, threads are scheduled non-preemptively ac-
cording to some scheduling policy and priority. Scout
supportsan arbitrary number of scheduling policies, and
allocates a percentage of CPU time to each. The min-
imum share that each policy gets is determined by a
system-tunable parameter. Two scheduling policieshave
been implemented to date: (1) fixed-priority round-robin,
and (2) earliest-deadline first (EDF) [18]. The reason
for implementing the EDF policy is that for many soft-
reatimeapplications, itismost natural to expressapath’s
“priority” interms of adeadline. We present an example
of thisin the next section.

Scout uses a non-preemptive scheduler because it
meets our needs and is easy to use. In the future, Scout
will alow for uncooperative “threads,” but since it is
not a good idea to share any resource with uncoopera-
tivethreadsin an uncontrolled manner, thosethreadswill
not share memory either. That is, uncooperative threads
will be isolated from each other in some manner (e.g.,
through separate address spaces, fault isolation, or asafe
language). If uncooperative threads do not share mem-
ory, using a preemptive scheduler among them is triv-
ia. Thus, scheduling is split into domains—within a do-
main, thereistrust and hence anon-preemptive schedul er
can be used. Across domains, thereisno trust and a pre-
emptive scheduler is necessary. This is not unlike what
many traditional UNIX kernels do—thekernel “threads’
are scheduled non-preemptively whereas the user-level
processes are scheduled preemptively.

Once a thread executes on behaf of a path, it can
trivially adjust its own priority as necessary. However,
there also needs to be a mechanism that allows a newly
awakened thread to inherit a path’s scheduling require-
ments. For this purpose, a path can set the wakeup func-
tion pointer in its path object to a function that selects
the appropriatescheduling policy and priority for anewly
awakened thread.

3.5 Finding Paths

In many cases, knowing the path that should be used for
a given set of datais trivial. For example, an applica-
tion might create a path to a graphics window and then
use that path to draw lines and paint text. In some cases,
however, the path to be used is determined implicitly by
the dataitself. For example, when a packet arrives at a
network adapter, itisnot immediately known which path
that packet belongsto. For thisreason, each Scout router
provides ademux operation that maps the datainto apath
that can be used to process that data. This problem is
identical towhat isreferred to a*“ packet classification” in
the networkingliterature. Since Scout uses packet classi-
fication in a context that is somewhat unusual, it isworth

enumerating the specific requirements that it places on
this process:

o Efficient enough to handle pesk-loads. Classifica
tion must take a short amount of timerelativeto the
typical path execution time. Otherwise, the advan-
tage of improved resource management dueto paths
would belost.

¢ Providerelaxed (best-effort) classification accuracy.
Unliketraditional classifiers, the Scout classifier just
has to find a path that is “good enough” to process
thegiven data. Thisisbest illustrated with an exam-
ple: suppose the data to be classified is an IP frag-
ment. Traditional classifiers defer classification un-
til the entire | P datagram has been reassembled. For
the purposes of Scout, it is acceptable to hand off
I P fragments to a path that knows how to reassem-
ble the fragments. Once the full datagram is avail-
able, the IP protocol can rerun the classifier to find
the next path.

Many packet classifiers have been proposed (e.g., [31,
20, 2, 8]), but none of them address all of the Scout re-
quirements satisfactorily. For this reason, Scout adopted
the simple solution of requiring each router to provide a
function that performs a classification. Any given router
typically implements only a small portion of the entire
classification process. If a router cannot make a unique
classification decision, it may ask the next router to refine
that decision. This continues until either a unique path
isfound or until it is determined that no appropriate path
exists. Inthe latter case the offending datais simply dis-
carded.

3.6 Remarks

Figure 8 summarizes the Scout timeline. At the earli-
est time(top), individual routersand path transformations
are implemented. Later on, a system is configured by
specifying arouter graph and sel ecting appropriatetrans-
formationrules. Thekernel isthen built and booted. Dur-
ing runtime, paths are created, executed, and eventualy
destroyed when no longer needed.

