
Improving the Performance of the Web Proxy Server
through Group Prefetching

Tsozen Yeh
∗

Department of Computer Science and
Information Engineering

Fu Jen Catholic University
No.510, Zhongzheng Rd. Xinzhuang Dist.

New Taipei City 24205, Taiwan
yeh@csie.fju.edu.tw

Yenlin Pan
†

Department of Computer Science and
Information Engineering

Fu Jen Catholic University
No.510, Zhongzheng Rd. Xinzhuang Dist.

New Taipei City 24205, Taiwan
pan97@csie.fju.edu.tw

ABSTRACT
The web proxy server has widely been used to reduce the
internet latency that the client perceived. With the help of
the proxy server, the client may receive requested web ob-
jects from it rather than from the web server hosting them.
Nevertheless, the client still needs to spend the time waiting
for the web object being transferred from the proxy server
when the local web browser does not have a valid copy of the
requested object. This period of latency could be further re-
duced by predicting what web objects the client may need in
the near future and then prefetching them to the cache of the
local web browser. Different approaches had been proposed
to help the proxy server capable of making prediction and
prefetching to further reduce the Internet latency. Most of
them use techniques including temporal locality, data min-
ing, or more complicated mathematic models such as the
Markov model to devise different predicting algorithms. We
propose a new model, which dynamically combines tempo-
ral and spacial locality to help the proxy server make web
object prediction and prefetching. Through the simulation
against real traces, our model shows that with our design,
collectively, the local web browser can lift its caching per-
formance by an increase of 30% to 40%.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance Attributes;
D.4.8 [Operating Systems]: Performance—Modeling and
Prediction

∗Dr. Yeh is the director of the Operating System and Stor-
age Laboratory of the Department of Computer Science and
Information Engineering.
†Mr. Pan is a member of the Operating System and Stor-
age Laboratory of the Department of Computer Science and
Information Engineering.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICUIMC’12, February 20-22, 2012, Kuala Lumpur, Malaysia
Copyright 2012 ACM 978-1-4503-1172-4 ...$10.00.

General Terms
Performance

Keywords
proxy server, operating system

1. INTRODUCTION
As the traffic of World Wide Web dramatically increases

over the past few years, the demand of reducing Internet la-
tency users experience has become an important issue. The
latency mainly comes from retrieving web objects from their
host web servers. Consequently, one way to mitigate the la-
tency is to keep cacheable web objects at the local client’s
site for possible future reference. For those web objects dy-
namically created, it is not worthy to cache them since their
contents vary largely each time they are requested. Often
they are referred as non-cacheable objects. Modern web
browsers cache web objects for future reference to save time.
Our simulation results against real traces we collected reveal
that, in some best cases, the web browser by itself can sat-
isfy up to 42% of local client’s cacheable requests. However,
for the rest of 58%, requests of valid copies will be sent out
for them.

Proxy servers can be classified into two categories, server-
side and client-side, which are geographically close to the
web server or the client respectively [20]. The proxy sever
has been broadly used to shorten the time awaiting the re-
quested web objects from their sources. A client-side proxy
server is often designated to the same group of users within
the same institution. Generally speaking, all users within
the same group are configured to one or few predefined proxy
servers. When the local web browser does not have a valid
copy of the web object that the client requested, the request
will be sent to the designated proxy server. If the proxy
server has a valid copy, then the copy will be sent to the
client directly. If the proxy server does not have a valid
copy, either missing or stale, it will ask the source of the
web object for a new copy. After receiving the new copy of
the web object requested, the proxy server will send it to
the client.

Regardless if the proxy server has a valid copy of the re-
quested web object nor not, the client has to wait until the
needed web object arrives. However, if we can make predic-
tion about what the client may need shortly, and prefetch

them to the cache of the web browser on the client site, then
this period of waiting could be further reduced. Previous
researchers had proposed various methods to make proxy
server aim at this goal [3, 10, 12, 14]. The effectiveness of
those methods largely depends on how accurately they can
make future request prediction. The temporal locality [4,
6, 7], data mining [15], and Markov model [9, 17, 18] are
techniques among those commonly adopted. Besides the
predictive accuracy, the number of web objects prefetched
to a client each time is a practical issue we need to consider.
Ideally, it would be nice to prefetch as many web objects as
possible to the client to satisfy the client’s future request.
However, doing excessive prefetching could likely clog the
network and eventually it will prolong the client’s waiting
time. We propose a new technique, which dynamically com-
bines temporal and spacial locality to make the client-side
proxy server capable of making future request prediction
whenever it receives a web object request from the client.
For brevity, unless specified otherwise, we will use the term
”proxy server” instead of ”client-side proxy server” from now.
Our model is based on the idea of grouping. We argue that
the access to one web object is often accompanied with the
access to certain other relevant web objects. By compiling
web objects likely to be accessed together into groups, valid
prediction and prefetching can be done accordingly. In our
model, for each web object request the proxy server receives,
it will examine if that object belongs to any existing groups.
If so, up to a certain number of web objects in the group (or
groups) will be prefetched to the client making the request.
If not, then the proxy server will create a new group for this
web object and no prefetching will be performed thereafter.

