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Abstract

Recent increases in CPU performance have surpassed
those in hard drives. As a result, disk operations have
become more expensive in terms of the number of CPU
cycles spent waiting for them to complete. File predic-
tion can mitigate this problem by prefetching files into
cache before they are accessed. Identifying relationships
between individual files plays a key role in successfully
performing file prefetching. It is well-known that previ-
ous patterns of file references can be used to predict future
references. Nevertheless, knowledge about the programs
producing the relationships between individual files has
rarely been investigated. We present a Program-Based
Successor (PBS) model that identifies relationships be-
tween files through the names of the programs accessing
them. We develop a Program-based Last Successor (PLS)
model derived from PBS to do file prediction. Our sim-
ulation results show that PLS makes 21% fewer incorrect
predictions and roughly the same number of correct pre-
dictions as the Last-Successor (LS) model. We also ex-
amine the cache hit ratio achieved by applying PLS to the
Least Recently Used (LRU) caching algorithm and show
that a cache using PLS and LRU together can perform
better than a cache up to 40 times larger using LRU alone.
Finally, we argue that because program-based successors
are more likely to be used soon, incorrectly prefetched
program-based successors are more likely to be used and
thus less incorrect than incorrectly prefetched files from
non-program-based models.
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1 Introduction

Running programs stall if the data they need is not in
memory. As CPU speeds increase, disk I/O becomes
more expensive in terms of the CPU cycles spent wait-
ing for the data to be read from disk. File prefetching is a
technique that mitigates this speed difference, originating
from the mechanical operation of disk and the electronic
operation of CPU [17], by preloading files into memory
before they are needed. The success of file prefetching
ultimately depends on the accuracy of the file prediction
algorithm – how accurately an operating system can pre-
dict which files to load into memory. Probability and his-
tory of file access have been widely used to perform file
prediction [4, 5, 9–11, 14], as have hints or help from pro-
grams and compilers [3, 12, 15].

While correct file prediction is useful, incorrect predic-
tion is to a certain degree both unavoidable and costly. An
incorrect prediction is worse than no prediction at all. Not
only does an incorrectly prefetched file do nothing to re-
duce the stall time of any program, it also wastes valuable
disk bandwidth and cache space. Incorrect prediction can
also prolong the time required to bring needed data into
the cache if a cache miss occurs while the incorrectly pre-
dicted data is being transferred from the disk. Incorrect
predictions can lower the overall performance of the sys-
tem regardless of the accuracy of correct prediction.

We present a Program-Based Successor (PBS) model
which identifies relationships between individual files
through the names of the programs accessing them. We
contend that relationships between files are caused by pro-
grams. The execution of a program decides both what
files it needs, and the accessing order among them. In
other words, probability and repeated history of file ac-
cesses do not occur for no reason. Most likely they exist
as the result of repeated execution of the same program or
repeated execution of part of a program. Programs access
more or less the same files in roughly the same order ev-
ery time they execute, so consecutive accesses of different
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files can be more accurately predicted given knowledge
about which programs are accessing them. By knowing
which program is initiating a file access, PBS can pro-
vide a more accurate prediction of the next file needed. In
addition to prefetching, PBS also has applications in bat-
tery conservation in mobile computers and file hoarding in
weak-connected or disconnected network environments.

We also present a new file prediction algorithm,
Program-based Last Successor (PLS) based on the PBS
model. PLS uses knowledge about which programs are
accessing the files to determine program-specific last-
successor predictions for each file. Our results demon-
strate that that PLS generates more accurate file predic-
tions than the other file prediction algorithms examined.
In particular, PLS reduces the number of incorrect file pre-
dictions while maintaining roughly the same number of
correct predictions to provide better overall file prediction
and therefore better overall system performance.

We compare PLS with Last-Successor (LS) and Finite
Multi-Order Context (FMOC) [9]. Generally speaking,
LS has a high predictive accuracy – our simulation results
show that LS can correctly predict the next file to be ac-
cessed about 80% of the time in some cases. FMOC out-
performed LS in a one-month trace in Kroeger’s study [9]
but performs slightly worse than LS in our simulations.
Our experiments demonstrate that with traces covering as
long as 13 months PLS makes up to 21.48% fewer incor-
rect predictions than LS, giving PLS the highest predictive
accuracy among all three models in our comparison. We
also examine the cache hit ratios of Least Recently Used
(LRU) with no file prediction, and LRU with PLS. We ob-
serve that PLS always increases the cache hit ratio and in
the best case, LRU and PLS together have a better cache
hit ratio than a cache 40 times larger using LRU alone.