Asimplemented in Scout, paths are light-weight. For
example, apathtotransmit and receive UDP packets con-
sists of six stages. Creating such a path on a 300MHz
Alpha takes on the order of 200us. This time does not
include the application of any transformations. The path
object itself is about 300 bytes long and each stage is
on the order of 150 bytesin size (including al the inter-
faces). Also, packet classification isreasonably efficient.
Thefirst (unopti mized) implementation of the Scout clas-
sification scheme is adready able to demultiplex a UDP
packet in less than 5us.

Early

I router implementation
1 path transformations

I router graph & transformation rules

A
3 1 kernel build
build time

rruntime
i

I path creation

T path execution

Y

Late

Figure 8: Scout Development Timeline.

There are many other aspects of Scout that space does
not permit us to describe; most of them are orthogonal
to paths. For example, we believe software-based fault
isolation (SFI) [30] could be imposed on top of paths by
defining each router to bein aseparate fault domain. Sim-
ilarly, hardware-enforced protection could be imposed
between paths. Notethat the horizontal partitioning (SFI)
is possible because Scout routers have well-defined in-
terfaces, whilethevertical partitioning (hardware protec-
tion) is enabled by explicit paths.

Also, the Scout router graphisconfigured at buildtime,
and as currently defined, it is not possible to extend the
graph at runtime. However, it is possible to configure an
interpreter into the router graph, thereby supporting ex-
tensibility. For example, we are currently implementing
the Java APl (and interpreter) in Scout [10]. This will
make it possibleto downl oad Javaapplicationsinto Scout
at runtime,

4 Demonstration Application

This section demonstrates the use and benefits of paths
with a simple, but realistic application implemented in
Scout. The application consists of receiving, decoding,
and displaying MPEG encoded video streams. MPEG
encoding is able to reduce the size of a video by a fac-
tor of 10 to 100, but this compression ratio comes with
a computationally expensive decompression agorithm.
Workstations have only recently become fast enough to
perform thistask in realtime. Since MPEG decoding in-
volves substantial computation, it is an application that
demonstrates some of the advantages of paths related to
resource management.

4.1 MPEG Router Graph

The Scout router graph for the demonstration application
is shown in Figure 9. The topmost router, DISPLAY,
manages the framebuffer. The bottom of the graph is
formed by three routers implementing standard network-
ing protocols: UDPR, IR, and ETH. In the middle are the
three interesting routers: MPEG, MFLOW, and SHELL.

Figure 9: Router graph for MPEG example.

The MPEG router accepts messages from MFLOW,
appliesthe MPEG decompression a gorithmto them, and
sendsthedecoded imagestothe DISPLAY router. There,
theimages are queued for display at the appropriatetime.
The MPEG router uses application-level framing (ALF)
[4] to minimize interna buffering. That is, the MPEG
source sends Ethernet MTU-sized packets that contain
an integral number of work-units (MPEG macrobl ocks).
This ensures that the MPEG decoder does not have to
maintain complex state across packet boundariesand ob-
viatesthe need for undesi rable queueing between MPEG
and MFLOW.

The MFLOW router implementsasimpleflow-control
protocol. MFLOW advertises the maximum sequence
number that itiswilling to receive based on the sequence
number of the last processed packet and the input queue
size. MFLOW uses sequence numbersto ensure ordered,
but not reliable, delivery of packetsto MPEG.

The SHELL router is used to create pathsdynamically.
It is configured on top of UDP so it can receive com-
mand requests via the network. SHELL is not unlike a
UNIX shell inthat it waitsfor a command request which
it then mapsinto acommand “invocation.” Inthe context
of Scout, thisinvolves mapping the command name into
an appropriate path create operation. To create a path,
SHELL requirestwo pieces of information: the router on
which the path create operation isto be invoked on and
a set of attributes (invariants). In the current implemen-
tation, an npeg_decode command aways resultsin a
path creste invocation on the DISPLAY router. In gen-

eral, SHELL might consult an environment variable to
select the graphics display to be used. SHELL creates
MPEG paths with the following two attributes:

PA_NET_PARTICIPANT S=(ip-addr, udp-port):
This attribute specifies the network address of the
process that sent the npeg._decode command
request. SHELL assumes that the network address
of the video source is the same as the address that
originated the command request.