To evaluate our model, we collected the proxy server traces
over a period of six months from our institution. Among
those traces, we pick several representative sections last-
ing from one to three days to conduct experiments. All
our experiments demonstrate the effectiveness of our model.
Without prefetching, the caching done by web browser can
approximately fulfill between 20% and 40% of the client’s
request. With the lift of prefetching in our design, the web
browser can satisfy about extra 30% to 40% of requests by
the client in all cases.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses previous works related to proxy prefetching.
Section 3 describes the scheme of group prefetching. Sec-
tion 4 presents the results from our experiments. Section
5 concludes this paper, and the future work is discussed in
Section 6.

2. RELATED WORK
The proxy server can affect the response time that users

experience. Amelioration from different aspects have been
proposed to improve its performance. Web object prefetch-
ing is among one of them. The idea of prefetching is not only
for the proxy server, also for some other areas. Many com-
puter filesystems suffer the performance loss caused by the
speed gap between memory and hard drive. Prefetching files
from hard drive to memory before their subsequent accesses
is a proven way to reduce the delay [13, 23]. The time de-
lay between the client’s sending and obtaining the requested
web object is essentially similar to the issue just mentioned
in the regular computer filesystems. Likewise, having the
proxy server prefetch web objects possibly requested later to
the client in advance could remedy the latency perceived by

users [4, 6, 7, 10, 12, 14, 3, 20, 2]. Some prefetching schemes
employ Markov models to make prefetching guidelines [9,
17, 18, 22]. Techniques based on data mining exploring pos-
sible user access patterns can also make prediction [15]. The
hyperlinks embedded within web objects are often good can-
didates to get prefetched with their hosting web objects [6,
10]. Besides prefeching, smart cache replacement algorithms
could help the proxy server function better by keeping more
useful web objects in its cache [1, 5, 19]. Sharing contents
among different proxy servers could extends their hit ratio
[11]. In addition, the contents of web objects can indicate
what the user may request next [8]. The proxy server needs
to interact with its hard drive, reducing the I/O activity will
also improve its performance [16].

3. GROUP PREFETCHING
Since the proxy server is meant for users in the same

group, it accepts all requests of web objects within the same
group of users. Consequently the proxy server has a better
chance to identify the relationship among those requested
web objects. In other words, the proxy server could ob-
serve web objects which tend to be accessed together within
the same period of time and then make them belong to the
same group. We can dynamically build and maintain those
groups in the proxy server. Whenever a request sent to the
proxy server, based on the grouping information, up to a
certain number of related web objects will be prefetched to
the client making that request accordingly.

3.1 Grouping Process
The grouping information updates quickly. Each time the

proxy server receives a request of web object, the proxy
server will check if it has a valid copy of that object. If not,
the proxy server will request a new copy of that web object
from its hosting web server. Otherwise, the proxy server will
send the valid copy to the requesting client directly. In both
cases, the corresponding grouping information of that web
object will be updated as stated in section 3.2. After that,
up to a certain number of web objects in the same group
with the requested web object will be sent to the requesting
client to complete the process of prefetching.

3.2 Grouping Scheme
Our design unites temporal and spacial localities to build

and maintain grouping information. Based on temporal and
spacial localities between individual web objects and existing
groups, our scheme assigns individual web objects to one or
few groups. If a close relationship between a web object
and existing groups cannot be established, then that web
object will form a new group by itself. The web objects
contained in the same group are considered closely related.
In other words, an access to one web object of a given group
is possibly accompanied by the access to some other web
objects in the same group. The way we use temporal and
spacial localities to build groups is discussed as follows.

The temporal locality has been used to explore file access
patterns in regular file systems. Not surprisingly, some of
previous research also adopted the idea of temporal locality
among sequential requests of web objects seen in the proxy
server [4, 6, 7]. Our grouping scheme uses the idea of tem-
poral locality in a different way. Instead of focusing on the
instant temporal sequence among individual web objects, we
maintain the temporal locality between groups and individ-

ual web objects. Each group has a timestamp and often
consists of multiple web objects. The timestamp of a group,
namely group time, is set to the requesting time of the web
object that latest joins the group. The group time will be
used as a part of the condition evaluating whether a given
web object should join the group nor not.