2 Related Work

Griffioen and Appleton use probability graphs to predict
future file accesses [5]. The graph tracks file accesses ob-
served within a certain window after the current access.
For each file access, the probability of its different follow-
ers observed within the window is used to make prefetch-
ing decision. Their simulations show that different combi-
nations of window and threshold values will largely affect
the performance.

Lei and Duchamp use pattern trees to record past ex-
ecution activities of each program [11]. They maintain
different pattern trees for each different accessing pattern
observed. A program could require multiple pattern trees
to store similar patterns of file accesses in its previous ex-
ecution. This imposes keeping duplicated information on
the system. Pattern trees of a running program are com-
pared with the current accessing pattern. If a match found,

files in that pattern tree are prefetched to memory.
Vitter, Curewite, and Krishnan adopt the technique

of data compression to predict next required page [4,
18]. Their observation is that data compressors assign a
smaller code to the next character with a higher predicted
probability. Consequently a good data compressing algo-
rithm should also be good at predicting next page more
accurately.

Kroeger and Long predict next file based on proba-
bility of files in contexts of FMOC [9]. They later im-
proved FMOC to Partitioned Context Modeling (PCM)
which limits the total number of nodes in each partition
to lower the space requirement in FMOC. Their research
also adopts the idea of data compression like Vitter et
al. [18], but they apply it to predicting next file instead
of next page.

Patterson et al. develop TIP to do prediction using hints
provided from modified compilers [15]. Accordingly, re-
sources can be managed and allocated more efficiently.
Extra coding in programs and language dependence are
disadvantages of this type of approach. In the case of no
access to source codes there is no way to generate hints.
Hints generated statically by compilers sometimes may
not be very useful if file accesses cannot be decided until
runtime.

Chang and Gibson design a tool which can transform
UNIX application binaries to perform speculative execu-
tion and issues hints [3]. Their algorithm can eliminate the
issue of language independence, but it can only be applied
to single-thread applications.

Mowry et al. use modified compiler to provide future
access patterns for out-of-core applications [12]. Kotz and
Ellis define representative parallel file access patterns in
parallel disk systems [8]. Cao et al. define four proper-
ties that optimal predicting and caching model should sat-
isfy [2]. Palmer and Zdonik use unit pattern to prefetch
data in database applications [14]. Kimbrel et al. exam-
ine four related algorithms to find out when a prefetching
algorithm should act aggressively or conservatively [6].

Generally speaking probability-based predicting algo-
rithms respond to changes of reference pattern more dy-
namically than those relying on help from compilers and
applications. However over a longer period of time, ac-
cumulated probability may not closely reflect the latest
accessing pattern and even may mislead predicting algo-
rithms sometimes.

3 Program-Based Successor
(PBS) Model

We provide details about the PBS model in this section.
We start with a discussion of why PBS is a useful model,
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followed by a discussion of how to implement this model
and how to apply it to file prediction.

3.1 PBS

Lacking a priori knowledge of file access patterns, many
file prediction algorithms use statistical analysis of past
file access patterns to generate predictions about future
access patterns. One problem with this approach is that
executing the same set of programs can produce different
file access patterns even if the individual programs always
access the same files in the same order. For example, con-
sider a system with a preemptive scheduler running two
programs, ��� and ��� , where ��� accesses files � , � , and�

, in that order, and �	� accesses files 
 , � , and � , in
that order, and each file is accessed exactly once. While
each program has a perfectly predictable access pattern
and each file (after the first one in each sequence) follows
exactly one other file in the program-based sequence, the
system will see one of 20 different file access patterns
( ���
���
�
�
����� ) depending on the exact timing of context

switches in the system. In particular, with repeated exe-
cutions of these two programs the history of file accesses
observed by the system will vary considerably.