PA_PATHNAME="MPEG": The value of this at-
tribute is a string that, in its simplest form, is
interpreted as a sequence of router-names. It is
used either to force a specific routing decision or
to supply routing information when there is no
other routing information available. In the case of
an MPEG path, SHELL sets this attribute to the
string “MPEG” to force DISPLAY to forward path
cregtion to the MPEG router.

Another attribute that is used during MPEG path cre-
ationisPA_PROTID. Unlikethe other attributes, thisone
is not specified by the SHELL router. Instead, it isre-
set by each router that implements a networking proto-
col. The value of this attribute is the protocol id of the
next-higher level networking protocol. This id is nor-
mally needed during packet classification. For example,
I P packets with a protocol type of 6 are TCP packets and
TCP packets with aport number of 21 are normaly FTP
packets. Sowhen FTPforwardsapath create operationto
TCPR, itsetsPA_PROTID to 21. If TCP decidestoforward
path creation to IP, it resets the value of PA_PROTID to
6tolet IPknow that it is dealing with a TCP path.

Figure 9 shows two video paths (from ETH to DIS
PLAY) and a shell path for receiving commands (from
ETH to SHELL). Note that the video paths take their in-
put from, and deposit their output into, a queue. These
gueues are serviced by interrupt handlers. In ETH, the
queue isfilled in response to a receive interrupt, and in
DISPLAY, thequeueisdrained inresponsetothevertica
synchronization impulse of the video display. Output to
the display is synchronized to thisimpul se because there
isno point in updating the display at a higher frequency.

There are three points worth emphasizing about this
example. Firgt, there are no queues other than the ones
in ETH and DISPLAY. As mentioned above, thisis due
to MPEG'’s use of ALF. Second, ALF—aong with ex-
plicit paths—enable integrated layer processing. Since
MPEG reads the network packet datain units of 32 bits,
it would be straight-forward to integrate the (optional)
UDP checksum with the reading of the MPEG data. This
would require a path-transformation rule that matches
for MPEG being run directly on top of UDP. If this pat-
tern matches, the path can be transformed by replacing

the UDP and MPEG receive processing functions with
functions that implement the UDP checksum computa-
tion as part of MPEG's reading of the packet data. Third,
without queuing in the middle of the path, scheduling is
simplified—if the output queueisfull already, thereislit-
tle point in scheduling athread to process apacket in the
input queue. Thisimplicationwould not hold in the pres-
ence of additional queues.

Table 1 gives measurements that indicate the perfor-
mance a Scout MPEG kernel can achieve. Thetablelists
themaximum decoding ratein frames per second for ase-
lection of four video clips. To put these numbersin per-
spective, the table also gives the corresponding numbers
for Linux. The numbers are comparable in the sense that
both systems run on the same machine (a 300MHz 21064
Alpha), use essentially the same MPEG code, and re-
ceive the compressed video over the network. The domi-
nant costs in this example are the decompression of the
MPEG stream and the dithering and displaying of the
video frames. That is, practically al timeis spent in the
MPEG and DISPLAY routers.

#of | max. rate[fps]

Video frames | Scout | Linux
Flower 150 | 447 37.1
Neptune 1345 | 49.9 39.2
RedsNightmare 1210 | 67.1 55.5
Canyon 1758 | 2459 | 183.3

Table 1: Coarse-Grain Comparison of Scout and Linux

While the playing field was as level as we could make
it, it must be understood that this is an apples and or-
anges comparison—the two systems have a very differ-
ent scope, level of functionality, and maturity. Still, the
comparison is useful to establish that a path-based sys-
tem such as Scout can easily achieve performance that is
consistent with the machine on which it runs.

4.2 Queues

As Figure 9 shows, two queues exist at the ends of the
MPEG path. These queues areinthe ETH router (thein-
put queue) and in DISPLAY (the output queue).