Since the proxy server is often designated for a large num-
ber of users, it could receive many requests from different
users within a short period of time. Consequently, methods
relying only on using temporal locality to make prediction
can easily misidentify the relevancy among unrelated web
objects. To avoid this drawback, we combine the temporal
locality explained above with the spacial locality discussed
later to mitigate this problem. The spacial locality origi-
nally refers to the situation that if a particular memory or
storage location is referenced, then its nearby locations will
likely to be referenced as well. When a user is visiting a web-
site, multiple web objects on the same website also could be
requested within a short period. Early research had identi-
fied this phenomenon [21]. Some studies suggested to store
web objects within the same URL path closely in the proxy
server [21]. Web objects stored in the same web server of-
ten share the same URL (Uniform Resource Locator) prefix,
which is somewhat similar to the concept of the spacial lo-
cality. Our scheme explores this feature when establishing
groups holding closely related web objects. It is not prac-
tical to group all, even a vast portion of, web objects on
a website into a single group. The path of each URL con-
sists of multiple layers (directories) separated by the symbol
”/”. The length of common layers, starting from the do-
main name, between the URL paths of web objects could
reveal the relevancy among them. The longer the common
length is, the more relevant those web objects are. For exam-
ple, a URL http://a/b/c/d.html is more relevant to a URL
http://a/b/c/e.html than a URL http://a/b/x/y.html. As a
result, the common length between different URL paths is
used to make the overall grouping decisions as well.

Our model integrates both temporal and spacial localities
to build groups in the following way. For two web objects
being able to join the same group, their temporal and spacial
localities will be evaluated jointly. Both the short difference
between their requested time and the long common length of
their URL path prefix reveal their relevant tendency. To be
able to join the same group, if the difference between their
requested time is longer (tending to be less relevant), then
the common length of their URL path prefix also needs to
be longer (tending to be more relevant). Similarly, if the
difference between their requested time is shorter (tending
to be more relevant), then the common length of their URL
path prefix can be shorter (tending to be less relevant). Of
course, two web objects can join the same group if their
temporal and spacial localities both tend to be more relevant
to each other.

It is common for a user to visit different parts of a website
within the same period of time. Among those web objects on
the same website, their URL paths could vary largely except
for the domain name. Under such circumstances, if they are
not requested within a relatively short period of time, then
neither spacial locality nor temporal locality may be able to
identify the relevancy among those web objects. To remedy
this disadvantage, our scheme applies a time threshold used
to ease the grouping condition. As long as the requested
web objects are from the same website and the difference

of their requested time is smaller than or equal to the time
threshold, they can join the same group.

Collectively, our scheme uses temporal locality, spacial lo-
cality, and a time threshold to build groups of relevant web
objects. Equation 1 is the formula we use to examine if two
web objects are relevant enough to stay in the same group.

t

T
≤ L (1)

Whenever the proxy server receives a web object request
(say for web object X), it uses the equation 1 to check if
that web object X can join any existing group (or groups).
The latest member of each existing group is used to compare
with the web object X in both temporal and spacial locali-
ties to decide if the web object X is relevant enough to join
its group. The numerator t represents the time difference
between the group time and the requested time of the web
object X. As stated earlier, each group uses the requested
time of its latest member as its group time. We also compare
the URL path of the requested web object X with the URL
path of the latest member in the group to obtain the value of
L, which denotes the the length of common layers (starting
from the domain name) between two URL paths. The de-
nominator T stands for the time threshold explained above.
We will have more discussion on it in our experiments later.

4. PERFORMANCE EVALUATION
To justify our design, we collected real-life proxy traces

from our university over a period of six months. Among
those proxy traces, we chose several representative sections
of data covering from one to three days. Experiments based
on simulation were conducted against the selected traces.
We examined the performance improvement for web browsers
using our prefetching model over the cases using web browsers
without our model.

4.1 Experiment Data
There are six proxy servers in the campus computer cen-

ter. Two of the six are responsible for the vast majority of
the network traffic. We used the traces collected between
September 1, 2010 and February 28, 2011 from one of the
two proxy servers. For our simulation, we prepared two sets
of data. The first set consists of three one-day traces, while
the second set includes three three-day traces. Table 1 lists
the characteristics of data in the first set. The column IP
number represents the number of different IPs (users) seen
in corresponding traces. The column total web objects is the
number of web objects requested, including both cacheable
and non-cacheable, observed during a given date. The col-
umn cacheable web objects shows the number of cacheable
web objects requested. Since it does not make too much
sense for the web browser to keep the non-cacheable web
objects, so we only utilize the cacheable web objects of the
traces in our simulation. One interesting observation is that
the amount of cacheable web objects occupies about one-
third of the entire traces.