Because it is the individual programs that access files,
probabilities obtained from the past file accesses of the
system as a whole are ultimately unlikely to yield the
highest possible predictive accuracy. In particular, prob-
abilities obtained from a system-wide history of file ac-
cesses will not necessarily reflect the access order for any
individual program or the future access patterns of the set
of running programs. In the above example, executing � �
and � � concurrently may result in many different file ac-
cess patterns. However what remains unchanged is the
order of files accessed by the individual programs, � � or
� � . This validates our observation that probability and
patterns of file access occur for reasons. In particular, file
reference patterns can describe what has happened more
precisely if they are observed for each individual program,
and better knowledge about past access patterns leads to
better predictions of future access patterns.

We present a Program-Based Successor (PBS) model
which keeps track of previous executions of programs and
the sequence of files they have accessed. Consequently,
file prediction can be carried out in a more precise way.
Each file in the PBS model has a record of every program
that has accessed it, and the files previously accessed by
that program after this one. For a given program, PBS
can predict the sequence of files it may access from the
records kept with files. Figure 1 shows a simple example
of the PBS model. The left and right parts represent the
beginning and the end of a program’s execution respec-
tively. The middle portion describes files and the order

among them accessed by programs. In this figure pro-
gram � � accesses file � , then � . � � accesses � and

�
in

that order. � � accesses either the sequence of files � , � ,
then � , or � , � , � , then � .

F

EndBegin
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C
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2
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Figure 1: A simple example of the Program-Based Suc-
cessor model

3.2 Building PBS

The relationship between files and programs accessing
them can be many-to-many. Therefore a model must
store metadata efficiently to save space and to react
promptly. For each file PBS stores pairs of � program
name, successor-list � in the metadata of the file. The
program name in each pair represents a program which
accessed that file before. The successor-list is a list of
files that the program accessed immediately after previous
accesses to the corresponding file. PBS stores informa-
tion about files needed by different programs efficiently.
It does not keep the entire model in memory like some
other file prediction models. In addition to the data struc-
ture used by running programs to update � program name,
successor-list � of files they access, only the metadata of
files that programs are currently accessing need to stay
in memory to make predictions. Once a program exits,
the metadata used for PBS no longer needs to exist. The
metadata of the files in Figure 1 is displayed in Table 1.
Details of building and updating metadata of files will be
discussed in the next section.

Programs are executed as processes, so we can store
the program name in the process control block (PCB). For
each running program (say � ), we also need to keep track
of the file (say 
 ), which it has most recently accessed.
When � accesses the next file (say � ) after 
 , PBS updates
the metadata of the 
 with ��� , � � . If the access to 
 by �
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is ever followed by access to different files, for example � ,
other than � , PBS adds the name of file � to the metadata
of 
 . So the metatdata now becomes � � , � , ��� .

The metadata within each file, � � , � � in the above ex-
ample, will remain with the file until the file is deleted
from the file system. The extra metadata each running
program keeps for the file it has most recently accessed
only exists during the execution of the program. Once a
program terminates this metadata is no longer needed and
may be discarded.

Table 1: Metadata of Figure 1 kept under PBS model

file � program name, successor-list �
A ��� � , � � , ��� � , � �
B � ��� , ����� �
C � � � , ����� �
D ��� � , � ���
E ��� � , � � �
F ��� � , ���
G � � � , ����� �
H � � � , ����� �

3.3 Using PBS

Probability-based prediction models have an intrinsic
problem of slow adaptation. The same prediction is made
until enough different events occur to change the corre-
sponding probability. This can cause some problems in
predicting the next file. Take the file � in Figure 1 for
example, a probability-based method will predict � or

�
to be the next file depending on which one has followed
� more often. A probability-based model does not realize
that executing � � or � � is the reason behind the two dif-
ferent patterns, � � and � � . In other words, probability
can only reveal what the result is, but not why it occurs.
The situation can get worse as the number of programs
accessing � increases.

Program-based Last Successor (PLS) is a specific in-
stance of PBS where, for each program that has accessed
a file, only the most recent program-based successor of
that file is stored. Thus each file has a list of program-
based successors, one per program that has accessed the
file. When a program accesses a file, the last successor of
that file for that program is predicted as the next successor
of that file. Our simulation results show that it performs
better than the well-known Last-Successor (LS) model
and the recently developed Finite Multi-Order Context
(FMOC) model.