The input queue is required for two reasons: (1) for
high-latency networks it may be necessary to have mul-
tiple network packets in transit, and (2) because of net-
work jitter, thesemultiplepacketsmay all arriveclustered
together. Since the peak arrival rate a the Ethernet is
much higher than the MPEG processing rate, the queue
is needed to absorb such peaks.

Whereas the input queue absorbs bursts that are lim-
ited in size, the job of the output queueisto absorb jitter

at a more global level—decompression itsalf introduces
significant jitter. Depending on the spatial and temporal
complexity of avideo scene, the encoded size of any par-
ticular video frame may be orders of magnitudes differ-
ent fromthesize of theaverage framein that stream. The
network may also suffer from significant jitter, e.g., due
to temporary congestion of a network link. Finaly, the
sender of the MPEG stream itself is likely to add jitter
since the video may, for example, be read from a a disk
drive. Just how big should these queues be? Obvioudly,
they should be “just big enough,” but isit possibleto put
some quantitative limitson their sizes?

First, consider the input queue. If processing a single
packet requires more time than it takes to request a new
packet from the source, then an input queue that can hold
two packets is sufficient: one slot is occupied while the
last received packet is being processed, and the second
(free) dot is advertised to the source. If the round-trip
time (RTT) is greater than the time to process a packet,
then the input queue needs to be two times the RTT x
bandwidth product of the network. MFLOW can mea
sure the round-trip latency by putting atimestamp in its
header. The important point from the perspective of this
paper, however, isthat accurate measurement of the pesk
processing rate is enabled by paths—it isasimple matter
of specifying the appropriate transformation rule to en-
sure that the average time spent processing each packet
is measured. For MPEG, thismeans that theinitial func-
tioninthe ETH-stage of therouter ismodified to measure
processing timeand to update the path attributethat keeps
track of the average processing time.

In the case of the output queue, the factors influenc-
ing queue size are more varied and complex. A compl ete
analysis is beyond the scope of this paper. In generdl,
bounding the size of this queue requires cooperation with
admission control and would typically employ a network
reservation system, such as RSVP [3]. The current im-
plementation leaves this parameter under user control to
facilitate experimentation.

4.3 Scheduling

Since each video path has its own input queue and since
the packet classifier isrun at interrupt time, newly arriv-
ing packets are immediately placed in the correct queue.
Thismeansthat once a packet isunder control of the soft-
ware, thereisno danger of priority inversion dueto low-
priority packets being processed ahead of high-priority
packets. This is one of the most significant advantages
of paths. For example, the early separation makesit pos-
sible to run a video stream while flooding the network
adapter with small Ethernet packets.

This is demonstrated in Table 2, which shows how
the maximum decoding frame rate for the Neptune video

drops when load is added to the Scout and Linux sys-
tems, respectively. The additional load consistsof aflood
of ICMP ECHO requests (generated with pi ng - f). In
the Scout case, the video path isrun at the default round
robin priority, whereas the path handling ICM P requests
isrun at the next lower priority. In contrast, Linux han-
dles ICMP and video packets identically inside the ker-
nel. Asthetable shows, adding the ICMP load haslittle
effect on the frame rate for Scout, while the maximum
framerate for Linux drops by more than 42%. Clearly,
the early separation afforded by paths can have signifi-
cant benefits. Thisisnot tosay that pathsaretheonly way
to solve this particular problem (e.g., [22]), but it does
support our claim that paths can be an effective solution
to such problems.

Framerate [fpg]
unloaded loaded A
Scout 499 498 -0.2%
Linux 39.2 227 -421%

Table 2: Frame Rate Under Load

While the advantages of paths due to early separation
are important, paths play an even more intimate role in
scheduling. As explained in Section 3, a path can regis-
ter awakeup callback that can be used to adjust athread’s
scheduling policy and priority according toitsown needs.
The MPEG path usesthisfacility to ensurethat any thread
that is ready for execution in the path will be scheduled
withthe proper realtime constraints. 1n combination, sep-
arate input queues and proper scheduling guarantee that
the MPEG Scout kernel has no difficulty in delivering
and processing reatime MPEG packets even under se-
vere background loads. For example, an arbitrary num-
ber of low-priority MPEG streams (or some other non-
realtime background work) can be displayed without ad-
versdly affecting realtime streams running in the fore-
ground.