4.2 Experiment Design
We conducted two sets of experiments based on simulation

against traces covering one and three consecutive days. The
equation 1 is used for establishing and maintaining grouping
information. As a reminder, to decide whether a web object

Table 1: trace data characteristics
date IP total cacheable

number web objects web objects
09/07/2010 1141 1839158 573854
10/08/2010 1715 3626388 1217578
11/09/2010 956 3344036 1101976

Table 2: time between consecutive requests
time (in minutes) percentage

0 - 5 57.81%
5 - 10 12.36%
10 - 30 11.88%
30 - 60 6.12%
over 60 11.82%

X can join an existing group, we apply the equation 1 to
both the latest member of that group and the web object
X, if it passes, then the web object X will join that existing
group as its latest member. If the web object X cannot join
any existing groups after applying the equation 1 to all of
them, then it will form a new group by itself.

As stated earlier, the denominator T in the equation 1
stands for the time threshold easing the grouping condition
for web objects coming from the same website. As long
as two web objects with the same domain name, the value
of L on the right side of the equation will be equal to or
greater than one. For the left side of the equation, as long
as the numerator t (requested time difference between web
objects) is not longer than the threshold T, the value of t

T
will be equal to or smaller than one. Hence, two web objects
with the same domain name can be grouped together if the
difference of their requested time is not larger than the time
threshold T.

Selecting a time threshold T is an interesting question. An
inappropriately small number will make web objects from
the same website hard to join the same group. However,
making the time threshold T excessively large will bring
nearly all web objects from the same website into the same
group, which is also improper. We analyzed a portion of the
trace covering one full month (outside our testing periods)
to see how often a given cacheable web object is repeatedly
requested. Table 2 reveals the average time between con-
secutive requests for individual web objects. It shows that
about 57.81% of them have their next request within the
period of five minutes, while 12.36% of them wait five to ten
minutes before they are requested again. Overall, for indi-
vidual web objects, the majority of them, 70.17% (57.81%
+ 12.36%), will have their next requests within the period
of ten minutes. As a result, we set the value of the time
threshold T to five and ten minutes accordingly. This rea-
son we use this estimation is that we view the consecutive
request for the same web object as a cycle, and requests of
relevant web objects from the same website would possibly
show up thereinto.

Ideally, the more web objects the proxy server prefetches
for the client, the more future requests the client can possi-
bly save. However, doing prefetching overly could consume
too much bandwidth and clog up the network, which will end
up with hurting the overall performance of the proxy server.
Consequently we need to limit the number of web objects

prefetched each time to avoid this network congestion. The
average size of the web objects in the six-month trace we col-
lected is 24.4 Kbytes. To be conservative, we limit the band-
width to 10 Mbits, which confines the number of prefetched
web objects up to 52. In our experiments, we evaluate the
situations with the limit of 20, 30, 40 prefetched web objects
respectively. Besides, we also conducted all experiments un-
der different time threshold T, five and ten minutes accord-
ingly. The cache size of individual web browsers is configured
to 50 Mbytes, which is a default setting for Firefox, and a
common number for most popular web browsers.

4.3 Experiments for the One-Day Period
The first set of our experiments contains three one-day

traces dated September 07, 2010, October 08, 2010, and
November 09, 2010. Table 3 lists the results obtained for
the trace of September 07, 2010. The ”limit” column is the
maximum number of web objects prefetched each time. So
the number 20 means the proxy server will prefetch up to 20
web objects from the group (or groups) relevant (according
to the equation 1) to the web object being requested. In
the case where there are totally more than 20 relevant web
objects existing in the relevant group (or groups), our model
will pick 20 of them with the latest 20 requested time. The
next column, WOR (web objects requested), denotes the
total number of requested web objects that the proxy server
received for the date. The third column, BH-WO-P (browser
hit without prefeching), represents the number of client’s
requests satisfied by the web browser cache itself without
our prefetching scheme. The numbers in the second and the
third columns remain unchanged due to their irrelevancy to
the prefeching number. The next column, BH-W-P (browser
hit with prefetching), is the counterpart of BH-WO-P with
our prefetching scheme. The last column counts the total
number of web objects sent out by the proxy server, which
includes the requested and prefetched ones.

Table 4 is derived from the table 3. The second column
shows, without prefetching, the percentage of all requests
that can be satisfied by the web browser. The third col-
umn reveals the performance of the web browser with our
prefetching scheme. These numbers demonstrate that, with-
out our prefetching scheme, the web browser can satisfy
34.05% of the client’s request. With the help of our prefetch-
ing model, the web browser can double its performance to
about 70%, which is a noticeable improvement. The last
column designates, with prefetching, the number of web ob-
jects sent out by the proxy server is between 4.35 and 6.35
times as many as the number when no prefetching is applied.
In other words, on average, not counting the requested one,
the proxy server will prefetch between 3.35 and 5.35 web
objects to the client for each request it received, which is
much smaller than the number of prefetching limit (20,30,
and 40). This also explains the close performance among
various prefetching limits.

