Introduction to Redundant Arrays of Inexpensive Disks (RAID)

David A. Patterson, Peter Chen, Garth Gibson, and Randy H. Karz

Computer Science Division
Department of Electrical Engineering and Computer Sciences
571 Evans Hall
University of California
Berkeley, CA 94720
(pattrsn@ginger.berkeley.edu)

1. The Pending 1/O Crisis

The computer industry has entered a period of unprecedented
improvement in CPU performance. Midrange uniprocessors are
improving at a rate of 50% to 100% per year, with this
uniprocessor rate multiplied by the increasing popularity of
multiprocessors.

There is more to a computer system, however, than the
processor. Memory and I/O must match these gains to deliver a
system that achieves the potential of the processor. Various rules
of thumb tie CPU performance to both the capacity and the speed
of the memory and I/O subsystems, so we need advances in both
dimensions to create faster yet balanced computers.

Memory subsystems are matching the challenge of CPU
performance. DRAMs are growing in capacity by about the same
rate as CPUs are improving in performance. The performance of
DRAMs is improving at a much more modest rate, perhaps
doubling ever decade. SRAMs, however, are matching the
performance improvement of CPUs. Fortunately there is a long
list of architectural innovations--duplicated caches, cache
coherency, multilevel caches, prefetching, interleaved memory,
pipelined memory, and so on--allowing fast SRAMs and large
DRAM s to be combined into memory systems that can match the
performance demands of new processors.

/O systems performance is limited by networks and magnetic
disks. There are several efforts to improve networks speeds by
factors of 10 to 100, so we see little trouble here provided some
of these efforts succeed. The good news about magnetic disks is
that improvements in capacity and cost per megabyte are keeping
pace with processors. The bad news is that performance gains are
modest. Rotation speed is unchanged in more than a decade, and
in that same time period seek time has improved by no more than
a factor of two.

Without innovation, we see most programs becoming 1/O
bound. If such an I/O crisis comes to pass, there will be little
reason to buy faster processors, since it is economic nonsense to
pay more to increase processor idle time.

2. Arrays of Inexpensive Disks

While the magnetic disk industry has made little progress in
improving speed of disks, it has significantly reduced the size of
disks. The personal computer industry has created a market for
5.25 and 3.5 inch drives, reducing the cost per disk system as
well as the traditional lowering of cost per megabyte. Table 1
below compares the top-of-the-line IBM 3380 model AK4
mainframe disk, Fujitsu M2361A "Super Eagle" minicomputer
disk, Impress/CDC Wren-IV workstation disk, and the Conner

CH2686-4/89/0000/0112$01.00 © 1989 IEEE

12

Peripherals CP 3100 personal computer disk.

Characteristics IBM Fujitsu CDC Conners
3380 M2361A Wren-IV CP3100
Disk diameter (inches) 14 10.5 525 35
Formatted Data Capacity (MB) 7.500 600 340 100
MTBEF rated by manufacturer (hours) 30,000 20,000 40,000 30,000
No. Actuators 4 1 1 1
Maximum I/O's/second/Actuator 50 40 40 30
Maximum I/O's/second/box 200 40 40 30
Transfer Rate (MB/sec) 3 25 15 1
Power/box (W) 1,650 640 40 10
MB/W 4.5 0.9 8.5 10.0
Volume (cu. ft.) 24 34 0.3 .1
MBf/cu. ft. 312 176 1133 1000

Table L. Comparison of IBM 3380 disk model AK4 for mainframe
computers, the Fujitsu M2361A "Super Eagle" disk for minicomputers,
ImpressiICDC Wren-IV disk for workstations, and the Conners Peripherals
CP 3100 disk for personal computers. By "Maximum 1/0’s/second” we
mean the maximum number of average seeks and average rotates for a
single sector access.