The default Scout scheduler is a fixed-priority, round-
robin scheduler. Sincevideo isperiodic, it seems reason-
able to use rate-monotonic (RM) scheduling for MPEG
paths. With RM scheduling, a (periodic) realtime thread
receives a priority level that is proportional to therate at
whichit executes. That is, theframe-rateat whichavideo
isdisplayed would control the priority of the correspond-
ing path. However, there are severa reasons that make
earliest-deadline-first (EDF) scheduling more attractive
than RM scheduling. These include:

e The frame-rate must be under user control to sup-
port features such as slow-motion play or fast for-
ward. Thisimpliesthat alarge number of priority-
levels would be necessary. Otherwise, two MPEG

pathsthat have similar, but not identical , frame-rates
could not be distinguished scheduling-wise. If the
number of priority levelsis large, EDF scheduling
isjust as efficient as RM scheduling.

¢ MPEG decoding is periodic, but not perfectly so.
Consider playingamovieat 31Hz on amachinewith
adisplay update frequency of 30Hz. Giventhat only
30 images can be displayed every second, it will be
necessary to drop oneimage during each onesecond
interval. When the drop occurs, there is no need to
schedule that path, so afixed priority would be sub-
optimal.

¢ While not a quantitative argument, probably the
strongest case for EDF scheduling is that it is
the natural choice for a soft realtime thread that
moves data from an input queue to an output queue.
For example, if the output queue drains a 30
frames/second and the queue is haf full, it is triv-
ia to compute the deadline by which the next frame
has to be produced.

For these reasons, Scout uses EDF scheduling for real-
time MPEG paths. For example, thisalows Scout to dis-
play 8 Canyon movies at arate of 10 frames per second,
together with a Neptune movie playing at 30 frames per
second, all without missingasingledeadline. In contrast,
the same load with single-priority round-robin schedul -
ing leadsto alarge number of missed deadlinesif the out-
put queues for the Canyon movies are large. For exam-
ple, with aqueue size of 128 frames, on the order of 850
out of 1345 deadlines are missed by the path displaying
the Neptune movie. The reason for the poor performance
of round-robinschedulingisthat it keeps schedulingthe 8
Canyon moviesaslong astheir output queuesare not full,
even at times when the Neptune movie needs the CPU
much more urgently.

One question that remainsis how the deadlineis com-
puted. Here again, paths play a centra role. If path exe-
cution is the bottleneck, then the output queue should be
kept as full as possible. In this case, it is best to set the
deadline to the display time of the next frame to be put
in the output queue. In contrast, if network latency isthe
bottleneck, then the deadline should be based on the state
of theinput queue. Since at any given time some number
of packets (n) should bein thetransit to keep the network
pipefull, MFLOW must be ableto advertise an open win-
dow of sizen. Thismeansthat the deadlineisthetime at
which the input queue would have less than » free slots.
Thistime can be estimated based on the current length of
the queue and the average packet arrival rate.

3Because it is difficult to compute globally meaningful priorities
for RM scheduling in a dynamic system—i.e., one where different rate
videos come and go—single-priority round-robinis the next best alter-
native. Therefore, we compare EDF to this case, rather than to RM.

Since the path object provides direct access to both
gueues, the effective deadline can simply be computed
as the minimum of the deadlines associated with each
gueue. Alternatively, the path can use the path execu-
tion time and network round-trip time to decide which
gueueisthe bottleneck queue, and then schedul e accord-
ing to the bottleneck queue only. The latter approach is
dlightly more efficient, but requiresa clear separation be-
tween path execution time and network round-trip time.
The implemented MPEG decoder is currently optimized
for the case where the output queue is the bottleneck, so
scheduling is aways driven off of that queue.