As stated earlier, we also conducted experiments with the
time threshold of ten minutes. For brevity, we only ex-
hibit the comparison of improvement percentage between
the five-minute and the ten-minute thresholds as seen in
the table 5. Compared with the numbers of five-minute
threshold, the performance under ten-minute threshold ame-
liorates slightly, while the web object sent-out rates (WOS
/ WOR) are also slimly larger than its counterparts in the
five-minute threshold.

Table 3: trace date: 09/07/2010
numbers, with the 5-min time threshold

WOR: web object requested
BH-WO-P: browser hit without prefetching
BH-W-P: browser hit with prefetching
WOS: web objects sent by the proxy server

limit WOR BH-WO-P BH-W-P WOS
20 573874 195376 386302 2495817
30 573874 195376 399059 3174574
40 573874 195376 399189 3644072

Table 4: trace date: 09/07/2010
improvement, with the 5-min threshold

BH-WO-P BH-W-P WOS
limit / / /

WOR WOR WOR
20 34.05% 67.32% 4.35
30 34.05% 69.54% 5.53
40 34.05% 69.56% 6.35

The table 6 and the table 7 list the result obtained for
the trace of October 08, 2010. It shows that, without our
prefetching scheme, the web browser can satisfy 23.61% of
the client’s request. With the help of our prefetching model,
the web browser can increase its performance up to 62.8%.
On average, excluding the requested one, the proxy server
prefetched between 5.41 and 9.70 web objects to the client
for each request it received. Besides, there is also no signifi-
cant performance among respective prefetching limits. The
table 8 compares the results with two various time thresh-
olds for this experiment. It shows that, as seen in the table 5,
both time thresholds contribute commensurate performance
and cost.

The table 9 and the table 10 display the outcome for the
trace dated November 09, 2010. In the case of no prefetch-
ing, the web browser can fulfill 29.05% of the client’s request.
When applying our prefetching method, its performance is
lifted up to 64.07%. The proxy server prefetched between
5.06 and 9.35 web objects per request on average. More-
over, no obvious performance difference observed in three
prefetching limits. Similarly, as seen in the previous two
cases, the table 11 shows close numbers for both time thresh-
olds as well.

Collectively, table 5, table 8, and table 11 manifest the
effectiveness of our prefetching model. In general, the web

Table 5: trace date: 09/07/2010
improvement compared between 5-min and 10-min
thresholds

BH-W-P BH-W-P WOS WOS
limit / / / /

WOR WOR WOR WOR
5-min 10-min 5-min 10-min

20 67.32% 67.45% 4.35 4.42
30 69.54% 69.73% 5.53 5.63
40 69.56% 71.01% 6.35 6.66

Table 6: trace date: 10/08/2010
numbers, with the 5-min threshold

limit WOR BH-WO-P BH-W-P WOS
20 1217578 287440 720530 7798744
30 1217578 287440 748553 10514703
40 1217578 287440 764612 13033405

Table 7: trace date: 10/08/2010
improvement, with the 5-min threshold

BH-WO-P BH-W-P WOS
limit / / /

WOR WOR WOR
20 23.61% 59.18% 6.41
30 23.61% 61.48% 8.64
40 23.61% 62.80% 10.70

browser could do between doubling and nearly tripling its
performance when our prefetching scheme is applied. The
average number of web objects prefetched remains small. In
the meanwhile, there is no apparent performance difference
when using different values for the time threshold in these
experiments.

4.4 Experiments for the Three-Day Period
Besides the experiments conducted for one-day traces, we

also want to know if our prefetching model can further bet-
ter its potency as the grouping information evolves under a
longer period of time. The second set of our experiments
targets traces of three three-day periods starting from the
same dates specified in the first set of our experiments. Ta-
ble 12 reports the results obtained for the three-day period
starting from September 07, 2010.