The table shows that the small drives are close to the
performance and the reliability of the large drives. The biggest
difference is the lower power and smaller volume per megabyte,
with the smallest drive about three to five times better. What is
not listed is cost per megabyte. The trade-off is the potential
lower cost per megabyte of large drives--since they can amortize
the cost of the support electronics over a larger number of
megabytes--versus the economies of scale provided by the higher
sales volume of the smaller drives. It is also an issue of
manufacturer's cost versus selling price, with the likelihood that
the mainframe drives having larger markup. In our discussions
with companies that make several sizes of disks they say the cost
per megabyte is a function of the popularity of a given disk at a
given time; they suggest assuming the cost per megabyte is
independent of disk diameter. We make that assumption.

Given similar performance and cost per megabyte, one way to
address higher performance is replace a single large drive by an
array of many smaller drives.[Kurzweil 88] Such an array
provides many more arms per dollar, meaning higher
performance because many small request can be serviced
independently and large requests can be spread over several disks
to transfer in parallel (Figure 1). Moreover, the advantages in
volume and power can mean a smaller footprint and lower air
conditioning requirements.

g8 ...0
VIt

(a) Arrays of inexpensive disks support several small,
independent reads and writes simultaneously.

Jgg -0

VL
Y

(b) Arrays of inexpensive disks also support large
reads or writes, where all disks trasnsfer in parallel.

Figure 1. Replacing a single large expensive disk by an array of
inexpensive disks improves performance because it can support (a) many
small individual accesses simultaneously and (b) large accesses with all
disks transferring in parallel ("striping” [Kim 86] [Salem 86]).

3. Redundant Arrays of Inexpensive Disks

The drawback to replacing a single large disk with, say, 100
small disks is reliability. Basically 100 devices have 1/100th the
reliability of a single device, reducing the mean time between
failure (MTBF) from over three years to less than two weeks.
This is so poor that without a scheme to improve reliability,
arrays containing many disks are unfeasible.

Fortunately redundancy can improve reliability of 100 small
disks beyond that of a single large disk. Although failures occur
100 times more frequently with 100 disks, the chances of a
second failure before the first is replaced is small enough to
tolerate more failures and still be more reliable than a single disk.
Thus Redundant Arrays of Inexpensive Disks, or RAID, has the
potential advantage of not only higher performance with lower
power and smaller footprint, but also higher reliability.

In an earlier paper we presented five different schemes for
disk redundancy [Patterson 88], but here we only present the two
schemes most likely to be implemented. If we include the rest of
the computer system it would seem we would need to duplicate
all components to achieve high reliability. A companion paper
shows high reliability is possible to achieve with more modest
redundancy costs[Schulze 89]. In this paper we assume that the
reliability is sufficient. Readers interested in redundancy schemes
for much larger disk arrays, file systems or databases for RAID
should see [Gibson 89], [Douglis 891, or [Stonebraker 88].

4. Mirrored RAID

The simplest redundancy scheme is to double the number of
disks, keeping a redundant copy of each datum. If a disk fails,
the system uses the redundant copy until the failed disk is
replaced, and then copies a redundant version to the new disk.
Data is lost only if the other disk of the pair fails before first is
replaced. In normal operation a copy is maintained by making
every write update both disks. This scheme is variously called
mirroring, shadowing, or copying, and is used by Tandem,

t1n this paper we use the term reliability to include availability.

113

DEC, and IBM to improve reliability. (In our original paper we
called mirroring a level 1 RAID.)

This scheme has the highest cost: the user must double
number of disks for the same amount of data or, conversely, use
only half the real storage capacity of the disks. If the arms and
spindles of a pair were synchronized then the performance of
mirroring versus nonredundant disks would be the same. This is
not commonly how the mirroring is implemented, and a write
results in independent writes to two disks. They can be
overlapped, but in general one will have longer seek and/or
rotational delay. On the other hand, the independence of disks
can improve performance of reads. The system might look at the
pair of disks that have the data; if only one is busy, it chooses the
other. If both are idle, it picks the disk that has shortest seek
{Bitton 88].