4 PLS, LS, and FMOC Models

PLS is derived from PBS. It performs file prediction to
reduce program stall time. In this section, we discuss
why PLS performs better than LS. We also revisit FMOC
which outperformed LS in previous study. The outcome
of the comparison indicates that PLS can more accurately
predict next needed file than the other two.

4.1 LS and FMOC

Given an access to a particular file � , LS predicts that the
next file accessed will be the same one that followed the
last access to file � . Thus if an access to file � followed
the last access to file � , LS predicts that an access to file �
will follow this access to file � . This can be implemented
by storing the successor information in the metadata of
each file. One potential problem with this technique is
that file access patterns rely on the temporal order of pro-
gram execution, and scheduling the same set of programs
in different orders may generate totally different file ac-
cess patterns.

FMOC predicts the next file to be accessed from the
files that have been seen so far in “context” [9]. Each file
seen in a context has a probability indicating the likeli-
hood that it follows that context. FMOC often prefetches
multiple files for each prediction. The “additive accu-
racy” was defined to compare the performance between
FMOC and LS [9]. If the next file accessed is among
those files prefetched, then the predicted probability of
that file is added to the score of FMOC. The final score
is then normalized by the number of events in the simula-
tion trace to obtain the “additive accuracy” [9]. Since LS
only predicts one file at a time, we add one to its score if it
makes a correct prediction. No score is added for a wrong
prediction. The final score is also normalized. Kroeger’s
study showed that using order higher than two resulted in
negligible improvements so in this work we only examine
the second order FMOC model (denoted as FMOC2).

4.2 PLS

As mentioned above, PLS incorporates knowledge about
the running programs to generate a better last-successor
estimate. More precisely, PLS records and predicts
program-specific last successors for each file that is ac-
cessed.

Suppose a file trace at some time shows pattern � � ,
and pattern � � occurring 60% and 40% of the time re-
spectively. A probability-based prediction will prefer pre-
dicting � after � is accessed. If � and

�
tend to alternate

after � , then LS will do especially poorly. But the reason
that pattern � � and � � occur may be quite different. For
instance, in Figure 2, the file access pattern � � is seen to
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Figure 2: Program-based Last-Successor model

be caused by program � � , while the file access pattern � �
is caused by program � � . In other words, what is really
behind the numbers 60% and 40% is the execution of two
different applications, ��� and ��� . After we collect this
information (a set of pairs consisting of “program name”
and “successor”) for file � , next time it is accessed we can
predict either � or

�
depending on � � or ��� is accessing

� , or provide no prediction if � is accessed by another
program. Of course, if a particular program accesses mul-
tiple different files after each access of a particular file,
then the program-specific last successor will change.

Table 2: Metadata of Figure 2 kept under PLS model

file � program name, successor �
A ��� � , � � , ��� � , � �
B � ��� , ����� �
C � � � , ����� �

One can argue that the same program may access differ-
ent sets of files each time that it is executed, particularly a
system utility program such as a compiler. While it is true
that compiling different programs will result in different
files being accessed, compiling the same program multi-
ple times will result in many or all of the same files being
accessed in the same order. Thus PLS will make correct
predictions for most of these files, even when alternating
compilations between two sets of files. Assume, for ex-
ample, that two programs need to be compiled. The first
program needs files 
 � , 
 � , ..., 
�� , in that order, and the
second program needs files � � , � � , ..., ��� , in that order. If

 � and � � are different files, then we don’t know which
file to predict when the compiler starts running, but as
soon as either 
 � or � � is accessed we know which file to
prefetch next. If 
 � and � � are the same, then we prefetch
this file and wait to see whether 
 � or � � is needed, and
then we can predict the next file after that. Hence we can
predict all files except the first occurrence of 
�� �� ��� ( �	

min( 
 , � )) until the access to the next shared file 
��
(which is same as ��� , ���� ) comes up.

PLS can also avoid the slow adaption problem in
probability-based prediction models. Probability-based

models always predict the same file until the correspond-
ing probability changes. Like LS, PLS does not rely on
probability so it can respond immediately as file access
patterns change.