Table 13 comes of the table 12. The web browser can meet
41.83% of the client’s request in the case of no prefetching.
The numbers in this table certify that the web browser can
grow its performance up to 72.88% with our prefetching de-
sign. Compared with table 4, a few percent improvement is
obtained . We believe this is because the grouping scheme
can gradually aggregate web objects more relevant to each
other into the same group (or groups) as it operates for a
longer period of time. Interestingly, the web browser with-
out prefetching also did better (about six percent better) in
this experiment, which is more than what our model achieves
in this case. Not surprisingly, generally it is more difficult to
make improvement on top of a higher ground than a lower
base. Besides, the numbers of web objects prefetched are
also comparable to those in table 4, which indicates the sta-

Table 8: trace date: 10/08/2010
improvement compared between 5-min and 10-min
thresholds

BH-W-P BH-W-P WOS WOS
limit / / / /

WOR WOR WOR WOR
5-min 10-min 5-min 10-min

20 59.18% 59.33% 6.41 6.42
30 61.48% 61.65% 8.64 8.66
40 62.80% 62.99% 10.70 10.68

Table 9: trace date: 11/09/2010
numbers, with the 5-min threshold

limit WOR BH-WO-P BH-W-P WOS
20 1101976 320134 666884 6675222
30 1101976 320134 693381 9165394
40 1101976 320134 706053 11410201

Table 10: trace date: 11/09/2010
improvement, with the 5-min threshold

BH-WO-P BH-W-P WOS
limit / / /

WOR WOR WOR
20 29.05% 60.52% 6.06
30 29.05% 62.92% 8.32
40 29.05% 64.07% 10.35

bility of our model.
Table 14 displays the result obtained for the three-day

period starting from October 08, 2010. Table 15 shows
the performance comparison. Without prefetching, the web
browser accomplishes 29.84% of the client’s request, while
its performance can reach up to 64.56% with our prefetch-
ing design. By examining table 15 and table 7, a few percent
improvement is gained for the three-day experiment over the
one-day experiment, which is similar to the case in the pre-
vious three-day period.

Table 16 exhibits the results for the three-day period start-
ing from November 09, 2010. Table 17 shows the perfor-
mance comparison. Without prefetching, the web browser
satisfies 38.61% of the client’s request, while its performance
can attain up to 66.84% with our prefetching technique.
Again, a few percent improvement is gained for the three-
day experiment over the one-day experiment

All experiments in the second set were also conducted with
ten-minute time threshold as done in the first set of exper-
iments. The performance improvement of those with ten-
minute time threshold over those with five-minute threshold
considerably resembles what we observed in the first set of
experiments. Therefore, we do not present the duplicated
information in this section.

To understand the number of groups established and the
number of their associated web objects during our experi-
ments. We tabulate those numbers in table 18 and table 19.
Table 18 lists the average number of relevant web objects ag-
gregated per group during the three-day experiments. The
leftmost column specifies the starting date. The second to
the fourth columns show the accumulated numbers recorded

Table 11: trace date: 11/09/2010
improvement compared between 5-min and 10-min
thresholds

BH-W-P BH-W-P WOS WOS
limit / / / /

WOR WOR WOR WOR
5-min 10-min 5-min 10-min

20 60.52% 61.08% 6.06 6.15
30 62.92% 63.07% 8.32 8.36
40 64.07% 64.24% 10.35 10.41

Table 12: trace date: 09/07/2010 - 09/09/2010
numbers, with the 5-min time threshold

limit WOR BH-WO-P BH-W-P WOS
20 1322072 553029 936793 5168729
30 1322072 553029 951346 6689465
40 1322072 553029 963486 8016694

Table 13: trace date: 09/07/2010 - 09/09/2010
improvement, with the 5-min threshold

BH-WO-P BH-W-P WOS
limit / / /

WOR WOR WOR
20 41.83% 70.86% 3.91
30 41.83% 71.96% 5.06
40 41.83% 72.88% 6.06

at the end of each day respectively. On average, each group
will accept from a few tens to one hundred plus new rele-
vant objects per day. One might be concerned about the
growing number on each day. However, this will not be an
issue since we confine the maximum number (20, 30, and 40)
of web objects prefetched each time, so in practice we can
limit the number of relevant web objects in each group up
to the maximum prefetching number, say 20, to avoid this
problem.

Table 19 counts the average number of groups established
at the end of each day. One way to deal with the growing
group number is to expunge those inactive groups, which
can be identified by either the last time they accepted new
member or how long the proxy server has not prefetched
web objects associated with them. As stated above, because
we can confine the number of relevant web objects in each
group, so it won’t take long to establish deleted groups again
if necessary.

Reviewing the results collected from both sets of experi-
ments, we could draw several conclusions. Firstly, the group-
ing and prefetching model we proposed indeed can lift the
performance of the web browser with an increase approxi-
mately between 30% and 40%. Secondly, on average, the
number of web objects prefetched by the proxy server is
somewhere between three and nine for each request it re-
ceives. These numbers (three to nine) are much smaller
than the maximum prefetching limit (20,30,and 40) confined
in our experiments. So we know that doing prefetching this
way will not greedily consume bandwidth to congest the
network with prefetched web objects. Lastly, the outcome
with the ten-minute time threshold mildly outperforms that
of the five-minute time threshold. This suggests that our
model is not very sensitive to time threshold chosen in our
experimental environment, which in a way implies the sta-
bility our model would possess.