In summary, mirrored RAIDs have the highest cost for a
given storage capacity, but performance versus a nonredundant
disk array depends on the mix of reads and writes.

5. N+1 RAID

An advantage of disks is that they can detect their own
mistakes: either the disk controller will not get a response or the
ECC code per sector will be incorrect. By calculating and storing
parity of a group of disks on a bit-per-disk basis, any single disk
failure can be corrected simply by reading the rest of the disks in
the group to determine what bit value on the failed disk would
give the proper parity. This N+1 RAID can lose data only if there
is a second failure in the group before the failed drive is replaced.

This scheme has much lower cost overhead, with the
customer deciding how much overhead he wants to pay by
increasing the number of disks in the parity group. Performance
depends not only on the mix of reads and writes, but also on the
size of the accesses. Since there is ECC information on each
sector, read performance is essentially the same as nonredundant
disk arrays. For "large” writes--writing at least a sector to every
disk in the parity group--the only performance hit is 1/N more
writes to write the parity information. Writes to data on a single
disk, on the other hand, require four disk accesses:

1) Read the old data;

2) Read the old parity;

3) Write the new data;

4) Write the new parity using this formula:

new parity = (old data xor new data) xor old parity

It would seem that an additional performance limit would be
the parity disk, since small writes to any disk must also cause a
read and a write to the parity information. Such a bottleneck is
avoided by spreading the parity over several disks. Figure 2
shows how the straight-forward implementation is altered to
avoid parity bottlenecks. (In our original paper we called N+1 a
level 5 RAID.)

6. Performance of Mirrored RAID vs. N+1 RAID

Comparing these two RAID organizations is both simple and
difficult. Common sense suggests Mirrored RAID, using roughly
twice as many disks, is more expensive and has higher
performance. If cost is your only concern, you pick N+1, and
you pick Mirroring if performance is the only concern. What if
you care about both cost and performance? We use the metric of
throughput per disk, since a customer can always buy more disks
to solve an I/O bottleneck in any scheme. From the discussion
above it is clear that comparative performance is then sensitive to
whether the accesses are reads or writes and the size of the
accesses.

By making several simplifying assumptions we can estimate
comparative performance in all these measures. These
simplifying assumptions include:

Parity

ra 5 Disks
4 Data Disks : Disk

(containing Data and Parity)

DEEEE

00

BOOOOs

w

W

(o]
OO OO,
[[v i wwn) =]
oo

(a) Parity information in
straight-forward scheme.

The sectors are shown
below the disks. (The
checked areas indicate the
parity information.) Writes
to 50 of disk 2 and s of
disk 3 imply writes to s0
and sl of disk S. The
parity disk (5) becomes the
write bottleneck.

(b) Parity information for
rotated scheme. The sectors are
shown below the disks, with the
parity information and data
spread evenly through all the
disks. Writes to sO of disk 2
and sl of disk 3 still imply 2
writes, but they can be split
across 2 disks: to sO of disk 5
and to s1 of disk 4.

Figure 2. The performance impact of this small change is large in
large parity groups since it allows N+1 RAID to support multiple
individual writes per group. For example, suppose we want to write sector
0 of disk 2 and sector 1 of disk 3. As shown on the left writes must be
sequential since both sector 0 and sector 1 of disk S must be written.
However, as shown on the right, writes can proceed in parallel since a
write to sector 0 of disk 2 still involves a write to disk 5 but a write to
sector 1 of disk 3 involves a write to disk 4.

« Every access is assumed to take one average seck and one

average rotation;

« Every access is the same size;

« Accesses are spread optimally across all disks;

¢ Disks are never idle waiting for requests;

*» Accesses are assumed to be homogeneous, e.g., 100% small

reads.

« There is no optimization to schedule reads on mirrored disks;

« Latency is ignored.

Figure 3 is a comparison of the two schemes using these
assumptions, with 100% being the performance of a
nonredundant disk array for that type of access. Using these
assumptions we see that read performance is identical, with N+1
winning on capacity and large writes while Mirroring wins on
small writes.