Two issues that need to be addressed are how to collect
the metadata in terms of � program name, successor � for
each file, and how big the metadata needs to be in order
to make accurate predictions. The first issue is quite sim-
ple. Building PLS is similar to building PBS, except that
for each file, PLS only tracks the most recent successor
per program and does not keep all previous successors as
does PBS. In the example of Figure 2, when � � accesses
the next file (say � ) after its access to � , we update the
metadata of � with � � � , � � , and next time � � accesses
� , PLS can predict that the next file accessed will be � .
Similarly, � also keeps ���	� , � � as parts of its metadata.
The metadata of files in Figure 2 is shown in Table 2.

The second issue is not quite as simple as the first. Ide-
ally, for each file we would like to record the name of
every program that has accessed it before, along with the
program-specific successor to the file, so that we know
which file to predict when the same program accesses the
file again. In reality, this may be too expensive for files
used by many different programs. Consequently, we may
need to limit the number of � program name, successor �
pairs kept for each file. However, our simulation shows
that the vast of majority of files are accessed by six or
fewer programs and thus metadata storage is not a prob-
lem.

A few terms need to be clarified here. The first is that
when we use the term “program” we mean any running
executable file. Thus a driver program that launches dif-
ferent sub-programs at different times is considered by
PLS to be a different program from the sub-programs,
each of which is also treated independently. The second
is that both “program name” and “file name” include the
entire pathname of the files. This is important because dif-
ferent programs with the same name can access the same
file and different files with the same name can be accessed
by different programs, and these accesses must all be han-
dled correctly.

5 Experimental Results

In the section, we will discuss the trace data we used to
conduct our experiments, and how we compare perfor-
mance of FMOC2, LS, and PLS.

5.1 Simulation Trace and Experimental
Methodology

In examining PLS we used the trace data from DFS-
Trace used by the Coda project [7, 13]. These traces
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were collected from 33 machines during the period be-
tween February of 1991 and March of 1993. We used data
roughly equal to the second half of the entire trace from
four machines, ����� ��� � , �	��
����� , ����������� , and

� � ��� .
����� ��� � was a server, �	��
����� was a desktop worksta-
tion, ����������� had the highest percentage of write, and
� � ��� hosted the most users. Table 3 lists the period of
trace for each machine used in our simulation. Research
has demonstrated that the average life of a file is very short
[1]. Therefore, instead of tracking every READ or WRITE
event, we track only the OPEN and EXECVE events in our
simulation.

As mentioned above, PLS needs to be able to determine
the name of a program in order to generate its predictions.
Because we cannot obtain the name of any program that
started executing before the beginning of the trace, we ex-
clude all OPEN events initiated by any process id (pid)
which started before the beginning of our trace. Intuitively
this filtering has no effect on the results of our experiments
because the filtering is based only on the time at which the
program began. In a real system such filtering is not nec-
essary because all program names are known.

We score PLS the same way we score LS, by adding 1
for each correct prediction and 0 for each incorrect pre-
diction. We normalize the final scores of PLS and LS by
the number of predictions, not by the number of events as
in the FMOC2 model. This is because the first time that
a file is accessed there is no previous successor to predict
and so the failure to make a prediction the first time can-
not be considered incorrect. Since our simulation trace is
very long (between 10 and 13 months), it turns out that
the effect of this compulsory error is negligible and does
not affect the prediction accuracy comparison among the
models.

5.2 Model Comparison

We used the filtered trace data to evaluate FMOC2, LS,
and PLS. Figure 3 shows that PLS has the highest predic-
tive accuracy in all machines. For models predicting one
or more files at a time such as FMOC2, the additive ac-
curacy indicates the likelihood that the next file actually
referenced is among those predicted files. However for
models predicting one file each time, like LS and PLS,
there is no difference between the additive accuracy and
the predictive accuracy, which represents the percentage
of the time that a prediction model correctly predicts the
next file. The comparison of LS and PLS in Figure 3 is
re-displayed in Figure 4 in terms of predictive accuracy.
Note that the values are the same as for the additive accu-
racy shown in Figure 3.