44 Admission Control

Finally, paths enable admission control. Asall memory
allocation requests are performed on behdf of a given
path, itisasimplematter of accounting to decide whether
anewly created path is admissible or not. Before start-
ing path creation, the admission policy decideshow much
memory can be granted to a new path. Aslong as each
router inthe path liveswithinthat constraint, the path cre-
ation process is alowed to continue. (Note that admis-
sion control has not yet been implemented in Scout.)

Paths are also useful in deciding admissibility with re-
spect to CPU load. Again, thisis due to the fact that it
is easy to compute the execution time spent per path—
our experiments show that thereisagood correl ation be-
tween the average size of aframe (in bits) and the aver-
age amount of CPU time it takesto decode aframe. Nat-
urally, the model that trandates average frame size into
CPU processing timeis parameterized by the speed of the
CPU, the memory system, and the graphics card. Rather
than determining these parameters manually, it is much
easier to measure path execution timein the running sys-
tem and use those measurements to derive the required
parameters. That is, the path execution timings are used
to derive the model parameters, which in turn, are used
for admission control.

Finaly, if admission control determines that a video
cannot be displayed at the full rate, a user may choose
to view the video with reduced quality. For example,
the user may request that only every third image be dis-
played. Thanksto ALF and paths, it is possible to drop
packets of skipped frames as soon as they arrive at the
network adapter. This avoids wasting CPU cycles a a
time when they are at a premium.

5 Related Work

At a superficia level, Scout paths are similar to UNIX
pipes[28] and Pilot streams[25]. Whileall three abstrac-
tionshave in common alinear sequence of “components’

(processes in UNIX, Mesa modules in Pilot, stages in
Scout), neither pipesnor streams provideany global con-
text to theindividual modules. Neither do they attempt to
optimize the code dong a “path.” It isaso the case that
UNIX pipes are more coarse-grain and uni-directional.

Asmentioned in Section 1, thereisawealth of mecha-
nismsthat offer point-solutionsto the more general prob-
lem of exploiting paths, both as a structuring framework
and as an optimization technique. Thisrelated work falls
broadly into two categories, depending on their primary
objective:

e optimizing code along the “fast path,” or
e improving resource management.

Examples of fast path optimizations include Synthesis
[19], Synthetix [24], PathiDs[17], Protocol Accelerators
[29], and integrated layer processing [4, 1]. Examplesin
the second category include processor capacity reserves
[21], distributed/migrating threads [5, 9], and Rialto ac-
tivities[16]. Because space doesnot permit usto contrast
all of thiswork in detail, we simply point out that the path
abstraction as presented in this paper isan attempt at uni-
fying these variousideas. In particular, the proposed ab-
straction allows us to reason about both the fast path and
resource management issues. Our claim isthat theunify-
ing principlebehind this abstraction is the global know!-
edge that paths afford. The rest of this section discusses
therelated work we consider most relevant in moredetail.

The system that is probably closest to Scout, at least in
terminology, is Da CaPo (dynamic configuration of pro-
tocols) [11]. It defines an infrastructure for building mul-
timedia protocols. While Da CaPo has a notion of paths
and stages, there are important differences at dl levels.
At lowest level, Da CaPo paths are uni-directional and
stages have very restricted functionality (they are essen-
tially non-blockingevent-handlers). Asaresult, DaCaPo
is just powerful enough to accommodate common net-
working tasks. Also, interoperability with existing pro-
tocolsis not a goa of Da CaPo. Another important dif-
ference is that path creation is left completely to an ex-
ternal “configuration manager.” As pointed out in Sec-
tion 2, thismeansthat in any reasonably complex system,
the configuration manager will be burdened by detailed
knowledge of the internal workings of particular proto-
cols. In contrast, our path abstraction makes it easy to
exploit both local and global knowledge during path cre-
ation. At ahigher level, Da CaPo focuses completely on
automatically selecting appropriate protocol functional-
ity; performance and resource all ocation appear to be sec-
ondary issues.