Table 14: trace date: 10/08/2010 - 10/10/2010
numbers, with the 5-min time threshold

limit WOR BH-WO-P BH-W-P WOS
20 2721002 812076 1674325 16371737
30 2721002 812076 1727824 22200204
40 2721002 812076 1756693 27199877

Table 15: trace date: 10/08/2010 - 10/10/2010
improvement, with the 5-min threshold

BH-WO-P BH-W-P WOS
limit / / /

WOR WOR WOR
20 29.84% 61.54% 6.02
30 29.84% 63.50% 8.16
40 29.84% 64.56% 10.00

Table 16: trace date: 11/09/2010 - 11/11/2010
numbers, with the 5-min time threshold

limit WOR BH-WO-P BH-W-P WOS
20 2857540 1103416 1838362 16374648
30 2857540 1103416 1884691 22450113
40 2857540 1103416 1909983 27652004

Table 17: trace date: 11/09/2010 - 11/11/2010
improvement, the with 5-min threshold

BH-WO-P BH-W-P WOS
limit / / /

WOR WOR WOR
20 38.61% 64.33% 5.73
30 38.61% 65.97% 7.86
40 38.61% 66.84% 9.68

Table 18: web object count
starting end of the end of the end of the

date first day second day third day
09/07/2010 138.62 231.40 292.82
10/08/2010 229.75 400.96 535.11
11/09/2010 202.23 357.46 499.82

Table 19: group count
starting end of the end of the end of the

date first day second day third day
09/07/2010 6169 7653 8911
10/08/2010 9659 11108 12421
11/09/2010 9689 11100 12206

5. CONCLUSIONS
The web proxy server plays a very important role in mod-

ern network environment. Many organizations and compa-
nies set up one or few designated proxy servers as a portal
to make the Internet connection. Internet traffic in both di-
rections (in and out) needs to go through the proxy server.
In other words, the proxy server monitors the obtainment
and transmission of all web objects on its associated net-
work. Consequently, how well the proxy server functions
will largely affect the Internet experience for all its corre-
sponding client computers. Whenever a user needs to ac-
cess a website, if a valid copy of the demanded web object
is not available locally, then the request will first go to the
preassigned proxy server for help. The proxy server will de-
liver a copy of that web object requested if it has a valid
one. Otherwise, it will acquire a valid copy from the website
hosting the requested web object, and then the proxy server
will forward it to the client thereafter. In the case where
the proxy server can fulfill the client’s request by itself, the
period of time sending the web object from the web server
to the proxy server can be eliminated accordingly. However,
the user still has to wait for the web object he or she needs
from the proxy server. Ideally, if the proxy server could ap-
propriately predict what web objects a client may access in
the near future, then those predicted web objects can be
transmitted to the client in advance to further save waiting
time for the client.

We propose a new model integrating temporal and spa-
cial locality to predict and prefetch what web objects a client
may access in the future. With the assistance of our tech-
nique, the proxy server could make effective predictions to
conduct the prefetching. To appraise our model, we con-
ducted experiments based on real-life proxy server traces
collected from our university. Among them, we picked sev-
eral representative periods lasting for one day and three
consecutive days. The outcome of our experiments clearly
demonstrates the effectiveness of our design. Our exper-
iments verify that, compared with no prefetching scheme
applied, the web browser can satisfy about extra 30% to
40% of web objects requested by the client in all cases when
the proxy server uses our design to make prefetching. In the
meanwhile, the average number of web objects prefetched by
the proxy server for each request is between three and nine,
which is quite distant from the maximum number allowed
according to the bandwidth analysis in the section 4.2.

6. FUTURE WORK
We adopt a universal prefetching limit throughout our

experiments. One possible future extension of our model is
to prefetch various numbers of web objects based on differ-
ent situations. For example, important users with higher
priority could receive a larger number of prefetched web ob-
jects from the proxy server. The other one is to make the
prefetching limit adaptive to the congestion level of the net-
work. The more congested the network is, the smaller the
prefetching limit should be, and vice versa.

7. ACKNOWLEDGMENTS
We are grateful for the help from the director, Prof. Hong-

Yen Lin, and the staff of the university computer center in
providing us the traces used in our experiments.

8. REFERENCES
[1] C. Aggarwal, J. L. Wolf, and P. S. Yu. Caching on the

world wide web. IEEE Transactions on Knowledge
and Data Engineering, 11:94–107, 1999.