One pitfall in comparing prediction models in terms
of predictive accuracy is that higher predictive accuracy

Table 3: Trace data used

machines
used

Barber Mozart Dvorak Ives

begin
month

4/92 3/92 6/92 6/92

end
month

2/93 3/93 3/93 3/93

months
covered

11 13 10 10

does not assure the success of a model because the scores
are commonly normalized by the number of predictions
made, which does not include those cases where no pre-
diction was made. Consider two prediction models, �
and � . If � makes 40 correct predictions, 40 incorrect
predictions, and does not make a prediction 20 times out
of a total of 100 file accesses, then � ’s predictive accu-
racy is 50%. Suppose � makes only 2 correct predictions,
1 incorrect prediction, and does not make a prediction 97
times. � ’s predictive accuracy is 67%, but model � is al-
most useless in practice.

Clearly, in order to examine the real performance of a
prediction model, we need other information besides pre-
dictive accuracy. Thus, we use LS as the baseline to eval-
uate the performance of PLS in three categories. The first
category is the percentage of total predictions (including
correct and incorrect predictions) made by PLS as com-
pared with LS. This percentage should not be to too small,
otherwise PLS may be an unrealistic model just like the
model � above. The second is the percentage of correct
predictions made by PLS as compared with LS. This num-
ber should be as high as possible. The last category is the
percentage of incorrect predictions made by PLS as com-
pared with LS. Ideally this percentage should be less than
100%, indicating that PLS makes fewer incorrect predic-
tions than LS. However, a percentage of over 100% does
not necessarily reflect worse performance. After all, the
percentage of correct prediction is also a factor in decid-
ing the overall performance.

5.3 Category Performance

We cannot do the same comparison with FMOC2 due to
the nature of the FMOC model as discussed above. Figure
5 displays the performance in the category of total predic-
tion. It shows that the percentage of events where a pre-
diction was made by PLS is only about five percent less
than the numbers of LS. This is close enough to consider
PLS to be a practical prediction algorithm in terms of the
number of predictions it makes. The percentage of cor-
rect predictions is shown in Figure 6. The percentage for
����� ��� � from PLS is over 99% of the number from LS, for
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Figure 3: Additive accuracy of FMOC2, LS, and PLS
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Figure 4: Predictive accuracy of LS and PLS
� � ��� it is over 98%, and for both � ��
����� and �����������
PLS makes more correct predications than LS. Figure 6
demonstrates that PLS can do roughly as well as LS in
correctly predicting files. Figure 7 shows that PLS makes
fewer incorrect predictions than LS. Figure 8 shows the
same data normalized by LS and shows that PLS indeed
makes 15 to 22% fewer wrong predictions than LS, which
is a very exciting result. This explains why PLS has the
highest predictive accuracy among all three models in Fig-
ure 3. As we discussed before, incorrect predictions come
with a cost, and avoiding this cost directly translates into
better system performance.

The reduction of incorrect predictions in PLS is signif-
icant enough to be worthy of further exploration. Since
the number of predictions made by PLS is only about five
percent less than LS, and the number of correct predic-
tions is roughly same as LS, we conclude that PLS makes
no prediction more often than LS. We collected the per-
centage of cases where no prediction was made by PLS
compared with LS, and the results are displayed in Fig-
ure 9, which confirms this surmise. Figure 9 shows that
the percentage of events where no prediction was made by
PLS is roughly three to six times higher than that of LS.
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Figure 5: Total predictions made by LS and PLS
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Figure 6: Correct predictions made by LS and PLS

We stated earlier that some events were filtered out of
our trace data due to the requirement that PLS needs to
know the program initiating an event, and we claimed that
the filtering does not affect the validity of our results. To
verify this, we compared the percentage of events filtered
out of original trace data with PLS predictive accuracy
for each machine. Our assumption was that if the filtered
data had affected our results, the effect would be greater
for larger amounts of filtered data. However, the results in
Figure 10 show that the predictive accuracy of PLS (the
back row) is unrelated to the percentage of events filtered
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Figure 7: Incorrect predictions made by LS and PLS
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malized to LS)
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Figure 9: No predictions made by LS and PLS

out from the original trace data of each machine (the front
row).