Kay [17] introduces the notion of a PathlD, which is
designed specifically to reducethelatency of receive-side
network processing. Fundamentally, a PathlD is similar

to afine-grained virtua circuit identifier (VCI) in ATM
networks[7]. Since PathlDs are stored in aknown loca
tion in the header of network messages, packet classifi-
cation becomes trivial (in the worst case atable-lookup).
In [17], packets with a PathlD are processed by highly
optimized, handwritten code. Since this code is manu-
ally tuned, maintainability and ease of use are problem-
aic. In fact, the paper suggests that PathlDs should be
used for the rare cases where having to mai ntain two par-
allel branches of source codeisajustifiablecost. Finally,
PathlDs do not attempt to elevate pathsto a fundamental
OS gtructure, and the problem of creating paths without
human direction is not addressed.

6 Concluding Remarks

This paper makes two contributions. First, it describes
how paths can be made an explicit OS abstraction, and
shows how this abstraction has been implemented in
the Scout operating system. Second, it makes a case
for why paths should be made explicit. This case in-
cludes both the intuitive arguments made in Section 1,
and a demonstration of how paths proved beneficial in
one particul ar application—receiving, decoding, and dis-
playing MPEG-compressed video. On this latter point,
we showed how paths are used to:

o segregate work early to avoid priority inversion;

o schedule the entire processing along a path accord-
ing to the bottleneck queue, and to automatically de-
termine the bottleneck queue in the system;

o provideaccountability to decide the admissibility of
amemory allocation request; and

e discard unnecessary work early to minimize the
waste of resources.

What remains to be done is to demonstrate Scout—and
the utility of paths—on awider set of domains. For ex-
ample, work on a Scout-based Java-box, active network
router, and scal able storage server are under way.

Acknowledgments

We would like to thank the other members of the Scout
group, particularly, John Hartman, Brady Montz, Patrick
Bridges, David Larson, and Rob Piltz. Thanksasotothe
reviewers, especialy our shepherd, Rich Draves. This
work supported in part by DARPA Contract DABT63-
95-C-0075 and NSF grant NCR-9204393.

References

(1]

(2]

(3]

[4]

(5]

(6]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

M. B. Abbott and L. L. Peterson. Increasing network
throughput by integrating protocol layers. |EEE/ACM
Transactions on Networking, 1(5):600-610, Oct. 1993.

M. L. Bailey, B. Gopal, M. A. Pagels, L. L. Peterson, and
P. Sarkar. PathFinder: A pattern-based packet classifier. In
Proc. of the 1st Symp. on Operating Systems Design and
Implementation, pages 115-123, 1994,

R. Braden, D. Clark, and S. Shenker. RFC-1633: Inte-
grated servicesin the Internet architecture: an overview.
Available at ftp://ftp.internic.net/rfc, July 1994.

D. Clark and D. Tennenhouse. Architectural considera-
tions for a new generation of protocols. In Proc. of G-
COMM ’90 Symp., pages 200208, Sept. 1990.

R. K. Clark, E. D. Jensen, and F. D. Reynolds. An archi-
tectural overview of the Alphareal-time distributed ker-
nel. In 1993 Winter USENIX Conf., pages 127-146, Apr.
1993.

P. Druschel and L. L. Peterson. Fbufs: A high-bandwidth
cross-domain transfer facility. In Proc. of the 14th ACM
Symp. on Operating System Principles, pages 189-202,
Dec. 1993. ACM.

P. Druschel, L. L. Peterson, and B. S. Davie. Experiences
with a high-speed network adaptor: A software perspec-
tive. In Proc. of SGCOMM ’94 Symp., pages 2—13, Aug.
1994,

D. Engler and M. F. Kaashoek. DPF: Fast, flexible mes-
sage demultiplexing using dynamic code generation. In
Proc. of SGCOMM 96 Symp., pages 53-59, Aug. 1996.
B. Ford and J. Lepreau. Evolving Mach 3.0 to amigrating
thread model. In 1994 Winter USENIX Conf., pages 97—
114, Jan. 1994.

J. Gosling, F. Yellin, and The JavaTeam. The Java Appli-
cation Programming Interface. Addison-Wesley, Read-
ing, MA, 1996.