[2] A. Balamash, M. Krunz, and P. Nain. Performance
analysis of a client-side caching/prefetching system for
web traffic. Computer Networks, 51(13):3673 – 3692,
2007.

[3] A. Bestavros. Using speculation to reduce server load
and service time on the www. In Proceedings of the
fourth international conference on Information and
knowledge management, CIKM ’95, pages 403–410.
ACM, 1995.

[4] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. A
study of integrated prefetching and caching strategies.
In Proceedings of the 1995 ACM SIGMETRICS joint
international conference on Measurement and
modeling of computer systems, SIGMETRICS
’95/PERFORMANCE ’95, pages 188–197, 1995.

[5] P. Cao and S. Irani. Cost-aware www proxy caching
algorithms. In Proceedings of the USENIX Symposium
on Internet Technologies and Systems on USENIX
Symposium on Internet Technologies and Systems,
pages 18–18. USENIX Association, 1997.

[6] K. Chinen and S. Yamaguchi. An interactive
prefetching proxy server for improvement of www
latency. In Proc. INET ’97 Conference, 1997.

[7] M. Crovella and P. Barford. The network effects of
prefetching. In INFOCOM ’98. Seventeenth Annual
Joint Conference of the IEEE Computer and
Communications Societies, pages 1232 – 1239, 1998.
IEEE. .

[8] B. D. Davison. Predicting web actions from html
content. In Proceedings of the thirteenth ACM
conference on Hypertext and hypermedia, pages
159–168. ACM, 2002.

[9] M. Deshpande and G. Karypis. Selective markov
models for predicting web page accesses. ACM Trans.
Internet Technol., 4:163–184, May 2004.

[10] D. Duchamp. Prefetching hyperlinks. In Proceedings of
the 2nd conference on USENIX Symposium on
Internet Technologies and Systems - Volume 2, pages
12–12. USENIX Association, 1999.

[11] L. Fan, P. Cao, J. Almeida, and A. Z. Broder.
Summary cache: a scalable wide-area web cache
sharing protocol. IEEE/ACM Trans. Networking.,
8:281–293, June 2000.

[12] L. Fan, P. Cao, W. Lin, and Q. Jacobson. Web
prefetching between low-bandwidth clients and
proxies: potential and performance. In Proceedings of
the 1999 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems,
SIGMETRICS ’99, pages 178–187. ACM, 1999.

[13] J. Griffioen and R. Appleton. Reducing file system
latency using a predictive approach. In USENIX
Summer Technical Conference. USENIX, 1994.

[14] T. M. Kroeger, D. D. E. Long, and J. C. Mogul.
Exploring the bounds of web latency reduction from
caching and prefetching. In Proceedings of the
USENIX Symposium on Internet Technologies and
Systems on USENIX Symposium on Internet
Technologies and Systems, pages 13–22. USENIX

Association, 1997.

[15] B. Lan, S. Bressan, B. C. Ooi, and K.-L. Tan.
Rule-assisted prefetching in web-server caching. In
Proceedings of the ninth international conference on
Information and knowledge management, pages
504–511. ACM, 2000.

[16] C. Maltzahn, K. J., and D. Grunwald. Reducing the
disk i/o of web proxy server caches. In Proceedings of
the annual conference on USENIX Annual Technical
Conference, pages 17–17. USENIX Association, 1999.

[17] V. Padmanabhan and J. Mogul. Using predictive
prefetching to improve world wide web latency.
SIGCOMM Comput. Commun. Rev., 26:22–36, July
1996.

[18] R. R. Sarukkai. Link prediction and path analysis
using markov chains. In Ninth International World
Wide Web Conference, 2000.

[19] J. Shim, P. Scheuermann, and R. Vingralek. Proxy
cache algorithms: design, implementation, and
performance. IEEE Transactions on Knowledge and
Data Engineering, 11:549–562, 1999.

[20] W. Teng, C. Chang, and M. Chen. Integrating web
caching and web prefetching in client-side proxies.
IEEE Transactions on Parallel and Distributed
Systems, 16:444–455, 2005.

[21] J. Wang, R. Min, Y. Zhu, and Y. Hu. Ucfs - a novel
user-space, high performance, customized file system
for web proxy servers. IEEE Transactions on
Computers, 51:1056–1073, 2002.

[22] Q. Yang and H. H. Zhang. Integrating web prefetching
and caching using prediction models. World Wide
Web, 4:299–321, 2001.

[23] T. Yeh, D. D. E. Long, and S. A. Brandt. Performing
file prediction with a program-based successor model.
In Proceedings of the Ninth International Symposium
on Modeling, Analysis, and Simulation on Computer
and Telecommunication Systems, pages 193–202.
IEEE, 2001.