One last note about the number of � program name,
successor � pairs that a file requires to successfully imple-
ment PLS. Our simulation results show that for ����� ��� � ,
more than 99% of files are accessed by six or fewer pro-
grams, while more than 99% of files are accessed by five
or fewer programs for the other three machines. Thus the
amount of data stored for each file in PLS is not of con-
cern.

In addition to predictive accuracy we also want to know
how PLS performs in terms of cache hit ratio, and addi-
tional experiments were conducted to determine this. We
set the cache size according to the number of files it can
hold for two reasons. The first is that file size is usu-
ally small, so the entire file can often be prefetched into
cache [16]. The second is that in the case of large files,
sequential read is the most common activity. Modern op-
erating systems can already identify sequential read ac-
cesses and techniques such as prefetching the next several
data blocks for sequential read have been implemented.
We simulate cache with different sizes ranging from 25
files to 2000 files, and compare the cache hit ratios be-
tween the LRU caching algorithm with no prediction and

barber mozart dvorak ives

0
10
20
30
40
50
60
70
80
90

100

%
  

events filtered out
PLS predictive accuracy

Figure 10: PLS performance vs. percentage of events fil-
tered out of original trace data

the LRU caching algorithm with PLS. Figure 11 shows
that when using PLS prediction, the cache always per-
forms better than when using LRU alone, regardless of
cache size, and in some cases even better than a cache up
to 40 times larger.

Part of the reason for this dramatic performance im-
provement is the fact that an incorrect prediction made by
PLS, one that does not correctly predict the next file to
be accessed, will still provide benefit if the file is subse-
quently accessed while it is still in the cache. Because
PLS makes program-based predictions, its incorrect pre-
dictions are much more likely to be for a file to be ac-
cessed in the near future than are predictions made by
non-program-based models, which may predict a file ac-
cessed by a program that is no longer even running. In
other words, the incorrect predictions by PLS are more
likely to be used in the near future and are therefore less
wrong than those made by other models. The earlier
graphs showing predictive accuracy show performance for
an effective cache size of one file and therefore do not
show the performance benefit of this second-chance ef-
fect but Figure 11 clearly shows this effect. In real sys-
tems where multiple files can fit in memory at once, the
performance will benefit accordingly.

6 Future Work

Several alternatives may improve the performance of PLS
and are worthy of further exploration. For example,
further classifying file accesses based upon the user for
which the program is running may improve the perfor-
mance of PLS. PLS may also use the preceding file to-
gether with the � program name, successor � to improve
performance. This can resolve some ambiguous cases
such as predicting next file after the access to file � in
the example of Figure 1. On the other hand, files exist-
ing temporarily (such as those in /tmp directory) usually
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PLS

won’t get the same name next time they are created again.
If so, then they can never be predicted correctly by PLS
and there is no need to store their information.

Currently we are also examining the feasibility of ap-
plying the PBS model to conserve battery energy in mo-
bile computers by prefetching multiple files each time and
then spinning down the disk to save energy. This could
greatly affect the utility of mobile computers since bat-
tery life is extremely valuable in a mobile environment.
File hoarding is another area where we are considering
the use of PBS and PLS. Files needed by programs can
be preloaded over the network to the local disk so that
programs can continue to execute when the network con-
nection is unavailable.

7 Conclusions

As the speed gap between CPU and the secondary storage
device will not be narrowing in the foreseeable future, file
prefetching will continue to remain a promising way to
keep programs from stalling while waiting for data from
disk. We have developed a new program-based successor
model, PBS, which efficiently stores file access histories
and enables accurate file access predictions. Our simula-
tions from PLS, derived from PBS, show good results in
predicting files.

File accesses are driven by the programs using them,
not by previous access patterns. Pattern history has been
broadly used to predict the next needed object. A good
predictor must adapt itself promptly as the access pattern
changes. Last-successor is a good prediction model in
general, but we have shown that it can be improved by ap-

plying it to program-based access patterns. By tracking
programs initiating file accesses, we successfully avoid
many incorrect predictions, as our results demonstrate.
More than 21% of incorrect predictions can be reduced
as compared with LS in some cases. Therefore, the over-
all performance penalty caused by incorrect predictions
can be significantly reduced. We also compare the cache
hit ratios of LRU with and without PLS. The results show
that with PLS, LRU can deliver a much higher cache hit
ratio.
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