A. Gotti. The DaCaPo communication system. Technical
report, ETHZ, Switzerland, June 1994.

A. Habermann, L. Flon, andL. Cooprider. Modularization
and hierarchy in afamily of operating systems. Commu-
nications of the ACM, 19(5):266-272, May 1976.

G. Hamilton and P. Kougiouris. The Spring nucleus: a
microkernel for objects. In Proc. of the Summer 1993
USENIX Conf., pages 147-159, June 1993.

J. S. Heidemann and G. J. Popek. File-system develop-
ment with stackable layers. ACM Transactions on Com-
puter Systems, 12(1):58-89, Feb. 1994.

N. C. Hutchinson and L. L. Peterson. The x-kernel: An
architecture for implementing network protocols. 1EEE
Transactionson Software Engineering, 17(1):64-76, Jan.
1991.

M. Jones, P. Leach, R. Draves, and J. Barrera. Support
for user-centric modular real-time resource management
in the Rialto operating system. In Proc. of the 5th Intl.
Workshop on Network and OS Support for Digital Audio
and Video, pages 5566, Apr. 1995. ACM.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[29]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

J. S. Kay. Path IDs: A Mechanismfor Reducing Network
Software Latency. PhD thesis, University of California,
San Diego, 1995.

C.L. Liuand J. W. Layland. Scheduling algorithms for
multiprogramming in ahard-real -time environment. Jour-
nal of the ACM, 1(20):46-61, Jan. 1973.

H. Massalin. Synthesis: An Efficient Implementation of
Fundamental Operating System Services. PhD thesis,
ColumbiaUniversity, New York, NY, Sept. 1992.

S. McCanne and V. Jacobson. The BSD packet filter: A
new architecture for user-level packet capture. In 1993
Winter USENIX Conf., pages 259269, Jan. 1993.

C. W. Mercer, S. Savage, and H. Tokuda. Processor capac-
ity reserves: An abstraction for managing processor us-
age. In Proc. of the 4th Workshop on Wor kstation Operat-
ing Systems (WWOS-1V), pages 129-134, Oct. 1993.

J. C. Mogul and K. K. Ramakrishnan. Eliminating re-
ceive livelock in an interrupt-driven kernel. In 1996 Win-
ter USENIX Conf., pages 99112, Jan. 1996.

D. Mosberger, L. Peterson, P. Bridges, and S. O'Malley.
Analysis of techniques to improve protocol latency. In
Proc. of SGCOMM 96 Symp., pages 73-84, Sept. 1996.

C. Pu et al. Optimistic incremental specialization:
Streamlining a commercial operating system. In Proc.
of the 15th ACM Symp. on Operating System Principles,
pages 314-324, Dec. 1995.

D. D. Redell et a. Pilot: an operating system for a per-
sonal computer. Communications of the ACM, 23(2):81—
92, Feb. 1980.

R. V. Renesse, K. Birman, R. Friedman, M. Hayden, and
D. Karr. A framework for protocol composition in Ho-
rus. In Proc. of the 14th ACM Symp. on Principles of Dis-
tributed Computing, pages 80-89, Aug. 1995.

D. M. Ritchie. A stream input-output system. AT&T
Bell LaboratoriesTechnical Journal, 63(8):311-324, Oct.
1984.

D. M. Ritchieand K. Thompson. The UNIX time-sharing
system. Communications of the ACM, 17(7):365-375,
July 1974.

R. van Renesse. Masking the overhead of protocol layer-
ing. In Proc. of SGCOMM '96 Symp., volume 26, pages
96-104, Stanford, CA, Aug. 1996. ACM.

R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Effi-
cient software-based fault isolation. In Proc. of the 14th
ACM Symp. on Operating System Principles, pages 203—
216, Dec. 1993.

M. Yuhara, B. N. Bershad, C. Maeda, and J. E. B. Moss.
Efficient packet demultiplexing for multiple endpoints
and large messages. In 1994 Winter USENIX Conf., pages
153-165, 1994.

H. Zimmermann. OS| reference model—the 1SO model
of architecture for open systems interconnection. IEEE
Transactions on Communications, COM-28(4):425-432,
Apr. 1980.