To see if these results would hold in more realistic
circumstances, we recently completed an experiment on an
Amdahl 5890 using many large Amdahl 6380 devices[Chen 89].
N+1 RAID used 11 6380 devices with a track of 4 KB as the
primary block parity block size. This experiment improved the
above calculation in the following ways:

» Real hardware was used, accounting for CPU time and xor
calculation time;

» Seek and rotation times were not constant;

« The size of large accesses is not exactly one block per disk
in a parity group and a large access is not aligned to fit in the
minimum number of parity groups (see Figure S below);

* Accesses varied in size around an average. The average size
was 6.5 KB for small accesses and 1.5 MBfor large accesses.

114

Several distributions of access sizes were used.

* Accesses were not spread evenly between all disks, so some
were hot spots and some were underutilized,;

« Latency is considered, with the the load varied until 90% of
accesses met a latency threshold;

« For mirrored disks the reads were optimized to minimize
seeks, thereby slowing mirrored writes.

Figure 4 compares the measured results versus the estimated
results in Figure 3.

While most of the measured results were close to the

estimates, a few were not:

« Large reads for N+1 RAID did not achieve 100% because it
of the parity information. While parity need not be read, it stll
takes time for sector containing the parity to spin under the
head or for the head to move over the track containing
parity during a seck. For the large writes in this experiment
about 3 of the 44 tracks would contain parity, and 41/44 ratio
of data to total space is the same 93% of total time that we
measured.

« The optimization choosing which mirrored disk was best to
minimize seek distance of small reads over a nonredundant
disk by 14%. This optimization had little effect on large
transfers.

« N+1 RAID large writes were 70% vs. 91% of nonredundant
disks because the accesses were not "aligned” to exactly
one track per disk. Figure 5 shows the model for the estimate
and the more realistic model for the measurements. An
average large write in this experiment would write 75% of the
tracks in a full parity group write with the remaining 25% split
across two partial parity group writes.

* Small writes were slightly faster for N+1 RAID and
significantly slower than expected for Mirrored RAID. Small
writes do not need to seek to write the new values after
reading the old in N+1, they just pay a full rotation waiting for
the old data to spin under the head again. Mirrored RAID
small writes were slower than expected, in part becuase of the
higher latency since writes go to twice as many disks.

Using the assumptions and the results from this experiment we
see a closing of the performance gap on writes--Mirroring is
closer to N+1 on large writes and N+1 is closer to Mirroring on
small writes--while Mirroring gains a slight edge on reads, with
capacity still on the side on N+1.

(@) In estimate we assumed that
a large writes were multiplies
of the size of the parity group,

(b) The writes to s0 of disks 1
and 2 will require reads in the s0
parity group to calcualte the

and that they were aligned so parity in s0 of disk 5, and
that there were no partial similarily extra reads will be
groups. needed for parity group s4.

Figure 5. The estimates used the model on the left (a), while the
experiment randomly placed the large files so there would be writes to
portions of two parity groups in addition to the writes to full parity
groups. Clearly the importance of alignment is dependent on the size of a
large write.

I. Mirror BB N+1

100% 100%

100% 100%

Large Reads Small Reads

Large Writes

Small Writes Capacity

Figure 3. Estimated performance of Mirrored RAID vs. N+1 RAID for Large Reads, Small Reads, Large Writes,
Small Writes, and Useful Storage Capaciry. Small accesses mean one block while large accesses mean one block per
disk in the parity group. The group size for N+1 is 11 disks. Measures are percentage of nonredundant disk

throughput.

B Mirror est.

B Mirror meas.

N+1 est. N+1 meas.

120% T 114%
100% T
80% 1
80% T

40% 1

20% T

0% A
Small Reads

Large Reads

Large Writes

Small Writes Capacity

Figure 4. Estimated and measured performance of Mirrored RAID vs. N+1 RAID for Large Reads, Small Reads,
Large Writes, Small Writes, and Useful Storage Capacity. The experiment was run on an Amdahl 5890 CPU using
Amdahl 6380 devices. For N+1 the group size was 11. The average size of a small access is 6 KB and the average size
of a large access is 1.5 MB. Measures are percentage of nonredundant disk throughput.

7. RAID-I Prototype

The RAID hardware research is not being done in isolation.
The XPRS project--eXperimental Postgres, Raid, and
Sprite--includes the development of the Sprite operating system
and the Postgres database to take advantage of higher
performance 1I/O systems. XPRS is in turn part of Mammoth
project of U.C. Berkeley Computer Science Division that is
exploring the advantages of massive storage across many fields
of computer science.

To provide a vehicle for architectural experiments and
software development for the XPRS and Mammoth projects, we
are constructing a prototype we call RAID-I. It consists of:

Sun-4/280 with 128 MB of memory;

7 32-bit VME-SCSI Host/Bus Adapters;

32 CDC Wren-IV 340 MB 5.25" disks (using embedded

SCSI controllers);

1 Ethernet interface.

15

Figure 6 shows drawing of RAID-1.

RAID-I is an off-the-shelf system, to be used for software
development and for measurements to determine the design of
later RAID systems. Hence RAID-I has no performance goals,
with the only goal being stability for software development. We
expect that the VME bus, operating system overhead, and SCSI
controller overhead will conspire to reduce the available
bandwidth to much below that of 32 disks. Our goal is for
RAID-I to have enough capacity to make it an attractive resource
in our department so that we can get hands on experience w1.th
RAIDs with real users. We expect RAID-1 to be running Sprite
and Postgres in Spring 1989.

8. Discussion

We have discussed the RAID ideas with several groups of
people, and some questions come up so commonly that we
address them here.

Hj

Cooling Fans

Power Supply

Figure 6. RAID-I mechanical configuration for magnetic disks.
(The CPU is in a separate cabinet.) Note that disks can be placed
in the back of the cabinet as well as the front, so the maximum
capacity for this organization is 56 525" drives per rack.

1. How realistic are the assumptions of the independence of disk
Jailures and constant failure rates? Is it a triumph of hope over
experience?

We wish we knew. There are no published papers showing
the real lifetime failure rates of disks. Disk manufacturers
estimate MTBF by accelerated life-cycle testing, assuming that
failures are independent and the exponential failure model. If the
reader knows of a source of such information, please contact the
authors. It matters not who the manufacturer is, we just need
empirical data on disks to evaluate the viability of alternatives for
redundancy.

116

One problem that several magnetic disk manufacturers have
mentioned is what we would call the "Pinto Effect;" a mistake is
made in manufacturing process that is so disastrous that the disk
manufacturer will recall all affected disks and replace them. The
common theme is that the mistake is uncovered after the disks
have been in the field for several months and the disks all fail
within a short time of one another. One example was a
manufacturer who glued together the two halves of an head-disk
assembly, with this glue dissolving after the disks had been in the
field for 18 months. Another example was that a new bateriacide
used in an air filter interacted with the disk surface so that many
failures occurred six months later. A common cause of the Pinto
Effect is that a supplier will change some component as a cost
cutting measure without notifying the disk manufacturer, and
disastrous consequences occur due to unforeseen interactions.

Although we desperately need real data on disk failures, we
are performing studies of using models to estimate the impact of
the Pinto Effect on RAID reliability.

2. Whar are the implications of having or not having a hot
standby spare?

A standby spare is an unused but electrically connected disk
that can replace a failed disk in the system without human
intervention. The major advantage of standby spare is reducing
the mean time to repair (MTTR), with the disadvantage of
increasing the cost and complexity of the system. As soon a disk
fails, the system can immediately reconstruct the information onto
the spare. Depending on the load on the other disks in the system
and the capacity of the failed disk, the MTTR could be 10 to 60
minutes with a standby spare.

Without a standby spare, the MTTR will be significantly
longer:

» The repair man must be contacted to bring a disk for
replacement; this could be anywhere from 1 hour to 12 hours
depending on the level of service.
» Disks have a limit as to how fast they can adjust to
temperature changes; a typical specification is 5 degrees per
hour. If the field engineer stores replacement disks in his car,
then he may have to wait for the disk to acclimatize before
installing it. This could be O to 4 hours. If disks are stored in
the computer room to overcome acclimatization delays, this
removes the cost advantage of not having standby spares.
* Even if the system is designed to allow hot spare insertion,
in practice people responsible for a computer will not want
someone to open cabinets and replace equipment on a working
computer while many important jobs are running on the
system. (A failed disk does not disable the system since the
data can be reconstructed.) Thus sociological implications of
manual replacement may extend MTTR to 24 to 72 hours.

3. If RAID turns out not to be the answer, what is?

The slow seek and rotation delays of mechanical devices can
easily be overcome with solid state memory. The recently
introduced "Solid state disks" (SSD) provide more than ample
speed to match the growth of CPUs, because mechanical devices
are essentially removed from the hierarchy. The problem is that
cost is essentially a factor of 10 to 20 times larger for solid state
disks. In applications where a few hot spots dominate disk
accesses, a more economic solution would be to automatically
migrate data between SSD and magnetic disks to achieve higher
performance at lower cost.

The cost of SSD over RAM is a battery. The advantage of a
separate box with solid state memory over just larger main
memory is that the SSD is as reliable as magnetic disks in the
presence of bugs in the operating system and database software,
while this is not the case for main memory. SSD also have the
advantage that they are more easily multiported than main
}n;lmory, allowing other CPUs to access them in case of a CPU

ailure.

There is also a way to improve reliability without redundant
data storage. Recent work has suggested that disk failures can be
predicted. For decades field engineers have had diagnostics
programs that they run to exercise a disk during a preventative
maintenance cycle. The purpose is to decide whether or not the
disk should be replaced even though it hasn't failed yet. This is
clearly a failure prediction scheme. Lin and Siewiorek studied
messages printed on the system console and were able to see
indications of disk failures up to two weeks before the failure
[Lin 1986). DEC has a software product, called VAXSimPLUS,
that takes advantage of the predictive nature of some failures. It
purports to predict 90% disk failures far enough _in advance to
copy the data from the suspect disk onto a spare disk preventing
any disruption of the data.)

To achieve improvements in reliability similar to RAIDs
would take much higher accuracy of prediction than 90%. It is
also clear that disks and interfaces that could provide an early
warning system would be ideal parts for even less expensive
RAIDs.

4. Can a disk manufacturer successfully market a RAID?

Disk manufacturers must live with the interfaces provided by
computer systems; for example, SCSI interfaces, HBA
interfaces, and operating systems. No matter how large a file is,
UNIX will ask for it as a series of small (8 KB) blocks of da}ta.
Systems houses can that change the interfaces and the operating
system have a much better opportunity to take advantage of the
potential RAID.

S. What are implications of RAID for standard interfaces like
SCSI and IPI?

RAIDs will be constructed with hundreds of disks, increasing
the physical distance between the computer and the furthest disk
and the number of disks that must attached to a common bus.
Ideally future standards would allow longer distances for the
connections, much higher transfer rates, and more devices per
connection.

9. Conclusion

RAID:s offer a cost effective option to meet the challenge of
exponential growth in the processor and memory speeds. We
believe the size reduction of personal computer disks is the key to
the success of disk arrays, just as Gordon Bell argues that the
size reduction of microprocessors is a key to the success in
multiprocessors [Bell 85]. In both cases the smaller size
simplifies the interconnection of the many components as well as
packaging and cabling. While large arrays of mainframe
processors are possible, it is certainly easier to construct an array
from the same number of microprocessors (or PC drives). Just as
Bell coined the term "multi” to distinguish a multiprocessor made
from microprocessors, we use the term "RAID" to identify a
redundant disk array made from personal computer disks.

With advantages in cost-performance, reliability, power
consumption, and floor space, we expect RAIDs to replace large
drives in future I/O systems. There are, however, several open
issues that may bare on the practicality of RAIDs:

* What will be the real liferime of a RAID vs. MTBF
calculated using the independent , exponential failure model?

« Will disk controller design limit RAID performance?

* How should 100 to 1000 disks be constructed and physically
connected to the processor?

Acknowledgements
This work was supported by the National Science

Foundation under grant # MIP-8715235 and the California
MICRO program. We would like to thank the support of Sun

117

Microsystems Incoporated, Impress/CDC, and our other
industrial partners for the additional support of this research.
Peter Chen was supported in part by an ONR fellowship and
Garth Gibson was supported in part by both an IBM
fellowship and a Computer Measurement Group award.

References

[Adaptec 87] AIC-6250, IC Product Guide, Adaptec, stock # DB0003-00
rev. B, 1987, p. 46.

[Bell 85] Bell, C.G., "Multis: a new class of multiprocessor
computers,” Science, vol. 228 (April 26, 1985) 462-467.

[Bitton 88] D. Bitton and J. Gray, "Disk Shadowing,” in press, 1988.

[Chen 89] P. Chen, "An Evaluation of Redundant Arrays of Disks
using an Amdahl 5890," M.S. Report, 1989 (in preparation).

[Douglis 891 F. Douglis and J. Qusterhout, "A log structured file system,”
Spring COMPCON 89, March 1, 1989, San Francisco, CA, (in this
proceedings).

[Fujitsu 87] "M2361A Mini-Disk Drive Engineering Specifications,”
(revised) Feb., 1987, BO3P-4825-0001A.

[Gibson 89] G. Gibson, L. Hellerstein, R. Karp, R. Katz, and D.
Patterson, "Error Correction in Large Disk Arrays,” ASPLOS III, April
1989, Boston, MA.

[Kim 86} M.Y. Kim, "Synchronized disk interleaving," IEEE Trans.
on Computers, vol. C-35, no. 11, Nov. 1986.

[Kurzweil 88] F. Kurzweil, "Small Disk Arrays - The Emerging
Approach to High Performance,” presentation at Spring COMPCON
88, March 1, 1988, San Francisco, CA.

[Lin 86] T-T.Y. Lin and D.P. Siewiorek, "Architectural Issues for On
Line Diagnostics in a Distributed Environment," International
Conference on Computer Design, IEEE Computer Society, Rye Town,
NY, October 1986.

[Livny 87) M. Livny, S. Khoshafian, H. Boral, "Multi-disk
management algorithms,” Proc. of ACM SIGMETRICS, May 1987.
[Park 86] A. Park and K. Balasubramanian, "Providing Fault Tolerance
in Parallel Secondary Storage Systems,” Department of Computer

Science, Princeton University, CS-TR-057-86, Nov. 7, 1986.

[Patterson 88] D. Patterson, G. Gibson, and R. Katz, "A Case for
Redundant Arrays of Inexpensive Disks (RAID),” ACM SIGMOD
conference proceedings, Chicago, IL., June 1-3, 1988, pp. 109-116.
(Also appeared as Technical Report UCB/CSD 87/391, December
1987.)

[Salem 86] K. Salem and Garcia-Molina, H., "Disk Striping," IEEE
1986 Int. Conf. on Data Engineering, 1986.

[Schulze 891 M. Schulze, G. Gibson, R. Katz, and D. Patterson, "How
Reliable is a RAID?," Spring COMPCON 89, March 1, 1988, San
Francisco, CA, (next paper in this proceedings).

[Stonebraker 88] M. Stonrebraker, R. Katz, D. Patterson, and J.
Ousterhout, "The Design of XPRS", Very Large Data Base Conference
Proceedings, August 1988, Long Beach, CA., pp. 318-330.

